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Since Chevens’ report, in the early 50’s that his patients under treatment with the aldehyde
dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking
small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of
ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than
25 years of intense research, a large number of studies have been published on the
motivational properties of ACD itself as well as on the role that ethanol-derived ACD
plays in the effects of ethanol. Accordingly, in particular with respect to the motivational
properties of ethanol, these studies were developed following two main strategies: on
one hand, were aimed to challenge the suggestion that also ACD may exert motivational
properties on its own, while, on the other, with the aid of enzymatic manipulations or
ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might
have a role in ethanol motivational effects. Furthermore, recent evidence significantly
contributed to highlight, as possible mechanisms of action of ACD, its ability to commit
either dopaminergic and opioidergic transmission as well as to activate the Extracellular
signal Regulated Kinase cascade transduction pathway in reward-related brain structures.
In conclusion, and despite the observation that ACD seems also to have inherited the
elusive nature of its parent compound, the behavioral and biochemical evidence reviewed
points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to
exert motivational effects.

Keywords: acetaldehyde, behavior, ethanol, dopaminergic transmission, extracellular signal regulated kinase,

opioidergic transmission, salsolinol

INTRODUCTION
Acetaldehyde (ACD) is well-known as a toxic compound and on
this property was grounded the rationale for the use of disulfi-
ram, an aldehyde dehydrogenase inhibitor, to treat alcoholism.
However, toxicity does not necessarily involve perceived aversive
effects and at the basis of this treatment are its aversive effects
(nausea, headache, hot flushes, etc.) that discourage consump-
tion. In spite of this, however, in the early 50’s it was reported that
some patients under treatment with the aldehyde dehydrogenase
inhibitor (ALDH), antabuse, could experience pleasurable effects
while ingesting small amounts of ethanol and it was postulated
that ACD might have positive emotional as well as motivational
effects (Chevens, 1953). After a long period of obsolescence from
this observation, in the last decades the research on the role of
ACD in the effects of ethanol, both as ethanol’s metabolite and as
chemical with its own motivational properties, has seen a renewed
interest. To address this issue, the first approach has been to
consider ethanol as a pro-drug of ACD. Indeed, the most radi-
cal view suggested that ACD could be responsible for all of the
effects of ethanol and that alcoholism might, instead, be termed
acetaldehydism (Raskin, 1975). Notably, a consistent body of evi-
dence, suggesting that to exert its motivational properties ethanol
must be metabolized into ACD, has been collected by different
approaches including catalase manipulations (Aragon et al., 1985,

1991; Aragon and Amit, 1992), the use of alcohol dehydroge-
nase (ADH) (Amit, 1977; Brown et al., 1979; Smith et al., 1984;
Quertemont and De Witte, 2001; Peana et al., 2008a) or ALDH
inhibitors (Amit, 1977; Spivak et al., 1987a,b; Suh et al., 2006), the
use of knock-out mice for the CYP2E1 isoform (Suh et al., 2006;
Correa et al., 2009a) and the use of lentiviral vectors to silence the
cell genome encoding for catalase or ADH synthesis (Karahanian
et al., 2011). These approaches generated a large number of stud-
ies, summarized in comprehensive reviews (Quertemont et al.,
2005; Correa et al., 2012), showing that locomotor (Escarabajal
and Aragon, 2002; Martí-Prats et al., 2010; Ledesma and Aragon,
2012), anxiolytic (Correa et al., 2008; Escrig et al., 2012) and,
in particular, motivational (Peana et al., 2008a,b, 2009, 2010a)
properties of ethanol could be prevented by inhibiting either
its peripheral and central metabolism or by ACD inactivation.
Notably, two further issues, one related to the questioned ability
of ACD to cross the blood brain barrier [see Correa et al. (2012)
for an extensive discussion on this issue] and another related to
the role of enhanced ethanol plasma concentrations that may in
turn reach the brain, require to be dealt with while taking into
consideration the consequences of blockade of ethanol peripheral
metabolism.

Another approach to address the role of ACD in the motiva-
tional properties of ethanol has been to consider it as a chemical
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with neurobiological properties on its own. Indeed, also this line
of investigation has generated a significant body of data that also
converged toward the characterization of ACD as a neurochem-
ical agent able to elicit locomotor activity (Correa et al., 2009b)
and anxiolytic effects (Correa et al., 2008), to sustain drug dis-
crimination (York, 1981; Redila et al., 2000, 2002; Quertemont
and Grant, 2002), to affect cognition (Sershen et al., 2009), and to
elicit motivational effects (York, 1981; Peana et al., 2008a, 2009,
2010b; Spina et al., 2010). Interestingly, the behavioral evidence
for the characterization of ACD as a drug with motivational prop-
erties was gathered, from conditioned place preference (CPP) and
self-administration studies, in parallel with electrophysiological,
biochemical and immunohistochemical studies pointing also to
the critical role of dopamine (DA) (Foddai et al., 2004; Melis et al.,
2007; Enrico et al., 2009; Spina et al., 2010; Vinci et al., 2010; Sirca
et al., 2011) and opioid (Pastor et al., 2004; Sánchez-Catalán et al.,
2009; Peana et al., 2011) transmission as well as to the involve-
ment of Extracellular signal Regulated Kinase (ERK) (Spina et al.,
2010; Vinci et al., 2010) at the basis of ACD’s motivational prop-
erties. The present review aims to recapitulate this evidence in
support of the tenet of ACD as a molecule able to exert moti-
vational effects in rodents (for a recent comprehensive review see
Correa et al., 2012).

CONDITIONED PLACE PREFERENCE AND
SELF-ADMINISTRATION STUDIES
The role of ACD in the positive motivational properties of ethanol
has become an increasingly attractive matter of debate and many
studies have attempted to establish whether ACD is necessary for
the manifestation of the neurobiological and behavioral effects
of ethanol. Such studies have been developed by the aid of
compounds that increase as well as inhibit, both centrally and
peripherally, the formation of ACD and by the aid of compounds
able to sequester ACD into stable non-reactive adducts. ACD has
been shown to elicit CPP after intracerebroventricular infusion
(Smith et al., 1984) and after intragastric (Peana et al., 2008a)
and intraperitoneal (Quertemont and De Witte, 2001) adminis-
tration. Notably, under these conditions, ACD-elicited CPP shows
a bell shaped dose-response curve similar to that of ethanol
(Quertemont and De Witte, 2001; Peana et al., 2008a).

The isoforms of ADH, normally found in gastric and hep-
atic tissue, represent the main metabolic pathway by which
ethanol is converted into ACD upon ingestion (Baraona et al.,
1991). Hence, provided that ethanol is not a substrate of brain
ADH isoforms, the effect of the ADH competitive inhibitor,
4-methylpyrazole (4-MP), mostly used in behavioral studies is
restricted to the peripheral metabolism of ethanol (Escarabajal
and Aragon, 2002). In this paragraph we will focus our atten-
tion mostly on studies in which, to mimic the route commonly
used by humans, ethanol and ACD were administered orally. In
a CPP study, we showed that pretreatment with 4-MP reduces
intragastric ethanol- (1 g/kg) but not ACD- (20 mg/kg) induced
CPP, suggesting that ACD, metabolically derived from ethanol,
could be responsible for this effect (Peana et al., 2008a). As
previously mentioned, however, the impact of these results is
partly reduced by the observation that administration of 4-MP
may also affect, indirectly, brain ACD (Spivak et al., 1987a,b).

In fact, when ethanol’s metabolic conversion is prevented in the
periphery it can reach the brain in greater amounts and can be
metabolized therein by alternative pathways (catalase) (Aragon
et al., 1985, 1991). This observation is also in agreement with
the study by Tambour et al. (2007) reporting that the administra-
tion of cyanamide, a catalase and ALDH inhibitor, could prevent
the locomotor stimulant effects of ethanol in mice and that this
effect could be prevented by previous administration of 4-MP
(Sanchis-Segura et al., 1999; Tambour et al., 2007).

Evidence of the role of ACD in the motivational properties
of ethanol has also been provided by CPP experiments with D-
penicillamine, a compound, which acts by sequestering ACD
into a non-reactive and stable adduct without altering ethanol
metabolism (Nagasawa et al., 1978). Thus, peripheral admin-
istration of D-penicillamine, at doses devoid of motivational
properties per se, prevents the acquisition of either ethanol- (Font
et al., 2006a; Peana et al., 2008a) or ACD-induced CPP (Peana
et al., 2008a). In addition, as in the case of the experiments
with 4-MP, the specificity of pretreatment with D-penicillamine
on ethanol-derived ACD was confirmed by its failure to affect
morphine-elicited CPP. Further, indirect, evidence of the role of
ACD in the motivational effects of ethanol comes from studies
with L-cysteine, a thiol amino acid, also known for its ability
to protect against ACD toxicity (Salaspuro, 2007). L-cysteine is
a precursor of the antioxidant glutathione (Soghier and Brion,
2006) and binds ACD by way of cysteinylglycine, the first metabo-
lite in glutathione breakdown (Kera et al., 1985). Notably, L-
cysteine formulations have been developed to bind in the oral
cavity ACD originating after heavy smoking and alcohol drink-
ing (Salaspuro et al., 2002; Salaspuro, 2007). Such formulations
offer a novel method for intervention studies aimed to fight the
role of ACD in the pathogenesis of upper digestive tract cancer
(Salaspuro, 2007), alcoholic cardiomyopathy, as well as against
the chronic toxicity of ACD (Sprince et al., 1974). Accordingly,
we found that L-cysteine reduces either ethanol- and ACD-
elicited CPP (Peana et al., 2009) supporting the notion that
the generation and accumulation of ACD actively contributes to
ethanol-induced CPP.

Several studies have found that ACD supports its self-
administration. This has been demonstrated in unselected
rats self-administering ACD intravenously (Myers et al., 1982;
Takayama and Uyeno, 1985), intracerebroventricularly (Brown
et al., 1979) and into the VTA (McBride et al., 2002), the lat-
ter also in alcohol-preferring rats (Rodd-Henricks et al., 2002).
Further evidence that ACD exerts positive motivational prop-
erties arises from the observation that rats also acquire and
maintain oral ACD self-administration (Peana et al., 2010b;
Cacace et al., 2012). Our work, in this regard, has been aimed to
characterize the role that ethanol-derived ACD plays in the phar-
macological properties of orally ingested ethanol. Thus, as in the
CPP studies, we have found that inhibition of the metabolism
of ethanol, by 4-MP, reduces oral ethanol self-administration
behavior (Peana et al., 2008b) an effect that might also be
attributed to an increased concentration of ethanol which falls
on the right-hand side of its bell shaped dose response curve.
On the other hand, we have recently demonstrated, for the first
time that ACD shares with ethanol the ability to induce oral
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self-administration behavior further supporting the hypothesis
that ACD itself exerts motivational effects (Peana et al., 2010b).
Notably, rats self-administering ACD show extinction behav-
ior when ACD is discontinued while gradually reinstate operant
responses when ACD is reintroduced (Peana et al., 2010b). In
addition, studies directed toward the characterization of the role
of ACD, provided evidence that ethanol-derived ACD plays an
important role in ethanol’s motivational effects. Accordingly,
previous findings have reported that intracerebroventricular the
structural analogue of L-cysteine, D-penicillamine, reduces vol-
untary ethanol consumption in rats indicating that the central
inactivation of ACD also blocks ethanol intake (Font et al.,
2006b). On the other hand, L-cysteine reduces the acquisition
and maintenance of oral ethanol self-administration as well
as the reinstatement of ethanol-drinking and ethanol-seeking
behaviors (Peana et al., 2010a, 2013a). Others studies exam-
ined the motivational effects of ACD under the break point
that serves as an index of animals’ motivation to work for the
reinforcer. In these experiments 0.2% v/v ACD’s break point
was not statistically different from the break point of 10% v/v
ethanol in spite of a 50 times lower concentration (Peana et al.,
2012). On the other hand, ACD consumatory responses were
paralleled by a relevant increase in ACD blood but not brain
concentrations (Peana et al., 2010b). Furthermore, as in CPP
and ethanol self-administration studies, during oral ACD self-
administration L-cysteine was shown to decrease acquisition,
maintenance, deprivation effect as well as ACD break point
without interfering with saccharin reinforcement (Peana et al.,
2012).

The ability of L-cysteine to affect ethanol-induced motivation
could reside in different mechanisms. The first is consistent with
the conjugation/inactivation mechanism that would take place
between ACD and the first metabolite of glutathione (Kera et al.,
1985). Furthermore, being L-cysteine an analogue of L-glutamate
(Thompson and Kilpatrick, 1996) it is posited to interact at presy-
naptic group I metabotropic glutamate receptors (mGluR) of the
mGluR5 subtype to exert a positive modulatory control on synap-
tic glutamate release (Harman et al., 1984; Croucher et al., 2001).
In support of these results is the finding that L-cysteine reduces
ethanol-induced stimulation of DA transmission in the nucleus
accumbens shell (Sirca et al., 2011). Finally, it is noteworthy in this
regard that L-cysteine may cross the blood brain barrier through
excitatory amino acid transporters (Chen and Swanson, 2003)
thus leaving open the possibility that this compound might also
act centrally.

The main system of central ethanol oxidation is mediated
by the enzyme catalase (Aragon et al., 1991; Aragon and Amit,
1992; Zimatkin et al., 1998). By reacting with H2O2, brain cata-
lase forms compound I (the catalase-H2O2 system), which is
able to oxidize ethanol into ACD (Pastor et al., 2002; Ledesma
and Aragon, 2012). Recently we showed that the H2O2 scav-
enging agent, alpha lipoic acid, dose-dependently reduces the
maintenance and break point of oral ethanol self-administration
under a progressive ratio schedule as well as the reinstatement
of ethanol seeking behavior without suppressing saccharin self-
administration (Peana et al., 2013b). On a similar vein, a recent
study by Ledesma and Aragon (2013) demonstrated that alpha

lipoic acid reduces the acquisition and reconditioning of ethanol-
induced CPP in mice. Overall, these data support the suggestion
that a decrease in cerebral H2O2 availability, i.e., a reduced
metabolic activity of brain catalase, by alpha lipoic acid admin-
istration may inhibit oral ethanol self-administration further
suggesting that the brain catalase-H2O2 system, and therefore
centrally formed ACD, plays a key role in the motivational effects
of ethanol.

ACETALDEHYDE, DOPAMINE, AND INTRACELLULAR
SIGNALING
The acute administration of ethanol elicits DA transmission in the
rat nucleus accumbens (Imperato and Di Chiara, 1986; Howard
et al., 2008) and this is also true in men whereby these increases
in the ventral striatum positively correlate with the psychostim-
ulant effect of ethanol (Boileau et al., 2003). Thus, a physiolog-
ically active DA transmission may represent the prerequisite for
ethanol and, in accordance with Chevens (1953), also for ACD
being able to elicit motivational effects. In this regard, in light
of the hypothesized role of DA in the motivational effects of
ACD, an indirect support comes from the clinical observation
that subjects administered the DA biosynthesis inhibitor, alpha-
methyltyrosine, do not experience ethanol-induced stimulation
and euphoria (Ahlenius et al., 1973). With these premises in mind
this paragraph will present and discuss the preclinical studies
that support the involvement of DA in the motivational effects
of ACD.

The main line of experimental evidence of the involvement
of DA in the effects of ACD was inspired by the known abil-
ity of ethanol to stimulate the firing rate of midbrain DA cells
either in vivo (Gessa et al., 1985; Foddai et al., 2004) and in vitro
(Brodie et al., 1990; Melis et al., 2007) as well as the release of
DA from mesoaccumbens terminals (Imperato and Di Chiara,
1986; Howard et al., 2008). Indeed these data also inspired the
experiments aimed to test whether ethanol-derived ACD, as well
as ACD on its own, could stimulate the firing rate of DA neu-
rons in the VTA (Foddai et al., 2004) and DA transmission in the
nucleus accumbens (Ward et al., 1997; Melis et al., 2007; Enrico
et al., 2009). Thus, in keeping with the well-established paradigm,
successfully applied in behavioral (Peana et al., 2008a) and his-
tochemical (Vinci et al., 2010) studies that envisioned the use
of 4-MP to prevent ethanol peripheral metabolism, Foddai et al.
(2004) showed that this ADH inhibitor prevents ethanol-elicited
stimulation of firing rate of DA neurons in the VTA, demonstrat-
ing for the first time that metabolic conversion of ethanol into
ACD plays a critical role in the ability of ethanol to activate mes-
encephalic DA cells (Foddai et al., 2004). This finding has been
further extended by the study of Melis et al. (2007) in which, by
recording VTA DA cells ex vivo, it was shown that ethanol and
ACD similarly stimulate DA cells firing rate but also that the stim-
ulatory effect of ethanol is prevented by inhibition of its metabolic
conversion into ACD by the catalase inhibitor 3-aminotriazole
(Melis et al., 2007).

Notably, all the above refers to the ability of ACD to
affect DA cells function and transmission at the pre-synaptic
level. Immunohistochemical data, however, have shown that
the expression of phosphorylated Extracellular signal regulated
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kinase (pERK), taken as an index of post-synaptic DA-dependent
neuronal activation (Acquas et al., 2007; Ibba et al., 2009), is
similarly increased in the nucleus accumbens after the acute
oral administration of either ethanol (Ibba et al., 2009; Vinci
et al., 2010) and ACD (Vinci et al., 2010). In addition, ethanol-
elicited increase of pERK expression in the nucleus accumbens
could be prevented either by 4-MP and D-penicillamine (Vinci
et al., 2010). ERK phosphorylation may take place by a number
of factors ranging from extracellular signals to increased intra-
cellular Ca++ concentrations via the sequential activation of a
kinase cascade (Sweatt, 2004). This activated kinase has been
related to neuronal plasticity (Fasano and Brambilla, 2011) and
to long-term behavioral events that may be triggered by addic-
tive drugs (Valjent et al., 2004; Girault et al., 2007) such as
acquisition of conditioned responses (Beninger and Gerdjikov,
2004) as well as reinstatement of ethanol seeking (Radwanska
et al., 2008; Schroeder et al., 2008; Peana et al., 2013a) in self-
administration experiments. Accordingly, we found that while
acute ACD administration elicits pERK in the nucleus accum-
bens (and other nuclei of the extended amygdala) (Vinci et al.,
2010), the intracerebroventricular administration of PD98059, an
inhibitor of the mitogen-activating extracellular kinase (MEK),
the kinase responsible of ERK phosphorylation, prevents the
acquisition of ACD-elicited CPP (Spina et al., 2010). In addi-
tion, the involvement of DA in these studies is supported
by the experiments with the DA D1 antagonist SCH 39166
(Ibba et al., 2009; Spina et al., 2010; Vinci et al., 2010). In
fact, we demonstrated that either oral ethanol- (Ibba et al.,
2009) and ACD- (Vinci et al., 2010) elicited nucleus accum-
bens increases of pERK expression and ACD-elicited CPP (Spina
et al., 2010) could be prevented by blockade of D1 receptors by
SCH 39166.

A further line of experimental evidence, though yet specu-
lative, of the involvement of DA in the effects of ACD origi-
nates from the studies on the condensation product(s) of ACD
which, in particular when condensates with DA, can either
spontaneously and enzymatically (Chen et al., 2011) generate 1-
methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol)
(Yamanaka et al., 1970; Jamal et al., 2003). Interestingly, since its
discovery, this molecule has been related to ethanol (Davis and
Walsh, 1970; Davis et al., 1970) and it was hypothesized that at
least the DA-mediated effects of ethanol could be attributed to
salsolinol (Davis and Walsh, 1970; Davis et al., 1970). This com-
pound, indeed, has recently been reported to stimulate in vitro
DA cells firing rate in the posterior VTA (Xie and Ye, 2012; Xie
et al., 2012) and also, when applied into the VTA in vivo, to
elicit DA transmission in the rat nucleus accumbens (Rodd et al.,
2003; Deehan et al., 2012) and sustain its self-administration
(Rodd et al., 2008). Thus, these data seem to collectively point
to salsolinol as a substance that may exert motivational effects by
virtue of its ability to involve mesolimbic DA. However, the rela-
tionship between ACD, DA and salsolinol still awaits to be fully
disclosed.

ACETALDEHYDE AND OPIOIDS
Acute administration of ethanol increases endogenous opioid
(endorphin and enkephalin) release from brain slices, pituitary

gland and increases blood levels of opioids in humans in vivo
(see Herz, 1997 for a comprehensive review). Acute alcohol
administration also enhances gene expression of both endorphin
and enkephalin in selected brain areas of rats, whereas chronic
ethanol administration reduces gene expression, making less of
opioid peptides available for release (Herz, 1997). Since opioid
transmission, in both the VTA and nucleus accumbens, regulates
the release of DA from mesolimbic neurons, ethanol-induced
opioid release may produce reinforcement by modulating DA
transmission. Accordingly, opioid antagonists decrease the moti-
vational properties of ethanol in rats self-administering ethanol
by interfering with ethanol-dependent dopaminergic activation
(Acquas et al., 1993; Benjamin et al., 1993; Di Chiara et al., 1996;
Gonzales and Weiss, 1998) as the motivational effects of ethanol
by opioid antagonists may involve an opioid-DA link (Di Chiara
et al., 1996). However, another line of evidence for the involve-
ment of the endogenous opioid system in the motivational effects
of ethanol appears to be related to its first metabolite, ACD. In
fact, there are several proofs to support that opioids are implicated
in the motivational effects of ACD as well. The first arises from the
early observation by Myers et al. (1984) demonstrating that nalox-
one decreases intravenous ACD self-administration. The second
arises from the observation that naltrexone reduces oral ACD self-
administration (Peana et al., 2011). In particular, we observed
that this effect could be mediated by an involvement of µ1 opioid
receptors since naloxonazine, a µ1 selective opioid receptor antag-
onist, reduced the maintenance phase of ACD self-administration
(Peana et al., 2011). The mechanism by which opioid antagonists
affect the motivational properties of ACD is unclear. In this regard
one might consider that ACD on its own, and as a consequence of
the metabolism of ethanol, activates neuronal firing of DA cells in
the VTA (Foddai et al., 2004), stimulates DA transmission (Melis
et al., 2007; Enrico et al., 2009; Sirca et al., 2011) and ERK phos-
phorylation in the nucleus accumbens (Vinci et al., 2010). This
possibility appears in agreement with the observation that block-
ade of µ opioid receptors also prevents ERK phosphorylation in
the nucleus accumbens (Peana et al., 2011). An alternative pos-
sibility, yet to be fully demonstrated, is offered by the suggestion
that the condensation product between ACD and DA, salsolinol
(see above), acts via stimulation of µ opioid receptors (Hipolito
et al., 2009, 2010, 2012; Xie et al., 2012).

DISCUSSION AND CONCLUSIONS
The reviewed literature indicates that ACD has its own moti-
vational properties as assessed by CPP and self-administration
studies (Peana et al., 2008a, 2010b; Spina et al., 2010) and also
that this property is grounded on its ability to involve mesolimbic
DA (Foddai et al., 2004; Melis et al., 2007; Spina et al., 2010; Vinci
et al., 2010), µ opioid receptors -mediated transmission (Peana
et al., 2011) as well as phosphorylated ERK in the nucleus accum-
bens (Spina et al., 2010; Vinci et al., 2010; Peana et al., 2011).
In addition, a wealth of experimental evidence supports that the
motivational effects of ethanol are mediated by its metabolism
into ACD either in the periphery or in the brain. Accordingly,
this has been demonstrated by inhibiting the production of ACD
in the periphery (inhibition of ADH), by inhibiting the genera-
tion of brain ACD (inhibition of brain catalase) or by reducing
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ACD bioavailability (Font et al., 2006a,b; Peana et al., 2008a, 2009,
2010a, 2013a,b; Enrico et al., 2009; Sirca et al., 2011; Correa et al.,
2012). All these observations support the tenet that the genera-
tion of central and peripheral, but not peripherally accumulated

(Escrig et al., 2012), ACD actively participates in the positive
motivational properties of ethanol and raise the possibility that its
role can be exploited to devise novel pharmacological approaches
that target alcohol abuse related problems.
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