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Abstract
Recently, the Mouse ENCODE Consortium reported that comparative gene
expression data from human and mouse tend to cluster more by species rather
than by tissue. This observation was surprising, as it contradicted much of the
comparative gene regulatory data collected previously, as well as the common
notion that major developmental pathways are highly conserved across a wide
range of species, in particular across mammals. Here we show that the Mouse
ENCODE gene expression data were collected using a flawed study design,
which confounded sequencing batch (namely, the assignment of samples to
sequencing flowcells and lanes) with species. When we account for the batch
effect, the corrected comparative gene expression data from human and
mouse tend to cluster by tissue, not by species.
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Introduction
The mouse ENCODE Consortium has collected multiple types of 
genomic and functional data in order to better understand the poten-
tial utility of the mouse as a model system for biomedical research. 
To study gene expression levels, the Consortium collected RNA 
sequencing data from multiple tissues from human and mouse. 
Their comparative analysis revealed that gene expression patterns 
tend to support clustering of the data by species, rather than by 
tissue (Figure 2a in reference 1).

This pattern was confirmed and discussed in greater detail in a 
companion paper by Lin et al.2, which also acknowledged that this 
observation is somewhat unexpected. Indeed, previous comparative 
studies reported that gene expression data from human and mouse 
(and across other species more generally) tend to cluster by tissues, 
not by species. Lin et al. proposed that previous studies might have 
been biased in their focus on a few ‘specialized’ tissues that tend 
to express the largest number of ‘tissue-specific genes’, while the 
overall pattern supports less tissue specificity.

The implications of the observation that human and mouse gene 
expression data may be clustering by species more than by tissues 
can be profound. To a large degree, modern biology is built upon 
the empirical observation that homologous gene regulatory net-
works establish the identities of homologous cell-types, tissues, and 
organs across species – the results of Lin et al., if true, challenge 
these observations and the biological basis of homology. From a 
more practical perspective, the mouse is arguably the most impor-
tant animal model for biomedical research. If gene regulation in any 
mouse tissue is markedly more representative of a general mouse 
regulatory network than the regulatory network of a corresponding 
human tissue, this would call into question the utility of the mouse, 
and perhaps any other non-human animal, as a useful model system 
for biomedical research.

Here, we present a reanalysis of the mouse ENCODE Consortium 
comparative RNA sequencing data. We argue that a flaw in their 
study design raises doubt regarding their conclusions.

Methods
RNA-Seq data, genome and gene annotation files
In December 2014 we asked and were kindly provided by the 
authors of Lin et al.2 the names of the sequence files used in their 
comparative analysis. Based on this information we obtained 
sequence files in FASTQ format (Supplementary Table 1) from the 
ENCODE project1 site (https://www.encodeproject.org/; some of 
the files were only available from early January 2015).

For our analysis, we used the same genome build and gene annotation 
files as in Lin et al.2. The ENSEMBL3 genome build Mus musculus  
GRCm38.68 was downloaded from ftp://ftp.ensembl.org/pub/
release-68/fasta/mus_musculus/dna/Mus_musculus.GRCm38.68.
dna_sm.toplevel.fa.gz; the corresponding transcript annotation file 
was downloaded from ftp://ftp.ensembl.org/pub/release-68/gtf/mus_
musculus/Mus_musculus.GRCm38.68.gtf.gz. The Homo sapiens 
genome build provided by ENSEMBL3 contains haplotypic regions 
that are not part of the primary assembly. To avoid these regions, 
genome build Homo sapiens GRCh37 was downloaded from the 

Illumina iGenomes page: (http://support.illumina.com/sequenc-
ing/sequencing_software/igenome.html). The GENCODE4 Release 
14 transcript annotation file for human was downloaded from ftp://
ftp.sanger.ac.uk/pub/gencode/release_14/gencode.v14.annotation.
gtf.gz. The chromosome names in the GENCODE gtf file did not 
match those in the genome sequence file, and were thus modified.

Sequencing study design
Based on the sequence identifiers found in the FASTQ files, we 
reconstructed the sequencing study design used to collect the gene 
expression data in Lin et al.2. The sequence identifier line in a 
FASTQ file generated from an Illumina sequencing run can take 
two formats, depending on the version of the Consensus Assess-
ment of Sequence and Variation (CASAVA) pipeline used to gener-
ate it. Prior to version 1.8 of this pipeline the sequence identifier 
line was of the following format (CASAVA v1.7 user guide p.88; 
downloaded from: http://support.illumina.com/downloads/casava_
software_version_17_user_guide_(15011196_a).html 

@<machine_id>:<lane>:<tile>:<x_coord>:<y_coord>#<index>/
<read_#>

Starting from version 1.8 the sequence identifier line is of the for-
mat http://support.illumina.com/help/SequencingAnalysisWorkflow/ 
Content/Vault/Informatics/Sequencing_Analysis/CASAVA/swSEQ_
mCA_FASTQFiles.htm

@<machine_id>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>: 
<y-pos> <read>:<is filtered>:<control number>:<index sequence>

Below is a sequence identifier line from the mouse pancreas read1 
FASTQ file (sequence identifier lines from the remaining FASTQ 
files were of similar format):

@D4LHBFN1:276:C2HKJACXX:4:1101:3448:12374 1:N:0:AGT-
TCC

Based on this information we inferred that the FASTQ files were 
generated by CASAVA version 1.8 or higher. Thus, we could extract 
from the sequence identifiers the following details that pertain to 
the sequencing study design: machine identifier, run number, flow-
cell identifier, and flowcell lane number. We found that the sequenc-
ing was performed in five batches, each consisting of a multiplexed 
single run on a single lane on one of four sequencers (Figure 1; note 
that two of the batches, composed of human samples only, differed 
only in their lane number). The design was such that only one batch 
contained samples from both species. The remaining four batches 
could be divided into pairs where each of the two batches had a 
nearly identical tissue composition, but a different species.

Ortholog annotation
Following Lin et al.2, we used the protein-coding ortholog list gen-
erated by the modENCODE and mouse ENCODE consortia5. A file 
containing all orthologs from human, mouse, fly and worm was 
downloaded from http://compbio.mit.edu/modencode/orthologs/
modencode.common.orth.txt.gz. From this list we extracted 14,744 
human-mouse one-to-one ortholog pairs, for which both members 
were included in the transcript annotation files we used. We note 
that this number is lower than the ~15,106 ortholog pairs reported 
in Lin et al. We are not certain of the meaning of the ‘~’ in the report 
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of the number of ortholog pairs analyzed by Lin et al. Nevertheless, 
we believe that a possible explanation for this disparity is a pars-
ing error. The last two columns of the ‘modENCODE ortholog file’ 
represent the number of genes from each species in the ortholog 
group. One of the steps required to obtain the subset of ortholog 
groups for analysis is to select those records where the two last col-
umns have a value of 1 (i.e. one-to-one ortholog pairs). We found 
that if this selection is done through a command line search that 
does not require that the value in the last column be exactly “1”, 
but rather just begins with “1”, then the result is 15,104 putative 
human-mouse ortholog pairs.

Quality assessment of RNA-Seq data
We used the FastQC software v0.10.0 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to assess the quality of the individ-
ual FASTQ files (Supplementary Table 2–Supplementary Table 6). 
We were concerned by evidence for GC content bias and over-
represented sequences. To examine the latter in greater detail, we 
mapped the sequences overrepresented in at least one sample to the 
genome of the respective species, using BLAT searches6 against the 
hg19 (human) and mm10 (mouse) assemblies at the UCSC genome 
browser site (http://genome.ucsc.edu/)6. We found that in both spe-
cies many of the overrepresented sequences mapped perfectly to 
the mitochondrial genome (Supplementary Table 3–Supplementary 
Table 6). For the mouse pancreas sample only, we also found many 
overrepresented sequences mapped to regions with rRNA repeats 
from the SSU-rRNA_Hsa and LSU-rRNA_Hsa families.

Mapping RNA-Seq reads to genome sequences
We mapped the RNA-Seq reads to their respective genomes using 
Tophat v2.0.117 with the following options: “--mate-inner-dist 200” 
(i.e. inner mate distance is 200nt, based on paired-end reads with 
length 100nt each and an insert size of 350-450nt ); “--bowtie-n” 
(i.e. the “-n” option will be used in Bowtie8 in the initial read map-
ping stage); “-g 1” (i.e. multi-mapping reads will be excluded from 
alignment); “-m 1” (i.e. one mismatch is allowed in the anchor region 
of a spliced alignment); “--library-type fr-firststrand” (the libraries 
had been constructed using the Illumina TruSeq Stranded mRNA LT 
Sample Prep Kit2). An exception was the mouse pancreas sample, for 
which the mapping process stalled consistently at the same stage. 

For this sample we used Tophat v1.4.18 with the same options as 
above. Tophat requires a Bowtie8 index. For human we used the 
Bowtie index that was packaged with the genome sequence in the 
file downloaded from the Illumina iGenomes page (http://support.
illumina.com/sequencing/sequencing_software/igenome.html). For 
mouse we built an index using the bowtie-build utility from Bowtie 
v2.2.1 (v 0.12.7 for the index used with Tophat v1.4.1).

Calculating gene GC content
For each of the two species we used the appropriate GTF file to 
generate a table, which contains for each gene its ENSEMBL gene 
identifier its common name, and the GC content of the sequence 
covered by the union of the gene’s transcripts. To this end, we first 
generated a GTF file where overlapping exons from different tran-
scripts of the same gene were merged into a single “exon” with the 
same sequence coverage, retaining the association with the gene 
identifier. Next, we computed the nucleotide content of the exons 
in this new GTF file using the ‘nuc’ utility from bedtools v2.17.09. 
Finally, we computed the GC content for each gene identifier by 
summing the number of ‘G’ and ‘C’ nucleotides in its merged exons 
and dividing by the sum of counts of unambiguous nucleotides in 
these exons.

Per-gene FPKM values
We used Cufflinks v2.2.110 to compute fragments per kilo base 
of transcript per million (FPKM) values and aggregate them per 
gene. The only option used was “--library-type fr-firststrand”. For 
the required transcript annotation file (“-G” parameter) we used 
the GTF file for the respective species described in the “Genome 
and gene annotation files” section. We then generated a matrix of 
14,744 by 26 FPKM values for each gene (in the ortholog table) 
and sample. While generating this table we noticed that some 
of the common gene names were associated with more than one 
ENSEMBL gene identifier. In some cases we determined that 
this was due to gene identifiers that have been retired from the 
ENSEMBL database3 but were retained in the GTF file (27 and 64 
retired identifiers for human and mouse, respectively). These retired 
identifiers were ignored when constructing the FPKM matrix. For 
the remaining such cases we incorporated the value from the first 
appearance of the common name.

Figure 1. Study design. Sequencing batches as inferred based on the sequence identifiers of the RNA-Seq reads.
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Per-gene raw fragment counts
To compute per gene raw counts from the alignment files produced 
by Tophat7, we used the program featureCounts v1.4.411 with the 
respective species’ GTF file specified in the “Genome and gene 
annotation files” section. For all runs we used the following options: 
“-p” - indicates that fragments rather than reads should be counted; 
“-C” - indicates that chimeric fragments will not be included in 
the summarization process; and “-s 2” - indicates that the paired-
ends are reversely stranded. We next generated a matrix of 14,744 
by 26 raw counts for each gene (in the ortholog table) and sam-
ple. Since the output from featureCounts identifies genes by their 
gene identifier (the ENSEMBL identifier in our case), whereas the 
ortholog table uses the gene’s common name to identify it, we used 
the GC content table, which contains both these identifiers to match 
counts to the correct row in the ortholog table. As we did when 
generating the FPKM matrix, we ignored the values from retired 
ENSEMBL identifiers, and if there were still multiple identifiers for 
the same common name, we used the value from the identifier that 
appeared first.

Results
In this reanalysis effort, we focused solely on the RNA sequenc-
ing data that can be mapped to coding regions. Lin et al.2 reported 
additional results, related to data on the expression of non-coding 
transcripts and histone marks. We did not reanalyze these additional 
data types.

Lin et al.2 analyzed both previously published and newly collected 
human and mouse gene expression data. The previously published 
data consist of RNA sequencing from ENCODE, the Illumina Human 
BodyMap 2.0, and the Roadmap Epigenomics Mapping Consortium. 
In these previously collected data sets, human and mouse samples 
were analyzed by different labs at different times, such that there is a 

clear batch effect that is confounded with species. Lin et al.2 clearly 
explains this limitation of the previously published data. They state 
that in order to address this issue they focus on the analysis of only 
the newly collected data – RNA sequencing data of samples from 13 
human and mouse tissues that were collected by the same lab, using 
the same sample processing protocol. We focus our reanalysis study 
on the same newly collected data set (see Methods).

Replication of sample clustering by species
As a first step of our study we set out to replicate the analysis of 
Lin et al.2. To do so, we started with the matrix of FPKM values 
(computed, using Cufflinks10, based on the read alignments to the 
genome). This analysis was done within R environment v 3.1.3 
GUI 1.65 Snow Leopard build (6912)12. See Supplementary Text 
1 for detailed commands, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606).

We log
2
-transformed the FPKM matrix (after adding 1 to avoid 

undefined values). To visualize the data, we used an approach that 
is similar in principle to that used by the ENCODE mouse con-
sortium and Lin et al. Specifically, we used the function ‘prcomp’ 
(with the ‘scale’ and ‘center’ options set to TRUE) to perform prin-
cipal component analysis (PCA) of the transposed FPKM matrix 
(so that samples were now in rows and genes in columns), after 
removal of invariant columns (genes). Scatter plots of the PCA 
results were generated using the ggplot2 package13. In agreement 
with the findings of Lin et al.2 the samples cluster mostly by species 
(Figures 2a, Figure S1 and Figure S2). We also plotted the heatmap 
of the matrix of Pearson correlations between the 26 samples, using 
the pheatmap function from the pheatmap package v1.0.214 with 
default settings (i.e. complete linkage hierarchical clustering using 
the Euclidean distances). Again, samples from the same species 
tend to cluster together (Figure 2b).

Figure 2. Recapitulating the patterns reported by the mouse ENCODE papers. a. Two-dimensional plots of principal components 
calculated by performing PCA of the transposed log-transformed FPKM values (from 14,744 orthologous gene pairs) for the 26 samples, 
after removal of invariant columns (genes). b. Heatmap based on pairwise Pearson correlation of expression data used in panel a. We used 
Euclidean distance and complete linkage as distance measure and clustering method, respectively.
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Analysis of normalized data after accounting for batch 
effects yields clustering by tissue
A previous evaluation of normalization methods for RNA-Seq 
data15 suggested that FPKM values were not optimal for cluster-
ing analysis. Therefore, as a basis for our reanalysis, we used the 
matrix of per-gene raw fragment counts. The entire analysis was 
done within R environment v 3.1.3 GUI 1.65 Snow Leopard build 
(6912)12. See Supplementary Text 2 for detailed commands, and 
a supplement zip file for the R input (available in Zenodo: http://
dx.doi.org/10.5281/zenodo.17606).

Following Li et al.16, we removed the 30% of genes with the lowest 
expression as determined by the sum of fragment counts across all 
samples. Next, due to the presence of mitochondrial genes among 
the overrepresented sequences in the data, we also removed reads 
that map to the 12 mitochondrial genes. This left us with expression 
data from 10,309 genes for analysis. We note that merely limiting 
the analysis to this subset of genes does not have a marked effect on 
the patterns reported by Lin et al. (Figure S3; detailed commands 
in Supplementary Text 3, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606)). We 
performed within-column normalization to remove the GC bias in 
the data, indicated by the initial quality assessment. To this end, we 
applied the ‘withinLaneNormalization’ function from the EDASeq 
package v2.0.017 to each column in the matrix, using the gene GC 
values for the species associated with the column. Next, we used the 
‘calcNormFactors’ from the edgeR package v3.8.618, with the trimmed 
mean of M-values (TMM) method19, to calculate normalization 

factors for the library sizes for the samples. We used these normali-
zation factors in the depth normalization of the columns (using the 
column sums of the original, unfiltered, counts matrix as a proxy 
for library sizes). The normalized data were log

2
-transformed (after 

adding ‘1’ to each value in the matrix to avoid undefined values).

We then considered how to account for the fact that the assignment 
of samples to sequencing flowcells and lanes was nearly completely 
confounded with the species annotations of the samples (Figure 1). 
The consideration of ‘batch effect’ was the most important differ-
ence between the analysis that recapitulated the patterns reported 
by the mouse ENCODE papers (the previous ‘Results’ section) 
and the current reanalysis effort. Specifically, we accounted for the 
sequencing study design batch effects using the ‘ComBat’ function 
from the sva package v3.12.020, with a model that includes effects 
for batch, species and tissue. For this purpose the samples were 
classified into five batches, based on the sequencing study design 
(see methods and Figure 1).

To visualize the data, we used the function ‘prcomp’ (with the 
‘scale’ and ‘center’ options set to TRUE) to perform principal com-
ponent analysis (PCA) of the transposed log-transformed matrix of 
‘clean’ values (after removal of invariant columns, i.e. genes), and 
the ggplot2 package13 to generate scatter plots of the PCA results. 
None of the first five principal components (accounting together 
for 56% of the variability in the data) support the clustering of the 
gene expression data by species (Figure 3a and Figure S4–Figure S5). 
However, the sixth principal component, which accounts for 6% of 

Figure 3. Clustering of data once batch effects are accounted for. a. Two-dimensional plots of principal components calculated by 
applying PCA to the transposed matrix of batch-corrected log-transformed normalized fragment counts (from 10,309 orthologous gene pairs 
that remained after the exclusion steps described in the results) for the 26 samples, after removal of invariant columns (genes). b. Heatmap 
based on pairwise Pearson correlation of the expression data used in panel a. We used Euclidean distance and complete linkage as distance 
measure and clustering method, respectively.
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the variability in the data, does support such a clustering, suggest-
ing that even though the ‘species’ and ‘batch’ variables are con-
founded, accounting for ‘batch’ does not remove completely the 
variability due to ‘species’ (Figure S5). We also plotted a heatmap 
of the matrix of Pearson correlations between the 26 samples, using 
the pheatmap function from the pheatmap package v1.0.214 with 
default settings (i.e. complete linkage hierarchical clustering using 
the Euclidean distances). This time the heatmap shows consider-
able clustering of the comparaive gene expression data by tissue 
(Figure 3b).

Discussion
In our reanalysis we have made a number of specific choices, includ-
ing the exclusion of a certain subset of lowly expressed genes, the 
specific approach we chose to summarize the count data, the stand-
ardization and normalization methods we used (for example, we 
chose to standardize by the total count of reads that mapped to the 
ortholog gene pairs), the approach we used to account for the GC 
content bias, and the method we used to account for the sequenc-
ing design batch effect. Moreover, we excluded the sequencing data 
from 12 mitochondrial genes from both species, a step that – to the 
best of our ability to determine – was not taken by the original stud-
ies. In addition, our definition of ortholog gene pairs differs slightly 
from that of the original study, as we discussed in the methods. In 
practice, only the correction for the sequencing design batch effect 
had a drastic impact on the results. For example, without account-
ing for batch, using per-gene raw fragment counts instead of FPKM 
values does not seem to impact the degree to which the uncorrected 
data support clustering by species (Figure S6).

Visualizing or plotting the data is another important area where 
different choices can sometime lead to quite distinct conclusions. 
We chose to display, in addition to the PCA plots, heatmaps based 
on the correlations among the samples. We note that if the actual 
data (not pairwise correlations) are clustered, the observed pat-
terns (by species or by tissues, in the respective analyses), seem 
practically identical (Figure S7). The heatmaps shown in the main 
figures are based on Pearson pairwise correlations, which pro-
vide the highest level of clustering by tissue in the analysis that 
takes into account batch effects. Alternative heatmap plots based 
on either Spearman pairwise correlations or other distance meas-
ures and clustering methods look similar in principle (Figure S8 to 
Figure S10), but the clustering by tissue is somewhat less pro-
nounced (clustering by species, when batch is not accounted for, 
is more pronounced).

It is important to note that most of the analysis and plotting deci-
sions we have made contributed to a somewhat better clustering 
of the expression data by tissue, both visually and empirically. 
We have made these – mostly standard - analysis and plotting 
choices regardless of the end result (namely, we believe that these 
are objectively reasonable choices). Importantly, we made identi-
cal choices for the clustering analysis and plot types for the data 

with and without batch correction, and our conclusions are robust 
with respect to a wide range of possible alternative approaches 
(Figure S7–Figure S10).

That said, we do acknowledge that we find the clustering of the data 
by tissue to be a more intuitive pattern. In other words, we believe 
that the clustering of comparative gene expression data by species 
– a result that contradicts previous observations – is a surprising 
outcome. Hence, we would have intuitively accepted as more cor-
rect most reasonable choices of analysis pipelines and data visuali-
zations that supported a greater degree of clustering by tissue.

As we mentioned above, most of the choices we made resulted in 
little difference to the overall pattern. It was only the correction 
for the sequencing design batch effect that had a profound impact. 
Once we accounted for the batch effect by using ComBat, the com-
parative gene expression data no longer clustered by species, and 
instead, we observed a clear tendency for clustering by tissue. This 
is not surprising, as the sequencing batch, which we corrected for, 
was nearly entirely confounded with species. It stands to reason 
that some individual gene expression levels do cluster by species 
and some by tissue (see for example, Figure S5). While previous 
data sets strongly support a general clustering of gene regulatory 
phenotypes by tissue21, we expect the degree of clustering of the 
gene expression data to differ somewhat across tissues. Yet, in this 
particular case, by removing the confounding sequencing batch 
effect we also removed most of the species effect on gene expres-
sion levels (a similar case of confounding batch and main effect of 
interest was discussed a few years ago, with respect to gene expres-
sion differences between human populations22).

One could potentially employ more sophisticated modeling 
approaches to try and estimate separately the batch and species 
effects. One idea would be to rely on the fact that there are five 
sequencing batches, but only two species. This, however, is compli-
cated by the fact that the two sequence batches specific to the human 
samples share the same run and flowcell (potentially a smaller batch 
effect), while the two sequence batches specific to the mouse sam-
ples extend over different instruments (potentially a larger batch 
effect). In any case, we feel that such modeling is beyond the scope 
of this reanalysis effort. Instead, we conclude that the study design 
used by the mouse ENCODE consortium was flawed with respect 
to the questions they set out to address.

In summary, we believe that our reanalysis indicates that the con-
clusions of the Mouse ENCODE Consortium papers pertaining to 
the clustering of the comparative gene expression data are unwar-
ranted. In the narrow context of our reanalysis effort, we state that 
their conclusions are unwarranted, not wrong, because the study 
design was simply not suitable for addressing the question of 
‘tissue’ vs. ‘species’ clustering of the gene expression data. That 
said, a large body of independent previous work supports general 
clustering of comparative gene expression data by tissue.
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Finally, we note that in this reanalysis effort, we have only focused 
on the RNA sequencing data collected by the mouse ENCODE con-
sortium. We have not considered information with respect to the 
study design used to collect the many other types of data reported 
by this consortium. Given our findings, we believe that it is appro-
priate to call for a careful review of these other data sets as well.
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doi:10.5256/f1000research.7019.r8710

 Lior Pachter
Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA

The article "A reanalysis of mouse ENCODE comparative gene expression data" by Gilad and
Mizrahi-Man examines a claim, recently published in the pair of papers

Yue F, Cheng Y, Breschi A, .:et al  A comparative encyclopedia of DNA elements in the mouse
 Nature. 2014; 515(7527): 355–364.genome.

 
Lin S, Lin Y, Nery JR, .: et al Comparison of the transcriptional landscapes between human and

. Proc Natl Acad Sci U S A. 2014; 111(48): 17224–17229.mouse tissues

that expression data from human and mouse cluster more by species than by tissue.

The Gilad--Mizrahi-Man paper consists of three "results":
A report of the experimental design in Lin . et al
 
An attempt to reproduce the results of Yue and  Lin . that pertain to the claim aboutet al. et al
species vs. tissue clustering of expression data.
 
A re-analysis of the Lin data in a manner that addresses shortcomings in the originalet al. 
experimental design.

The first is the observation that Lin . improperly designed their experiment by confounding specieset al
with batches sequenced, thereby leading to a possible "batch effect" affecting their results. This
observation was already published as a preprint by the first author on the pre-print server Twitter (see 

). https://twitter.com/Y_Gilad/status/593088451462963202

Having noted "a flaw in their [Lin .] study design" Gilad--Mizrahi-Man turn to the question of whetheret al
the flaw affected the conclusions in Yue . and Lin . about expression differences as pertaining toet al et al
tissues vs. species. To this end, the authors attempted to reproduce the analysis of Lin .et al

It is evident that while the Lin . results may, in some technical sense, be "reproducible" they wereet al
certainly not "usable" as published. Gilad--Mizrahi-Man carefully expose a vast number of choices in
software and processing options poorly described in Lin ., and whose effect on the final result(s) iset al
unclear. To quote just one example, they write that "An exception was the mouse pancreas sample, for
which the mapping process stalled consistently at the same stage", a problem that led them to use
TopHat v1.4.1 instead of TopHat v2.0.11. One may wonder whether software choices and other decisions
in analysis affect final results, and Gilad--Mizrahi-Man address this question (although only partly).
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in analysis affect final results, and Gilad--Mizrahi-Man address this question (although only partly).

For example, one fundamental analysis choice is whether to quantify abundances of genes by summing
raw "fragment counts" from alignments to gene regions, or via the summing of abundances as quantified
by probabilistic assignment of ambiguously mapped reads. Gilad--Mizrahi-Man cite a paper by Dillies et al
. (and the French StatOmique Consortium) suggesting that "FPKM values were not optimal for clustering
analysis" to argue for using "fragment counts". I strongly disagree with this choice because transcript
abundances are necessary to accurately estimate gene-level abundances, a point that Dillies fail toet al. 
realize. As pointed out in my own paper on Cufflinks 2 ( ) wrong does not cancel wrongTrapnell 2012et al. 
for differential analysis, nor does it for the purpose of clustering.

In any case, Gilad--Mizrahi-Man do examine whether quantification by EM affects results and in a later
statement they state that "using per-gene raw fragment counts instead of FPKM values does not seem to
impact the degree to which the uncorrected data support clustering by species", a result summarized in
their Figure S6. While I applaud them for checking the dependence of results on this choice, without
further analysis the question remains of whether other analysis choices affect results (although to be fair
to the authors, the number of tests that would have to be conducted is enormous and quite possibly
practically intractable). Nevertheless, it would be interesting if, for the purpose of future transcriptomics
analyses, Gilad--Mizrahi-Man were to investigate some key steps as to their effect (e.g. annotation, an
issue discussed recently by Ongen and Dermitzakis, or mapper choice).

The final result of Gilad--Mizrahi-Man is a re-analysis of the Lin . data from which they observe that aet al
basic correction for batch effect removes the strong clustering of expression profiles by species touted in
Yue . and Lin The question of the relative species/tissue contribution to expression profile is ofet al et al. 
course fundamental and interesting, and obviously further data, carefully curated and analyzed, will
answer the question definitively. As far as the Lin paper goes, the Gilad--Mizrahi-Man paperet al. 
certainly casts doubt on the suitability of the data for answering the question. For one thing, the term
"batch effect" is unfortunately rather generic and in this specific case that has become a problem. After
initial posting of the preprint by Gilad on Twitter, the authors of Lin . resequenced their libraries in aet al
different configuration, but further investigation of the experimental design by Gilad . (subsequent toet al
initial posting of a preprint of the article I'm reviewing) appears to have revealed additional problems. For
example, tissues in human and mouse were selected from males vs. females respectively (except in
ovaries and testis) resulting in another potential bias that would skew expression profiles to cluster by
species rather than tissue. In other words, with their paper and subsequent analysis Gilad and
Mizrahi-Man have convinced me to be skeptical of the data and conclusions of Lin . (and insofar as itet al
pertains to the results in Lin ., the paper by Yue .).et al et al

But that is not really the point. What matters now are the carefully documented serious shortcomings in
the computational and experimental methodology of Lin . and for this reason I have approvedet al
the Gilad--Mizrahi-Man manuscript. Hopefully the issues raised will be properly addressed by Lin . (inet al
a manner equally rigorous to that of Gilad--Mizrahi-Man).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 25 June 2015Referee Report

doi:10.5256/f1000research.7019.r8832
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 Mick Watson
The Roslin Institute, University of Edinburgh, Edinburgh, UK

The study is carried out well and the results support the conclusion.

The paper would benefit from including some of the discussion points made in the comments made to v1
of the paper. Lin have re-sequenced the samples and removed the sequence lane batch effect, andet al. 
reproduced the same result; however, the samples themselves are confounded, in that they were treated
differently prior to sequencing. This discussion should be added to the paper.

I would also like to see a discussion of artifacts which are discoverable within the data, for example:
the human samples have significant numbers of rRNA reads compared to the mouse samples.
 This should not happen with mRNA-Seq which includes a polyA selection.
 
the human samples have a hugely varied number of reads per sample, compared to the mouse
samples
 
one of the mouse samples has over 1.8M reads that map to a single rRNA transcript. This is an
outlier for mouse, as the other mouse samples have low numbers of rRNA reads
 
The mitochondrial genes are turned on in one species but not the other

These points are all indicators of different sample extraction techniques, which also confound with
species.

The authors may also wish to discuss use of FPKM, which may not be the most useful measure of gene
expression in this study, as the human and mouse orthologues have different lengths.

See https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 It may be apparent from the review, but we have also been re-analysing theseCompeting Interests:
data.

 22 June 2015Referee Report

doi:10.5256/f1000research.7019.r8942

 Michael Eisen
Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA

In this paper Gilad and Mizrahi-Man reanalyze a high-profile dataset from the ENCODE consortium that
was used to argue that gene expression levels are more similar for different tissues from the same
species than the same tissues from different species, a somewhat counterintuitive result that contradicts
earlier claims (including those by Gilad).

The main result of this new work is a simple observation: in the original experiment described in Lin .,et al

samples from the same species were run in the same sequencing batch. Since there are well-known
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1.  

samples from the same species were run in the same sequencing batch. Since there are well-known
batch effects, this is poor experimental design that calls into question the claim by Lin . that dataet al
clusters by species, since the data could instead by clustering by sequencing batch.

There is always a bit of a challenge in figuring out what to do with an observation. As the authors point out,
this aspect of the experimental design effectively renders the data useless for asking questions about the
relative contribution of species and tissue to gene expression variation. Yet it would seem like too light of
a paper to simply say "The original authors messed up. Their claims are therefore invalid. QED." 

So this paper contains a few analyses designed to ILLUSTRATE the point they make. They are not
exactly results, since, once you realize that batch and species are completely confounded, correcting for
batch will inevitably remove the species signal. In this context, it's a bit weird to present such an analysis
as if it is a result, but I don't really see a way around it, and the authors are forthright in pointing out that
their main observation is that the data from Lin are useless for addressing this issue, and that theyet al 
can make no claims, even after correcting for batch effects, about what the data actually do say.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 26 May 2015Referee Report

doi:10.5256/f1000research.7019.r8732

 Rafael Irizarry
Department of Biostatistics, Harvard School of Public Health, Boston, USA

In  is is found that the first three principal components obtained from mouse and humanthis PNAS paper
gene expression data correlate with species and not with tissue. This is interpreted to imply that "tissues
appear more similar to one another within the same species than to the comparable organs of other
species".

Gilad and Mizrahi-Man (the authors) downloaded all the data from this paper and reanalyzed it carefully.
The majority of their F1000Research article is dedicated to describing, in full detail, how they analyzed the
data. The choices made all seem sound and they are able to reproduce the figures of the original PNAS
article.

An important discovery made and reported by the authors is that mice and human samples were run in
different lanes or different instruments. The confounding was near perfect (see ). The authorsFigure 1
then apply a  (ComBat) to account for the batch effect and find that, after the correction,linear model
samples cluster almost perfectly by tissue (see ). They conclude that "Once we accounted for theFigure 3
batch effect by using ComBat, the comparative gene expression data no longer clustered by species, and
instead, we observed a clear tendency for clustering by tissue. This is not surprising, as the sequencing
batch, which we corrected for, was nearly entirely confounded with species."

There are three issues I recommend the authors consider:
As the authors suggest, with the observed level of confounding, if there is in fact a species effect,
applying an approach that models batch as a linear effect will also account for species. Although
pointing out that there is almost perfect confounding is an important contribution, I don't see why
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pointing out that there is almost perfect confounding is an important contribution, I don't see why
ComBat should be applied here. If a model that removes species is applied, it is no surprise that
the data will no longer cluster by species.
 
As mentioned, with the existing study design it is impossible to completely tease out species from
batch. However, there is a relatively simple data analysis that can be performed to explore the
possibility that instrument or lane are a large enough source of variability to overcome the tissue
effect, which is know to be large. The analysis is:

i) perform the same PCA analysis on the mouse data and compare the two instruments and then

ii) perform PCA analysis on the human data and compare the two lanes.

If in fact lane and instrument are a large sources of variability we should see it here. Of course,
there is still the possibility that the instruments used for humans was very different to the one used
for mice, while the two instruments used for mice were similar. Due to confounding we won't know
for sure, but the analysis described here will at least give us at least a lower bound on how large
these effects can be.
 
There is a comment in the F1000Research article from the first author of the PNAS article
describing a second experiment in which confounding with instrument or lane was not present. In
this analysis species continues to be the first few PCs. In a second version of this article, the
authors can perhaps comment on this, as well as some of the other comments that suggest other
possible sources of variability that may be confounded with species.

As a final remark, I am interested in reading the authors/readers thoughts on the biological interpretations
that are being assigned to mathematical (euclidean) distance. Specifically, what does the word "similar"
mean exactly. I understand what means in mathematics, but I am not sure what it means in biology when
points are log (FPKM + 1) values for thousands of genes.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 26 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Dr. Irizarry,
 
Thank you for spending the time to provide a review of our work. We agree with you that given the
study design used by the mouse ENCODE consortium, applying a batch correction is futile.
Indeed, we explicitly explain that in our discussion (you referred to that section of the text in your
review).
 
We further agree that it would be intellectually interesting to research the extent of the batch effect
further – for example, by following your suggestion on how to test for the effect of instrument and
lane.
 
However, we feel that this additional effort is beyond the scope of our study. The mouse ENCODE
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However, we feel that this additional effort is beyond the scope of our study. The mouse ENCODE
consortium papers did not discuss (or account for) the sequencing study design. We spent

. Weconsiderable effort tracking the details that allowed us to reconstruct their design
pointed out in our paper that given this study design, the unusual biological result reported by the
mouse ENCODE consortium might have a technical explanation. We believe it is the responsibility
of the mouse ENCODE consortium authors to provide evidence that excludes this technical
possibility, rather than us having to prove that it is indeed the likely explanation.
 
Which leads us to your third point: Indeed, the mouse ENCODE consortium authors commented
that they have now collected additional sequence data, using a different design, and that their
results held. In that sense, we believe that this means that the mouse ENCODE consortium
authors accepted our claim that their original design was flawed.
 
Yet, as mentioned in a few other comments here, there is an additional technical batch effect that
was not yet excluded – related to tissue extraction and sample preparation. We plan to discuss this
additional technical batch effect in a revised version of the text (we will wait to see additional
reviews before we provide a revised version of the paper).
 
Again, thank you for your time and thoughts. 

 No competing interests were disclosed.Competing Interests:

Discuss this Article
Version 1

Author Response 09 Jul 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Anshul,
 
Thank you for your thoughtful comment (and for the discussion over Twitter). We appreciate the time and
effort you put into this.
 
You raise several issues, but the most important one (we believe), is that neither the mouse ENCODE
paper, nor ours, adequately addressed the question of ‘species’ vs. ‘tissue’ clustering. We agree with you!
 
Our paper, however, was about this question. Our claim – mind you – is that tissue (or species)not not 
cluster better, but rather that the conclusions of the mouse ENCODE paper are . This is anunwarranted
important point!
 
Our goal is not to prove anything other than raise doubt regarding the conclusions of the mouse ENCODE
paper. Your concerns and the issues you have raised can be seen as  to doubt thoseadditional reasons
conclusions. It is important to remember that the authors of the mouse ENCODE paper need to defend
their conclusions, not us. Our ‘conclusions’ are merely that the study design and analysis of the mouse
ENCODE paper are flawed.
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Now more to the point: We agree that the results from PCA are not very insightful in this case. We provide
PCA plots because it is the framework of analysis used by the mouse ENCODE authors. Our goal was to
show that even using this framework, we couldn’t recapitulate the (somewhat incoherent) basis for their
biological conclusions.  We could try to perform the analysis you suggested based on clustering of
samples using the top N PCs, but would the results truly be more insightful? As you pointed out – and we
agree - PCA is not really the right tool to answer these questions.
 
So we might turn to ANOVA. As you wrote, this is a much more intuitive tool with which to address the
question. Yet, analyzing all genes together makes little sense, we - again - agree. It does not take into
account differences between genes. In our mind this ‘combined analysis’ actually makes as much sense
as using PCA…  It provides some vague estimate of the proportion of variance explained by ‘species’ and
‘tissue’ for the entire data set. For whatever its worth, we find that species explains very little in this type of
analysis (in the new data), while ‘tissue’ and ‘tissue by species’ explain a bit more.  Note that in the slides
we reported the % of ‘explained variance’ (in fact, most of the variance, in either the old or new data,
remains unexplained). This may have been unclear or even a bit misleading and we will change it. Yet –
again – there is certainly no evidence for robust clustering by ‘species’ (Actually, in either the ‘old’ or ‘new’
data).
 
What we really need, is a gene-based analysis. However, the study design makes it difficult to effectively
use ANOVA in this case. The analysis by gene is hopeless. With exactly one sample from each variety
(one sample from each tissue in each species), one can’t estimate a gene-specific interaction effect, one
can’t effectively estimate the error term, and tissue and species are not always orthogonal either. Combine
this with the fact that tissue samples came from different (and unbalanced) individuals, sexes, and ages,
and it’s a nightmare for analysis. For whatever its worth, we have performed this analysis anyway, ignoring
all of the obvious caveats. We will add the slides to the ppt. You will see that, in the new data, a higher
proportion of variation in many more genes is explained by ‘tissue’.
 
To us, the most important aspect of your comment is that you raise additional questions about the analysis
(both ours and the original mouse ENCODE paper). We believe that everyone will intuitively agree that
‘some’ genes are expressed more similarly across species and ‘some’ genes are expressed more similarly
across tissues. The conclusion of the mouse ENCODE paper, however, was that “…in general, differences
dominate similarities between the two species.” (quote from the abstract of the mouse ENCODE PNAS
paper).
 
Yet, the study design, as we stated multiple times, is flawed. One simply can’t effectively address the
question of the relative contribution of ‘tissue’ vs’ ‘species’ using this flawed design. That is our only
conclusions.
 
Do you not agree, based on our observations, this discussion, as well as your own concerns about the
framework of the analysis, that the conclusion of the mouse ENCODE paper is unwarranted?

 No competing interests were disclosed.Competing Interests:

Reader Comment 07 Jul 2015
, Stanford University School of Medicine, USAAnshul Kundaje

These comments are specifically wrt. to the slides that Yoav posted a few weeks ago on twitter 
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These comments are specifically wrt. to the slides that Yoav posted a few weeks ago on twitter 
. The slides perform several interesting analyses on the "old" (sequencer confounded) andgoo.gl/YPNQ4H

"new" (no sequencer confounding) data measuring RNA-seq expression in 12-13 mouse and human
tissues. The main analyses include (i) some interesting PCA comparisons; (ii) clustering results on the
samples ; (iii) An ANOVA based expression variance partitioning. Each of these analyses are performed
on 3 different processed versions of the RNA-seq data.

There are 2 issues that I believe this analysis tries to address
(Qi) Is the new data different from the older data.
(Qii) Does tissue or species dominate the variation in new data

Regarding (Qi), I think there is no debate that the data are (and should be) different. I believe the PNAS
paper authors also agree with this statement.
(Qii) is where I think there is still disagreement between the PNAS authors and Gilad et al.

We have atleast 3 main factors contributing to gene expression variation in this dataset - genes, species
and tissues. And then several other confounding factors e.g. age, sex. Lets ignore these for now since the
analyses in the slides don't directly model these.

(1) The PCA is decomposing the correlation/normalized covariance across the samples featurized by
genes via an orthogonal transformation. What we obtain is a projection of the samples into a new
orthogonal subspace of PCs (metagenes). Whats nice about PCA is that a small number of PCs (5-10) can
potentially explain a large proportion(>80-90%) the covariance captured by 1000s of features (genes) in
the original space. This dimensionality reduction allows (arguably) interpretable visualization of the
samples relative to each other and can also potentially (not always) help get around the curse of
dimensionality that plagues analysis of high-dimensional data (more on this in the next few paragraphs). 

I very much like the visualization of the projection of the samples on to each PC as it gives a nice intuitive
feel for what the PCs are doing. E.g. Slide 10 shows projections of the new samples on PC1. Several
matched tissues from human and mouse project onto the same point (or very close to each other) on PC1
with a few notable exceptions i.e. testis, spleena and pancreas. So one could surmise that PC1 is
representing some metagene signature that is largely tissue-associated but does have a species-related
component as well (due to the exceptions). Slide 11 shows projections on PC2. Wrt. PC2 the samples
from the same species can be seen to be closer to each other and one can obtain a clean separation of
species. So PC2 can be interpreted to represent some metagene signature that is species-associated.
This may lead one to conclude that since PC2 and not PC1 (which explains more variability than PC2) is
more associated with separating species then maybe species < tissue. However, IMHO I don't think one
can conclude that especially since PC1 and PC2 only capture 20% and 13% of the variability. So there is
still a huge amount of variability to be explained. PC3 for example is also more species associated. PC4 is
more tissue-associated and so on. This also makes it rather dangerous to visualize the samples using only
the 2 or 3 PCs at a time as any conclusion from such a visualization is incomplete. If we really want to
figure out whether samples from the same species or tissue are closer to each other (cluster together) in
the subspace of PCs, we should be using the top N PCs that explain a large proportion (90-95%) of
variability. Then compute explicit distances (euclidean distance would be very justifiable in this orthogonal
subspace) between samples in this reduced subspace. One could then compute within species/tissue vs.
between species/tissue distances or cluster the samples using the distance matrix computed in this space
of PCs. Neither the PNAS paper nor Gilad . do this. et al

In slide 19 and 20, Gilad . present two types of clustering. In slide 19, they first compute Pearsonet al

correlation between all pairs of samples using all genes. Then they use the correlation values of each
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correlation between all pairs of samples using all genes. Then they use the correlation values of each
sample with all other samples as new features to compute a euclidean distance between pairs of samples.
They use complete linkage hierarchical clustering with this distance matrix to cluster the sames. This
clustering shows the samples largely cluster by species with a few exceptions. In slide 20, they compute a
distance matrix (correlation?) across samples using all genes and then use this directly as a distance
matrix in complete linkage clustering. In this version of clustering, there is a sorta 50-50 split between
species and tissues. IMHO, neither of these clustering approaches have a reasonable justification. There
is significant literature explaining the curse of dimensionality in high-dimensional clustering and a distance
measure based on 1000s of genes (with lots of correlated structure between them) is almost meaningless.
This wikipedia article summarizes some of the issues 

 (Sorry I didn't have time to find a realhttps://en.wikipedia.org/wiki/Clustering_high-dimensional_data
reference!). Moreover, Pearson correlation is not really a distance metric (although it is routinely used in
clustering) and more importantly it focuses very strongly on highly expressed genes. I think Rafa Irizzary
has also highlighted this issue in his review. Lior Pachter has written about this issue in a blog post as well
(  ) with several suggested alternatives suchhttps://liorpachter.wordpress.com/tag/mahalanobis-distance/
as the mahalanobis distance. As I mentioned in the previous paragraph, since we are in PCA land, why not
cluster the samples projected onto the small set of PCs that explain most of the variability. The
mahalanobis distance goes one set further adjusting for the variance explained by each PC. Either of these
approaches would potentially get around the curse of dimensionality in that atleast the distances are
meaningful. There are of course caveats here as as well. E.g. PCA projects the samples in a single
subspace and clusters could exist in different subspaces. But it would certainly be better than clustering
based on distances computed using all genes as features and directly link the clustering with the PCA.

Finally, personally I don't like the use of PCA (in the PNAS paper or this analysis) to answer the key
question here - what is the relative contribution of species and tissue to variance of expression across all
genes. It is incapable of explicitly answering this question.

Which brings me to the ANOVA analysis.

(2) The ANOVA analysis is attempting to directly partition the variance in the expression data as a function
of species and tissue. However, the figures in the slides don't make much sense to me. Slide 18 would
lead us to conclude that tissue accounts for 94.8% of the total variance. This to me is impossible. I am
assuming here that the linear model being used is expression ~ species + tissue + species:tissue. Yoav
hinted on twitter that the reason this looks odd is that the interaction term accounts for a significant
proportion of variance. If that is the case, it indicates a dependence between species and tissue and one
cannot simply look at the main effects to conclude species > tissue or not. Species may be heavily
contributing through the interaction term.

However, I have a bigger issue with the ANOVA analysis. If I understood it correctly, this ANOVA model
assumes a single linear model for expression variation across all 3 factors i.e. genes, species and tissues
.. but uses only 2 of the factors in the model. It makes little sense to me to have a single linear model for all
genes across all tissues and species with no term for gene identity. There is no way to explain differences
between genes. It is also assuming fixed effects (I assume) which I don't believe is appropriate for this
analysis. IMHO, a random effects model with an explicit term for gene identity is far more appropriate. An
alternative is the variance partitioning analysis using random effects for species and tissues shown in Fig

 for each gene separately. If the analysis is on each gene2B. of the mouseENCODE Nature paper
separately then only having a species and tissue term is reasonable. But across all genes, I don't see how
this ANOVA model makes sense. I may be misunderstanding something.

I look forward to your comments.
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I look forward to your comments.

 I am part of the ENCODE consortium and a co-author on the mouseENCODECompeting Interests:
Nature paper (but not on the PNAS paper). Prof. Snyder and I are colleagues in the Genetics Department
at Stanford University and active collaborators. However, these views are entirely my own and do not
represent the views of any other members of consortia, organizations or papers that I am part of.

Author Response 25 Jun 2015
, Human Genetics, University of Chicago, USAYoav Gilad

For those with little time to read the entire comment, and those who are not invested enough in this area to
study all the details of the papers and back and forth discussions, here is a quick summary:
 

Mouse ENCODE data were collected using a flawed sequencing design. We uncovered the flaws
and discussed the issue in our paper.
In response, Mouse ENCODE collected new data from the same samples using a corrected
sequencing design and reported that their conclusions are unchanged.
However, we have now found a clear difference between the original and new data, which was not
mentioned by the Mouse ENCODE authors.

 
Now in more detail:
 
Shin et al collected new sequencing data from the same samples they used in the original study. In
contrast to the  gene expression data, the  were collected using a sequencing studyoriginal new data
design that does not confound species with sample assignment to lanes and flowcells (see table included
in the comment by Shin). The mouse ENCODE authors wrote that after analyzing the new data, they “

.” Yet, the figure provided by Shin is a 3D PCAarrive at species-specific clustering as previously reported
plot, rotated in a way that makes it difficult to see PC1.
 
We have performed an analysis of the  as well. Our findings are not consistent with the statementnew data
made by the mouse ENCODE authors.
 
Specifically, we found that in the new data, gene expression levels in tissues from human and

. There are a number of ways to show this, butmouse cluster significantly better than in the old data
the conclusion is robust. For example, if one chooses the approach used by the mouse ENCODE authors
(using fpkm values and examining the clustering of samples using PCA plots), we can visualize the
difference between the original and new sequencing data by considering the correlation between the PC1
values of the corresponding mouse and human tissue samples. I will post the figures on twitter
(@Y_Gilad), but here are the numbers:
 
For the original data (where batch effect is confounded with species) the Pearson correlation between the
PC1 values of the corresponding human and mouse tissues is 0.40 (  = 0.18).P
 
For the new data (collected using a new sequencing design), the Pearson correlation between the PC1
values of the corresponding human and mouse tissues is 0.64 (  = 0.02). Moreover, two samplesP

(pancreas and spleen) have a number of severe and obvious QC issues (for example, the mapping % is
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(pancreas and spleen) have a number of severe and obvious QC issues (for example, the mapping % is
much lower than in all other samples). If one excludes those samples, the Pearson correlation between the
PC1 values of the corresponding human and mouse tissues in the new data is 0.89 (  = 0.0006).P
 
As I mentioned, this finding - of differences in clustering properties between the original and new data - are
robust with respect to choices in methodology and plotting. In other words, anyone who wishes to
download and analyze the original and new data can easily observe the differences between the data sets
(for example, whether one uses fpkm or raw counts, normalize the data in different ways or not at all,
correct for GC content or not, and whether one plots PCA results or heatmaps, etc…).
 
The difference between the data sets is due to the effect of sequencing batch on the patterns observed
with the original gene expression data. In the new data, species clustering is weaker and tissue clustering
is stronger.
 
I have discussed the difference between the two data sets with Mike Snyder and all other co-authors of the
Shin et al. paper before I posted this comment. I did this because it was strange to me that Shin did not
comment on the difference between the data sets. Indeed, based on Shin’s comment one might assume
that Orna and I were wrong, and sequence batch does not actually have a noticeable effect on the data.
Yet, as I have shown, the effect of sequence batch is evident by comparing clustering patterns between
the original and new data.
 
By discussing this issue with the mouse ENCODE authors I have learned that they acknowledge that a
difference between the two data sets exist, but they did not feel that it warranted an explicit discussion.
The authors also declined to post an additional comment clarifying this. They wrote to me: “the point of
collecting the new data was to see if the clustering conclusion still stands when samples from different
species were mixed in the same lane and in our opinion it did.”  
 
We agreed to disagree.

 No competing interests were disclosed.Competing Interests:

Author Response 08 Jun 2015
, Human Genetics, University of Chicago, USAYoav Gilad

It should be noted that on June 7th, ENCODE authors have fixed the sample annotation with respect to
sex (details available on the ENCODE website, or on twitter...). Unfortunately the corrected study design
still makes little sense with respect to the question of tissue/species. The corrected design results in a only
partial confounding of tissue and sex, yet the authors did not comment on how sex was modeled or taken
into account.

 No competing interests were disclosed.Competing Interests:

Reader Comment 05 Jun 2015
, New York Genome Center, USANicolas Robine

We downloaded the original dataset supporting the claims in Shin et al (files listed here in Table S1) and
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We downloaded the original dataset supporting the claims in Shin et al (files listed here in Table S1) and
processed them through our standard QC pipeline. This include mapping to the genome with STAR,
quantifying genes with featureCounts (we use the gencode v18 GTF annotation) and computing a number
of QC metrics and QC plots. One analysis we do is “Xist vs chrY” (inspired by ’t Hoen 2013, Figureet al. 

). Xist is a female-specific long-non coding RNA (in mammals). For the vast majority of our samples, we2C
can check pretty accurately if the samples are male OR female (high level of both XIST and chrY genes
are usually indicative of sample pooling or sample mix-up, more often than chromosomal disorder of the
individual).
Simply counting the number of reads mapping to XIST and the protein-coding genes from chromosome Y,
we can infer the sex of the individual whose sample is from. (see attached table

)https://www.dropbox.com/s/v2vw1kbqv47x7ek/mouseENCODE_XIST_chrY_table.xlsx?dl=0
We see that for 7 tissues (adipose, adrenal, brain, kidney, liver, sigmoid colon and spleen) the sex of the
samples is not matching. It seems to me that in order to study how transcriptional landscapes compares
between mouse and human tissues, one would want to reduce potential source of variability, such as
male-female differences. Apparently, this has not been done here.

 No competing interests were disclosed.Competing Interests:

Author Response 04 Jun 2015
, Human Genetics, University of Chicago, USAYoav Gilad

While the genders of the donors were not reported in the original paper, we found that information in the
biosample file on the ENCODE site. From this file, we learned that other than for the ovary and testes
samples, the gender of the human and mouse donors were different for all the other tissues. In other
words, for 11 tissue types, every time a certain gender was sampled from mouse, the opposite gender 
was sampled from human. This is remarkable. The probability this would happen by chance is truly, very
small indeed.

 No competing interests were disclosed.Competing Interests:

Reader Comment 04 Jun 2015
, Protocols.io, USALenny Teytelman

As an advocate of post-publication peer review and discussion, I find this exchange between the Gilad and
Snyder groups fascinating. It is precisely the kind of discussion that is illuminating and helpful for anyone
following up on the work.

As someone not familiar with the prior literature, I also have a quick question regarding the prior studies.
The abstract mentions "This observation was surprising, as it contradicted much of the comparative gene
regulatory data collected previously." And in the introduction, "Indeed, previous comparative studies
reported that gene expression data from human and mouse (and across other species more generally)
tend to cluster by tissues, not by species." If possible, including references to these studies in the next
version of this article would be useful.

 noneCompeting Interests:
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Reader Comment 03 Jun 2015
, Department of Genetics, Stanford University, USAJ Michael Cherry

Data for the Lin experiments were added to the ENCODE Portal last week. See et al. http://goo.gl/C3yUwg
.  Use the ‘Download’ link to retrieve URLs to retreive metadata and data files.

We, the ENCODE DCC, are working to provide more transparency & data provenance, plus metadata for
pipelines and software created by the consortium.  For an example follow: 
https://www.encodeproject.org/experiments/ENCSR307BCA/

These are also available from our REST API for programmatic access: 
.https://www.encodeproject.org/help/rest-api/

 PI, ENCODE DCCCompeting Interests:

Author Response 01 Jun 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Shin wrote on May 21st that they collected new data, using a different sequencing design, and thatet al. 
the new data still support their original claim. Regardless of our notion that additional batch effects need to
be addressed (see other comments), we would like to be able to analyze the new data as well. For one, we
find it difficult to assess PC1 in the new figures submitted by Shin (see their comment), as the 3D plotet al. 
is rotated somewhat compared to the original figure in their paper. Unfortunately, though Shin wroteet al. 
that their new data will be made available on the ENCODE website, this is not the case; we are unable to
find these new data.

 No competing interests were disclosed.Competing Interests:

Reader Comment 30 May 2015
, The Roslin Institute, UKMick Watson

In Lin et al, the paper mentions RNA-Seq carried out at both Stanford and Salk.

The 26 datasets analysed here (13 mouse and 13 human), listed in Table S1, are they from Stanford, Salk
or both?

 No competing interests were disclosed.Competing Interests:

Reader Comment 27 May 2015
, Broad Institute, USAMichele Busby

My last comment regarding the gene ontology analysis may not hold water. From the description of the
gene ontology analysis in the original paper, it appears that they did not use a tool, like GOSeq, specifically
designed for RNA Seq data.
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designed for RNA Seq data.

In RNA Seq, you are more likely to call genes that produce lots of reads (because they are longer or have
higher expression) differentially expressed than genes that produce fewer reads, even if they have the
same change in effect size, because they are measured with lower variance.  You need to control for this
in your enrichment analysis. It is not clear from the paper that this happened.

I apologize for missing this. It is a very common error and I should have checked for it before I wrote my
comment.

 No competing interests were disclosed.Competing Interests:

Reader Comment 26 May 2015
, Department of Physiology and Biophysics, Weill Cornell Medical College, USAChristopher Mason

Instead of just re-sequencing the same libraries, a better idea would be to try and ribo-deplete their original
RNAs to remove the potentially confounding effect of RNA degradation on the samples. This may not
remove  the batch effects from RNA extraction, isolation, and preparation, but it would surely help (asall
shown here: ). Also, when we ribo-depletedhttp://www.nature.com/nbt/journal/v32/n9/abs/nbt.2972.html
RNA across many tissues across 10 species of primates
(http://nar.oxfordjournals.org/content/43/D1/D737.long), we saw the samples cluster by tissue, not
species. To be safe, we often perform both polyA and ribo- on large sets of samples, and questions like
these highlight why it is a good idea to do so. If not for all samples (since 2X the cost), at least for some to
ensure robust signal.

 No competing interests.Competing Interests:

Reader Comment 25 May 2015
, QUT, AustraliaDavid Lovell

Since this study makes use of correlation as a measure of association between the logged gene
expression levels of different tissues, I think it’s important to point out that correlation is not valid for data
that carry only relative information.

Lovell, D., Pawlowsky-Glahn, V., Egozcue, J. J., Marguerat, S., & Bähler, J. (2015). Proportionality: A Valid
Alternative to Correlation for Relative Data. PLoS Comput Biol, 11(3), e1004075. 
http://doi.org/10.1371/journal.pcbi.1004075

Fortunately, it should be pretty straightforward to use proportionality in place of correlation and I’d be very
happy to help with that.

 No competing interests were disclosed.Competing Interests:

Reader Comment 22 May 2015

, Department of Biochemistry, McGill University, CanadaUri David Akavia
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, Department of Biochemistry, McGill University, CanadaUri David Akavia

Dear Yoav,

If you look at Table 1 of the GTEx pilot article in Science, May 8th (DOI: ), you10.1126/science.1262110
can see RIN values of the relevant human tissues. I'm guessing that these are the same samples used in
Shin .et al

In that case - the RIN values are provided, but unfortunately the RIN values (as well as ischemia time)
seem to indicate that Shin et al might be measuring the effect of RNA degradation over time.

If these aren't the RIN values, I would appreciate pointing them out.

Uri David Akavia
McGill University

 No competing interests were disclosedCompeting Interests:

Author Response 22 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Shin and ENCODE co-authors,
 
You have made an  claim in your papers. It was extraordinary because it wasextraordinary
counter-intuitive, because it challenged a strong paradigm in biomedical research (and more generally in
modern biology), and mostly – because it  a dozen or so previous studies that addressed ancontradicted
identical question.
 
You must therefore see why it is reasonable to hold you to a high standard and require that no other (e.g.,
technical) considerations can provide alternative explanation to your observed patterns. In the case of the
sequencing study design, you have confounded species with sample assignments. You might have
assumed that this type of batch effect is minor, but many others – including GTEx – have shown that it is
actually quite considerable.
 
Thus, regardless of your assumptions (or intuition), the confounding sequencing batch effects could have
potentially explained your original observations. I think that you have recognized that there is no way to
argue against this rationale (based on the original data), which is why you sequenced the samples again,
using a different study design.
 
The problem is that through the Twitter discussion, our colleagues raised an alternative, possibly even
more significant, technical explanation for your observations.  Based on the details you provide in your
methods, it seems that the human and mouse samples were collected using quite distinct protocols. In
addition, based on my own experience (and given the description of the tissue collection protocols), I am
guessing that the quality of RNA extracted from the human tissues is significantly different from the RNA
quality of the mouse tissues (you have not provided RIN data).
 
So, once again, we suspect a technical confounding batch effect that could potentially explain your
observations. One cannot simply assume that batch effects do not exist, or that they are minor (without
explicitly testing for them).
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observations. One cannot simply assume that batch effects do not exist, or that they are minor (without
explicitly testing for them).
 
Indeed, in our world as scientists, technical explanations must always be excluded or they remain
reasonable alternatives. This is especially the case when one’s observations contradict those of previous
studies. In such cases, in particular, we have a strong prior to favor technical explanations for the
discrepancy in observations. It is the authors' responsibility to exclude all of those possible alternative
explanations by providing the relevant data.

 No competing interests were disclosed.Competing Interests:

Reader Comment (  ) 22 May 2015Member of the F1000 Faculty
, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School ofSteven Salzberg

Medicine, USA

Shin Lin et al: your additional experiment does help, in that you seem to have controlled for machine
effects this time, where (as you write) you "have re-generated in a single experimental batch and
re-sequenced 24 of the original 26 tissues using the multiplexing scheme in Table 1." However (and
unfortunately), as Yoav Gilad pointed out yesterday (

), there is a much more profound batch effect thathttps://twitter.com/Y_Gilad/status/601079582733815808
re-sequencing these same samples cannot remove. The human data was from recently deceased organ
donors, preserved and handled very differently from the mouse data, which was from 10-week-old
littermates. This could create a far stronger batch effect that would appear to be a species effect. E.g., the
mice were very young, so you might be seeing a "young vs old tissue" effect. Or it could have to do with the
greater degeneration of the human samples which had been preserved. And so on.

 None.Competing Interests:

Author Response 21 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Shin .,et al

Thank you for posting the new data and analyses. For completion of records, can you please provide
additional details on the tissue collection protocols, RNA extraction protocols, and the RIN data for each
sample? Thank you.

 No competing interests were disclosed.Competing Interests:

Reader Comment 21 May 2015
, Department of Genetics, Stanford University, USAShin Lin

We continue our comment from May 19, 2015, in which we agreed to show new data to the scientific
community. We have re-generated in a single experimental batch and re-sequenced 24 of the original 26
tissues using the multiplexing scheme in Table 1 (

). In this design, lane/flowhttps://www.dropbox.com/s/dod8fcp2ds9zj52/table1part2.jpg?dl=0

Page 24 of 32

F1000Research 2015, 4:121 Last updated: 09 JUL 2015

https://twitter.com/Y_Gilad/status/601079582733815808
https://www.dropbox.com/s/dod8fcp2ds9zj52/table1part2.jpg?dl=0


F1000Research

). In this design, lane/flowhttps://www.dropbox.com/s/dod8fcp2ds9zj52/table1part2.jpg?dl=0
cell/sequencing machine effect (to be referred as "lane" effect henceforth for simplicity) can be separated
from species effect. When we eliminate mitochondrial reads and quantile normalize by lane, we arrive at
species-specific clustering (Figure 1 ), ashttps://www.dropbox.com/s/sw9h0zajhmfw5uj/fig1part2.jpg?dl=0
previously reported.  Thus, we emphatically disagree with the conclusion from Gilad and Mizrahi-Man that
our conclusions are “not warranted,” but rather we argue that objective normalization procedures allow the
discovery of the clustering of transcriptomes by species.
 
Gilad and Mizrahi-Man's work focused on one particular dataset in Lin et al.   However, that paper
contains a principal component analysis (PCA) on data from multiple sources: Stanford (human, mouse),
Salk (human), HBM (human), LICR (mouse), and CSHL (mouse).  There are undoubtedly many technical
differences between the various sources.  Yet, the clustering by species was seen in higher order principal
components (PCs) (see Figure 1A in Lin et al.); clustering by tissues, in lower components (Figure 1B in
Lin et al.) or by normalizing species separately (Extended Data Fig. 1c of Yue et al. ). The same behavior
is seen in the Stanford-only data—both in Lin et al., which minimizes primer index effect (Figure 1C & 1D in
Lin et al.) and now the newly generated results correcting for lane effect (Figure 1A & B 

).  The latter are consistent with ourhttps://www.dropbox.com/s/sw9h0zajhmfw5uj/fig1part2.jpg?dl=0
earlier observation that experimental batch did not drive the species-specific clustering.  Finally, as
additional supportive evidence, we have also examined related data from an independent study. Using
Riken Fantom 5 CAGE data  from 12 matched primary mouse and human cells (and replicates) as
described in the mouse ENCODE main paper Yue et al.  Supplementary Information, we again find
species-specific clustering (Figure 2 ).https://www.dropbox.com/s/g487schbjoya6eg/fig2part2.jpg?dl=0
 
The recognition of global differences between the human and mouse transcriptomes is consistent with the
experiences that many experimentalists have using the mouse model. Given the substantial differences in
size and metabolic rates, we do not feel it is implausible that there are strong expression differences
reflected in basic metabolic and cellular processes at the organism level.  Rather than questioning the
utility of the mouse model, which will assuredly continue as an invaluable tool, we propose that a better
understanding of these differences between human and mouse may allow us to better utilize this model
system as it pertains to the investigation of human diseases.
 
(***Data mentioned herein will be available for download at the Mouse ENCODE website shortly.)

Shin Lin , Yiing Lin , Michael A. Beer , Thomas R. Gingeras , Joseph R. Ecker , Michael Snyder
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Author Response 21 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Michele, this is a good point; thank you for your thoughts and for taking the time to write a comment.
 
While I'd argue that there are easy ways to avoid confounding sequence batches and species (or any other
biological variable of interest), I also intuitively agree with you. Differences in sample preparation could
have a much larger impact than sequence batches. Note that in fact, genes associated with apoptosis, or
cell death, are not typically enriched in post-mortem samples (or RNA samples of low quality), but the point
stands -- differences in sample prep can result in marked differences in gene expression estimates.
 
Yet, the ENCODE authors did not report in their paper many salient details on sample preparation (for
example, time since death, time to freezing, time to ship, etc.), and did not report RIN scores for the RNA
samples. While you are correct that these types of experiments are 'difficult', recording and reporting these
details is - in fact - easy. 
 
Since we don't have those details, we can't conclude with confidence that there is a batch effect related to
sample preparation, though again -- I agree with you that this is a most reasonable assumption given the
details that are provided in the method section of the ENCODE paper.
 
Still, without being able to conclude or recapitulate with confidence a batch effect related to sample
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Still, without being able to conclude or recapitulate with confidence a batch effect related to sample
preparation, we analyzed what data we were provided. This led to the paper in front of us.
 
So, I would say that it is possible that with more details, we could have detected additional confounding
batch effects, perhaps more significant than the sequencing design batch we reported. Importantly, if that
is the case, sequencing again the same samples using a different design will not help resolving the
technical confounders.

 No competing interests were disclosed.Competing Interests:

Reader Comment 21 May 2015
, Broad Institute, USAMichele Busby

I am growing more suspicious that the sequencing batches are a red herring. 

As pointed out below, in the original paper’s supplemental tables 1 and 2 there is enrichment in dozens of
classes of housekeeping genes between human and mouse.
If there is an artifact from a sequencing run, I would expect it to affect genes with certain chemical
properties (abundance, transcript length, gc content).  Obviously if a certain class is enriched with
transcripts with those properties we will see false enrichment. But this would appear to be a lot of artifact
with a lot of correlation with biological classes.

Because “cell death” is in the list of enriched processes, I wonder if there is a biological difference between
the human and mouse samples, but that it originated in the sample handling rather than evolution.
Samples from human bodies are not taken right away. The donors lie in the hospital bed while their loved
ones say goodbye.  I would expect to see some signature of apoptosis in the human samples that is not
present in the mouse, which could be biologically “real” and affecting the clustering on the original data.

Obviously, blocking for sequencing runs is ideal.  But the confounders here are confounded and in this
paper here, as it's written, you may be overstating the effects of the sequencing run versus all the other
things that are difficult about analyzing human tissue samples.  Given the attention it received, this could
lead to confusion in the field and unwarranted doubts about other papers where the sequencing is also not
striped across runs.

I will also say that, though I don’t think the main conclusion in the original paper is likely to be true, I respect
that measuring transcription across species is very, very difficult. Many of the papers in the field say
strange things. I offer this comment only in the spirit of collaboration so we know how to design future
projects, not to criticize the original authors.

 NoneCompeting Interests:

Author Response 21 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Thanks for your kind note, Mike. To your question: Only one tissue was in common across the two species
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Thanks for your kind note, Mike. To your question: Only one tissue was in common across the two species
in the mixed batch (brain). The other two samples were from pancreas (human) and spleen (mouse)... So
too little data to try anything in our minds.

 No competing interests were disclosed.Competing Interests:

Reader Comment 21 May 2015
, McGill University, CanadaJoe Foley

Shin Lin: "Because batch effects assuredly occur, we sought to minimize biases generally.  First, for 10 of
13 tissues, the corresponding mouse and human samples had matching indexing/barcode primers. ... It
should be noted that our study design minimized library preparation and primer index effect."

You minimized the index sequence effect by confounding it with tissue type instead of species.

The simplest solution to the problem of sequencing batch effects would be to give each library a unique
index and sequence all the libraries together in every lane of every flow cell. But as you say, that wouldn't
account for the index sequence effect. Maybe a better design would be to use a mixture of several unique
index sequences for each library, and still sequence them all together - at least this way you could look
naively at the variation between index sequences within each library.

Or try to do better than N = 1 in each experimental condition, which seems like the the buried lede here.
Even if you're willing to ignore the possibility of biological variation (!), at least technical replicates would
have solved a lot of the problems here.

 No competing interests were disclosed.Competing Interests:

Reader Comment 21 May 2015
, Washington University in St. Louis School of Medicine, USAMike White

Yoav & Orna, kudos to you for raising this issue and documenting your procedure in detail.

I don't know if this is useful, but here's my question: there were two tissues for both species run on the
same lane. By analyzing just those data, can you estimate the effect of species vs. tissue? I'm guessing
two tissues isn't enough, but what do you think? Did you try that analysis?

 No competing interests were disclosed.Competing Interests:

Reader Comment 20 May 2015
, Duke University, USALee Elizabeth Edsall

I find it interesting that CASAVA v1.7 doesn't include the run number in the sequence identifier in a fastq
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I find it interesting that CASAVA v1.7 doesn't include the run number in the sequence identifier in a fastq
file. The run number is included in the other file types (e.g. qseq format). That's a critical piece of
information. I'm glad Illumina added it in version 1.8. By the way, the format is on the page numbered 74 of
the CASAVA 1.7 user guide, which corresponds to page number 88 of the PDF file.

 No competing interests.Competing Interests:

Author Response 20 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

I appreciate the author’s intention to recollect some of their data using a different study design.
Unfortunately, if data were to be collected from the same set of original samples, there are some additional
concerns. Based on the SI Methods provided by the authors, it seems that the human RNA samples were
extracted from tissues collected from deceased individuals and then flash frozen. Presumably, different
tissues were collected from different individuals, and there is no information regarding the age, sex, cause
of death, and quality of extracted RNA. Additional human RNA – for a subset of tissues – were purchased
directly.
 
For mouse, all tissues were collected from a single strain – so even if there were multiple individuals, all
genetic backgrounds were identical. Also, the mice were all of a similar age and it is unclear if the RNA
samples were flash frozen. Again, RNA quality properties are not reported.
 
The description of the sample acquisition already indicates a profound batch effect that is impossible to
distinguish from the species effect – even before we address the issue of the sequencing study design.

 No competing interests were disclosed.Competing Interests:

Reader Comment 20 May 2015
, Harvard / Dana Farber Cancer Institute, USARafael Irizarry

I wrote this post for those interested in learning more about the mathematical and statistical considerations
related to confounding in the context of this discussion: 
http://simplystatistics.org/2015/05/20/is-it-species-or-is-it-batch-they-are-confounded-so-we-cant-know/

 No competing interests were disclosed.Competing Interests:

Reader Comment 20 May 2015
, Broad Institute, USAMichele Busby

This is a nice discussion of important topics!

I am interested in whether the RIN scores differed substantially between the mouse and the human
samples. I would expect the human samples to have lower RIN because it is more difficult to collect
samples from human donors.
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If this is the case, then you do have to normalize by GC content and also gene length before clustering as
different degrees of degradation in the samples would lead to consistent loss of RNA from transcripts with
specific characteristics across all tissues in the more degraded group.

 NoneCompeting Interests:

Reader Comment (  ) 20 May 2015Member of the F1000 Faculty
, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School ofSteven Salzberg

Medicine, USA

Y. Gilad makes a salient point - what the mouse ENCODE authors say in their response is misleading in
that they use the term "lane effect" when Gilad and Mizrahi-Man clearly explain that the human and mouse
samples were (mostly) run on different instruments. Because this batch effect is almost completely
confounded with the main effect reported (the clustering by species), it's nearly impossible to separate the
two. Thus even if a species-based clustering is present, the data in the PNAS paper don't support that
claim.

 None.Competing Interests:

Author Response 20 May 2015
, Human Genetics, University of Chicago, USAYoav Gilad

Why are you calling these 'lane effects'? The samples were sequenced on different instruments (different
sequencers) and by default - different flow cells. Can you explicitly acknowledge that fact please?

 No competing interests were disclosed.Competing Interests:

Reader Comment 20 May 2015
, Department of Genetics, Stanford University, USAShin Lin

In our analysis comparing the various tissue transcriptomes between human and mouse using datasets
collected from a number of laboratories, we reported that significant differences existed between matched
tissues across the species such that globally, the tissues within one species were more similar to each
other . We found that this was due in large part to the vastly different proportions of tissue-specific genes
which were expressed in various organs, and that “housekeeping genes” e.g. metabolic genes were the
major drivers of this species-specific clustering. When this surprising observation was made initially, the
ENCODE consortium underwent extensive discussions over a two-year period, and conducted analyses
and generated additional data to address concerns pertaining to potential laboratory and batch effects. In
an examination of a subset of our data, Mizrahi-Man . revisit observations previously encountered byet al
the consortium.
 
After receiving our data, which we provided as part of the ENCODE consortium, Mizrahi-Man .et al
deduced that our multiplexed libraries were pooled onto different lanes such that libraries from each

species were largely sequenced on the same lanes. Reasoning that sequencing on different lanes might

1
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species were largely sequenced on the same lanes. Reasoning that sequencing on different lanes might
introduce differences in the resultant data generated, they normalized the expression values generated
from libraries sequenced on different lanes. Because batch effects assuredly occur, we sought to minimize
biases generally.  First, for 10 of 13 tissues, the corresponding mouse and human samples had matching
indexing/barcode primers. Second, 22 of the libraries were constructed in a single batch and sequenced
on four lanes. Four other samples—human brain, human pancreas, mouse brain, and mouse
spleen—were prepared in a later batch; should batch effects dominate the pattern of clustering, these four
samples would be expected to cluster together.  However, we did not observe such an effect (Fig. 1c of Lin

, 2014). When we quantile normalize the data by the two experimental batches, we continue toet al
observe species-specific clustering (https://www.dropbox.com/s/rjh9l6fn9t0svnh/fig1.jpg?dl=0).

Why then, does the normalization performed by Mizrahi-Man . result in tissue-specific clustering?  Ifet al
one normalizes away the species-specific differences, of course one will not see them. In the course of its
analyses, the consortium demonstrated that if the mouse and human datasets were separately
normalized, the global expression comparisons resulted in tissue-specific clustering (see Extended Data
Fig. 1c of Yue ). This made intuitive sense to us, as it effectively removed the overall expressionet al
differences between the species and made apparent the expression differences between tissues. Indeed,
the normalization procedure performed by Mizrahi-Man . did just that. Because the sequencinget al
libraries were multiplexed largely by species, their normalization was equivalent to intra-species
normalization, which effectively removed the global differences between human and mouse gene
expression. To reiterate, this normalization sequence and resultant patterns of data clustering were well
known to us and detailed in the ENCODE consortium main paper (see Extended Data Fig. 1c of Yue et al
). 
 
There remains the issue of our study design with respect to confounding of lane effect and species. It
should be noted that our study design minimized library preparation and primer index effect. A recent
GEUVADIS consortium study showed that both factors are each contributors to RNA-seq variance and of
much greater effect than that of lane (see Fig. 3c of 't Hoen ).  No study design given the currentet al.
constraints of multiplexing and lane organization can account for both primer index and lane effect
simultaneously, but the study design published in Lin et al. accounts for the larger of these two effects.
Although our experience is consistent with the GEUVADIS data showing that lane effect is not a large
contributor to variance, we recognize it is better to have data. Thus, we are sequencing under a new
pattern of pooled libraries, and soon, we will post the results for the community.
 
Shin Lin , Yiing Lin , Michael A. Beer , Thomas R. Gingeras , Joseph R. Ecker , Michael Snyder
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