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Abstract: Constant Internet connectivity has become a necessity in our lives. Hence, music festival
organizers allocate part of their budget for temporary Wi-Fi equipment in order to sustain the high
network traffic generated in such a small geographical area, but this naturally leads to high costs that
need to be decreased. Thus, in this paper, we propose a solution that can help offload some of that
traffic to an opportunistic network created with the attendees’ smartphones, therefore minimizing
the costs of the temporary network infrastructure. Using a music festival-based mobility model that
we propose and analyze, we introduce two routing algorithms which can enable end-to-end message
delivery between participants. The key factors for high performance are social metrics and limiting
the number of message copies at any given time. We show that the proposed solutions are able to
offer high delivery rates and low delivery delays for various scenarios at a music festival.

Keywords: mobility model; opportunistic networks; social; festival

1. Introduction

The study of opportunistic networks (ONs) and their applications has gained popular-
ity in recent years, due to the increased capabilities of smartphones, which can facilitate the
deployment of such networks. Opportunistic networks are derived from mobile ad hoc net-
works and rely on device mobility and device-to-device communication to form dynamic
networks for content sharing or end-to-end message delivery. An opportunistic network
routing algorithm is the logic that governs each device-to-device interaction and could be
described as a set of decisions that determine which data are to be exchanged between the
two devices in contact. The decision process aims to determine if the encountered device
has a better chance of delivering a message than the carrier, based on local information.

This type of network is suitable for a diverse range of situations where the use of
classic network infrastructure is not possible or may fail. For instance, ZebraNet [1] is a
project that uses an opportunistic network to track the behavior of zebras and understand
their interactions and migration patterns. Another example is a mobile application that
disseminates information in a certain area affected by a network outage [2]. Moving further,
it has been shown that, through ON-based applications, citizens can become sensors
themselves by participating in ad hoc crowdsourcing [3].

Internet connectivity at music festivals is a real and still valid problem nowadays,
since the rise of the smartphone has reshaped the way we experience entertainment
events. Slow Internet speed is mostly due to large audiences gathered in relatively small
geographical areas that can generate sudden demands on the network infrastructure.
For festival planners, providing their attendees with a reliable Internet connection is an
effective marketing strategy. As the vast majority of devices have to be associated with a
base station before being able to initiate any form of communication requiring the use of a
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cellular network, sharing the bandwidth with thousands of devices can easily result in poor
connectivity. Although event organizers can opt for the help of companies that specialize
in deploying temporary Wi-Fi infrastructure equipment, this is a rather expensive solution.
For example, Trade Show Internet rents a product named 4G Mega Internet Kit & Wi-Fi
Hotspot (https://tradeshowinternet.com/services/4g-mega-internet-kit, accessed on 10
May 2021), which can support up to 300 devices for 2650$ per day, (this applies only in the
US, for up to 12.5 GB of data daily).

Our focus is to find a solution in the form of an opportunistic algorithm that can
complement the already existing network infrastructure. The end goal would be to reduce
the cost of additional network infrastructure equipment necessary at music festivals by
taking advantage of the communication capabilities of the festival goers’ devices. For
this, we envision a situation where a group of friends come together at a festival and get
separated at some point. Normally, if there is a large crowd at the festival, chances are that
they will have issues trying to communicate with each other using a Wi-Fi access point
or mobile broadband. We want to help in designing a solution where this problem might
be alleviated, by offering users opportunistic-based delayed communication through the
smartphones of the festival participants. Thus, the main objectives of this paper are to:

• Design a mobility model which can emulate the movement patterns of festival atten-
dees and use it to test various opportunistic algorithms;

• Study already existing opportunistic routing solutions;
• Identify the key parameters that have the potential to increase the performance of an

opportunistic algorithm in a music festival scenario;
• Create an opportunistic algorithm specifically tailored for high performance at crowded

events;
• Study the impact of Bluetooth and Wi-Fi Direct on algorithm performance.

Through experimental analysis, we identify three opportunistic algorithms that can
work best at a music festival, namely binary Spray-and-Wait [4] and two custom-designed
algorithms that we propose and present in Section 4. We test the solutions in an oppor-
tunistic network simulator using the traces generated by our mobility model, designed to
mimic a festival crowd. The node movement is driven by social relationships or the node’s
interest in a particular area on the map (e.g., food court).

The rest of the paper is structured as follows: Section 2 provides an overview of
opportunistic networks, then presents two case studies: a music festival in Belgium and a
street festival in Zurich. The proposed festival mobility model is presented in Section 3,
while, in Section 4, we propose two opportunistic algorithm for a festival scenario. The test
data and results are analyzed in Section 5. Finally, Section 6 outlines the main conclusions
and identifies recommendations for further research.

2. Background and Related Work

This section introduces the idea of opportunistic networks and outlines their main
characteristics, then it illustrates these concepts at work in two real-world scenarios, a
festival in Belgium, and one in Zurich.

2.1. Opportunistic Networks

Opportunistic networks have evolved from MANETs (mobile ad hoc networks), which
have the significant drawback that they store routing information and update frequently.
On the other hand, opportunistic networks are dynamically built when mobile devices col-
laborate to form communication paths while users are in close proximity, without requiring
state information such as routing tables, being instead based on a store-carry-and-forward
paradigm. ONs are a type of delay-tolerant network (DTN). DTNs are composed of inde-
pendent internets with connectivity inside the networks, but only occasional connectivity
between them. They consist of DTN regions and DTN gateways. While DTN gateways
bridge together DTN regions that may operate on different protocol stacks, ONs are more
flexible environments.

https://tradeshowinternet.com/services/4g-mega-internet-kit
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To illustrate the flexibility of ONs, here are their main characteristics:

• Nodes can communicate with each other, although there is no route between them;
• Nodes do not require information about the network topology in order to be able to

communicate;
• The routes between nodes are built dynamically
• any node can be used as the next hop for a message, if it may bring the message closer

to the destination;
• Since the paths between nodes are assumed to be dynamic, this aspect may increase

the delivery delay for a message;
• Each node acts as a gateway for a message, exploiting its local knowledge at that time

in order to determine the best next hop.

An opportunistic protocol is an algorithm that operates under the constraints just
mentioned. This protocol may try to achieve end-to-end message delivery or to dissem-
inate information into the network based on the interests of the nodes and their social
relationships.

ONs apply to many real-life scenarios such as wildlife tracking [1], sensor networks [5],
military networks [6], intermittent Internet connectivity [7], crowd management [8], emer-
gency crises [9], etc.

Large mass events pose a tremendous load on the classic network infrastructure due
to the large number of devices concentrated in a relatively small geographical area. Where
the traditional means of communication may fail, ONs come to light. The next two sections
will discuss applying ON routing protocols at festivals that fall under the umbrella of large
mass events.

2.2. Belgium Festival Study

The aim of [10] is to propose suitable routing algorithms to be used at mass events for
delivering small messages through opportunistic communication. The researchers used
GPS traces recorded at a festival in Belgium to test their ideas in a real-world scenario.

ONE (Opportunistic Network Environment, http://akeranen.github.io/the-one/, ac-
cessed on 10 May 2021) was used as a test environment. From 5300 unique devices detected
each day of the festival, 1000 were selected in the test scenario. The conclusions obtained
by the authors were that Epidemic [11] and binary Spray-and-Wait [4] are the most suitable
protocols to be used at mass events. Epidemic is most reliable in an emergency situation,
when the network contention and power consumption are not taken into consideration,
but Spray-and-Wait outperforms Epidemic in an energy-conscious environment. Both
protocols require a small number of control messages, while achieving better values for
delivery delay and delivery ratio than more complex protocols (e.g., PRoPHET [12]).

2.3. Zurich Festival Study

In [2], the authors propose an opportunistic protocol based on the Wi-Fi hotspot
capability of smartphones. The researchers have built an application that measures some
crowd parameters at mass events (e.g., crowd density) and allows the propagation of
messages by switching the role of a device between client mode and access point mode.
Relying the entire strategy on the Wi-Fi hotspot functionality of smartphones was a choice
motivated by compatibility reasons, as this feature is considered universal in devices
nowadays. An essential aspect of this work was considering the human body to have an
impact on the Wi-Fi signal strength.

NetLogo (https://ccl.northwestern.edu/netlogo/, accessed on 10 May 2021) was
used as a test environment and was configured using real data collected during the Zurich
festival. It is worth mentioning that the Zurich festival is a street festival, so the mobility
pattern may differ from that of a music festival in terms of the average standing time for a
participant and the time between standing and walking.

Test results showed that, for two clients per access point and with 40% of the nodes
assuming the access point role, a message reached all 1000 users in around 33 min. For

http://akeranen.github.io/the-one/
https://ccl.northwestern.edu/netlogo/
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a ratio of 20–25% nodes acting as access points at any given time, the convergence time
value was 40 min. The conclusion was that Wi-Fi hotspot technology is a viable option for
message propagation at large-scale events, while carefully considering the role switching
parameters and crowd dynamics.

3. A Festival Mobility Model

In this section, we analyze a festival dataset that will be utilized for our solution,
and then we discuss which protocols would be suitable as a means of communication for
ONs and their limitations. We also discuss a type of application that might benefit from
the use of ONs and what communication patterns it implies. We then analyze existing
mobility models and their drawbacks, and propose a novel mobility model better suited
for approximating festival contacts.

3.1. The Sonar Festival Dataset
3.1.1. Description

The Sonar Festival dataset [13] offers information about the mobility of participants at
the Sonar festival in Barcelona, Spain, which took place on 18–20 June 2015. This festival is
a multistage event with more than 100,000 attendees in two main venues, Sonar by Day
and Sonar by Night. The data were collected during the daytime in six locations of the
venue and have been anonymized in order to reduce privacy issues.

The data consist of time points recorded by Raspberry Pi 2 nodes distributed in
strategic points across the festival grounds, in order to maximize the covered area. Around
six million Wi-Fi events were recorded during this experiment.

3.1.2. Challenges

For validating our proposed solution, we used MobEmu [14], a mobile interaction
tool that is able to simulate the behavior of mobile nodes and the way they interact with
each other. For this reason, the Sonar festival trace data had to suffer some transformations.
Some of the filters applied were:

• Duplicate filter—we had to delete the duplicates from the dataset, caused by clock
synchronization errors and buffering between the server and the scanners;

• Format filter—we had to convert the anonymized MAC address to a node identifier
format supported by the simulator; the end goal of parsing the dataset was to obtain
contacts between nodes, which are the centerpiece structures of a mobility trace; a
contact is an interaction between two nodes, which has a start and end timestamp and
during which messages are exchanged following a communication protocol;

• Time filter—we checked the data for outlier values and validated that all timestamps
were between 9:00 a.m. and 12:00 a.m.

Looking at the data, we noticed some anomalies:

• Some of the timestamps were between 12:00 a.m. and 9:00 a.m., although the re-
searchers mention they had only collected data between 12:00 p.m. and 10:00 p.m.;
we chose not to include data recorded during the night in the final dataset;

• Some of the nodes were observed consistently in the same place for hours; these data
points might exist because the main stage was surrounded by food trucks and other
non-music related attractions; naturally, if a node spent around 11 h at a location, it
can be assumed that it was the phone (or other device with Wi-Fi connectivity) of one
of the staff members;

• Some of the nodes were observed for a brief period of time in a location, so we
discarded them.

After computing the time a node spent at the festival each day, the following decisions
were reached:

• Each day, there were a significant number of nodes present at the festival for less than
60 min; whatever the causes might be, we have chosen not to consider these nodes as
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contact-worthy (in order to account for communication or data collection errors that
might affect and alter our conclusions);

• Although there were around 100 nodes that spent more than 10 h at the festival each
day, we considered them for contact opportunities only if that time was not spent at
the same location.

The previous conclusions are supported by Figure 1, which shows the outlier values
for the times spent by a node at the festival on the first day (the charts for the second and
third days are very similar).

Figure 1. Outlier values for day 1 of the Sonar dataset.

3.1.3. Analysis

In order to understand the mobility of people during a festival, it is crucial to perform
an analysis of the current dataset. The conclusions of this analysis will provide us with
more in-depth knowledge about the mobility patterns and will help us later replicate
this behavior with a synthetic mobility model. The following histograms will offer some
insights into the Sonar festival dataset. For this analysis, only data from the first day of the
festival will be discussed, but the conclusions hold for the other two days.

Figure 2a displays the distribution of nodes across all six locations at the festival
venue. The most popular location is 3, with about 20,000 nodes being detected during
the day. Although the number of people attending the first day of the festival was 9616
after blacklisting some nodes, a person can show up multiple times at a certain location
throughout the day, which explains why approximately 20,000 nodes were present at
location 3. Locations 4 and 6 displayed a similar level of popularity, reaching figures of
slightly under 10,000 and 7500, respectively. The least popular locations were 5, 1, and 2.

Figure 2b shows the number of attendees during every hour of the first day of the
festival. The number of people attending the festival steadily increases, starting with
2:00 p.m. until 5:00 p.m., when there is a slight drop. It can be assumed that the main event
started at 7:00 p.m., given the fact that the number of attendees reached a peak at that time.
The chart follows a downward trend after 8:00 p.m., with the least number of people being
recorded after 10:00 p.m.
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(a) Location popularity (b) Hourly attendees
Figure 2. Location popularity and hourly attendees for day 1 of the Sonar dataset.

3.1.4. Generating Contacts

The primary purpose behind processing and analyzing this dataset is to manage to
generate contacts with the extracted information. Unfortunately, this dataset lacks an
essential piece of information: it is impossible to infer the location of a node. Due to
the way data were collected (using Wi-Fi scanners which would cover a large area), it
is unfeasible to determine the exact position of a node or its neighbors. Although the
original dataset contains information about the signal strength, it is not available to the
public. Consequently, we have decided to create a synthetic mobility model, which will be
discussed thoroughly in Section 3.4.

3.1.5. Conclusions

Even though this dataset has not proved to be a trace to use in a simulation, it still
holds some valuable insights about the mobility exhibited by festival attendees:

• People spend different amounts of time at a festival, which could be implemented in
a synthetic mobility model;

• Some areas are more popular than others, and hence more crowded;
• The number of people varies throughout the day.

3.2. Wi-Fi Direct vs. Bluetooth

Choosing one technology over the other implies making different sacrifices. Although
Bluetooth has a better power consumption, this comes at the cost of a lower transfer speed.
Moreover, Wi-Fi Direct has a larger range of transmission given optimal conditions, but the
crowd present at a mass event such as a festival is far from optimal.

Wi-Fi experiences a considerable drop in performance in the context of crowded
events [2]. The authors have named this phenomenon “the effect of dense crowds”. They
state that, because the Wi-Fi signals are mainly transmitted in the 2.4 GHz range (which
happens to be around the resonance frequency of water), people might affect the transmis-
sion of these signals. Experiments have established that the human body can attenuate the
signal, and the authors’ conclusions were that the Wi-Fi signal strength loss caused by the
human body is stronger when a person is closer to an access point than further away [15].

Furthermore, the Wi-Fi signal drops when receiving the signal from behind a person
than receiving it in front, and smartphones carried inside trouser pockets are still able to
communicate over a distance of up to 50 m, but they can sporadically lose their connection
when the subjects move further away [2]. Although these tests were not performed on
Bluetooth, it is worth taking into account that Bluetooth also operates in the 2.4 GHz range,
so there may also be some attenuation of signal in this case.

In light of these findings, the maximum ranges should be set lower than their current
values. It is safe to assume a range of 5 m for Bluetooth devices and 30 m for Wi-Fi Direct
devices. Although MobEmu nodes do not run over an actual network stack implementation,
the comparison between Bluetooth and Wi-Fi Direct can be useful when generating contacts
between people in a crowd. For the simulation to be more realistic, when using Bluetooth as
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a means of communication, a node should have an average of 5–7 contacts at a certain point
in time, while Wi-Fi Direct allows for a higher number of contacts within a larger radius.

3.3. Communication Use Case at a Music Festival

When analyzing the mobility patterns that people attending a festival follow, we can
observe that, during a concert, very few nodes change their position. Furthermore, when
not attending a concert, people usually move from a stage to another, or go to the food
court or other entertainment areas. We chose to focus on the former scenario because it
poses a more significant challenge, since that is when the network is heavily loaded and
barely works, resulting in poor connectivity and large delivery delays for festival attendees.

First of all, in order to create our festival mobility model, we need to address the
way messages are generated during a simulation. To do so, we need to identify what
applications would be relevant to the people attending a music festival. We propose
such an application: a messaging app similar to WhatsApp, which could benefit from an
opportunistic network through the use of an API.

In this use case, in terms of the communication pattern employed, participating nodes
are more likely to send messages to the nodes in their social network than to any other
nodes. Our proposal for the default method of generating messages during a simulation
run using MobEmu is the following:

• Pick a generation time—-this is done randomly, since a festival participant might need
to communicate with other people at any time;

• For each node in the simulation, generate a fixed number of messages and copies
corresponding to a message—the destination type of a message is established through
the use of a Zipf distribution (A method for generating Zipfian random values is
presented here: https://medium.com/@jasoncrease/zipf-54912d5651cc, accessed on
10 May 2021); the nodes which are both in the social network and the discovered
community (A node’s discovered community is a group of other nodes that it comes
in contact with often. Aside from the group of friends (which will also be part of the
social network community), a discovered community will also most likely include
“familiar strangers”, meaning unknown persons that are often encountered for long
periods of time.) of the node are more likely to be selected as the destination, followed
by nodes in the social network, nodes in the community, and finally random nodes.

We had to modify the default method in order to better serve the communication
pattern described earlier. First, we need to establish the concept of “chat pairs”. A chat pair
is a pair of two nodes which attend the festival together and exchange messages while one
of them is away. This behavior is implemented in the synthetic mobility model presented
in the Section 3.4. Moreover, each node has a number of friends that are eligible message
destinations. The messages between chat pair nodes are generated more often than the
messages between regular nodes, every 6 and 15 min, respectively. The new method
consists of the following steps:

• If the node is not part of a chat pair, pick a random message destination, the only
constraint being that the destination has to be a friend;

• For every chat pair, generate two messages, each message originating from one of the
two pair members.

3.4. Simulating Festival Mobility Behavior

Before attempting to propose our own festival mobility, we analyzed existing solutions.
One potential solution was PedSim (https://github.com/chgloor/pedsim, accessed on 10
May 2021) in conjunction with the ONE simulator (https://akeranen.github.io/the-one/,
accessed on 10 May 2021), used in [16] to simulate pedestrian mobility in an open square
and a subway station. However, when comparing the existing solutions with the real-life
traces that we analyzed (such as the Sonar Festival dataset), we found that the accuracy
of PedSim was not sufficiently high. We wanted to have a better approximation of real

https://medium.com/@jasoncrease/zipf-54912d5651cc
https://github.com/chgloor/pedsim
https://akeranen.github.io/the-one/
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movement at a festival, which is why we opted for creating our own mobility model, which
we present here.

After conducting a thorough analysis of a real dataset recorded at the Sonar festival in
Spain, we have concluded that it is best to create our own novel generator of contacts due
to a couple of reasons:

• Even after applying outlier removal to the Sonar dataset and grouping the nodes by
location, we found it challenging to generate a close-to-reality trace due to the lack of
location information; without any data regarding the vicinity of a node or its social
ties, no strategy other than randomly generating contacts can be assumed to be better;

• The validation of an opportunistic network algorithm relies heavily on how realistic
the movement models used in the simulation are [17]; therefore, it is of paramount
importance to identify realistic mobility models in order to tailor an algorithm for the
desired scenario and to later fine-tune it for better performance.

One can test an opportunistic algorithm in two ways, namely by using real mobility
traces or a synthetic model. Both strategies come with their limitations:

• CRAWDAD (https://crawdad.org/, accessed on 10 May 2021) is an archive of wireless
trace data publicly available to the research community; unfortunately, these traces are
related to particular scenarios and can hardly be generalized for different use cases;
moreover, there is only one festival trace available, but the data recorded did not suit
our needs;

• Many mobility models are based on the random movement of individuals such as
the Random Walk model (where nodes move by randomly choosing a direction
and speed) or the Random Waypoint model (where pauses are introduced between
changes in direction or speed); however, there are also two mobility models, CMM [17]
and HCMM [18], which are founded on social network theory and, therefore, closer
to reality.

The Community-based Mobility Model [17] (HCMM) is based on the observation
that opportunistic networks consisting of mobile devices display mobility patterns based
on human decisions and social behavior. Furthermore, it is crucial to understand that
individuals move in groups and between groups. It is comprised of three steps: modeling
social relationships, identifying communities, and groups in the networks based on step 1,
and using an algorithm for the dynamics of the nodes based on social relationship strength.

The representation of social relationships is done with the use of a weighted graph
that models the strength of the interactions between nodes. CMM uses a symmetric
matrix called the interaction matrix, which contains information about the social degree of
interaction between nodes, and is used to generate a connectivity matrix necessary for the
second step. At step 2, a community detection algorithm is executed, which results in a
network composed of different groups of nodes. After this process, each of the identified
communities is randomly associated with a specific grid location.

The third step establishes how the nodes move across the simulation space. This is
achieved by assigning a goal to each node. A goal is simply a cell on the simulation grid,
which acts as a final destination, and it is selected by computing a metric called social
attractivity for every grid cell and choosing the one with the highest value. This metric is
measured as the strength of social relationships with the nodes within that cell. For this
model to work, a social network is required as an input.

This Home-cell Community-based Mobility Model [18] (HCMM) takes the CMM
model one step further and introduces the idea that users are attracted by particular
physical locations [18], in which they tend to preferentially spend their time, such as the
workplace, their home after work, etc.

CMM and HCMM serve as a great inspiration when implementing a mobility model.
HCMM was the mobility model already implemented in the simulator used for this project,
MobEmu. The shortcomings which led to a custom implementation of a mobility model,
with the ideas of HCMM as a starting point, were that HCMM:

https://crawdad.org/
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• Has no support for a custom social network;
• Measures cell attractivity differently than CMM—the social attraction towards a cell

is evaluated based on the social relationships with nodes having that cell assigned as
their home cell; the idea of a home cell is not relevant in a festival scenario, but it is of
great importance when simulating a workday in a city;

• Allows for a single group to be placed in a cell regardless of cell size;
• Has no crowd density mechanism.

3.5. A Proposed Festival Mobility Model (FMM)

The model that we propose here borrows the concept of an interaction matrix from
CMM. The matrix can also be derived from social investigation, besides generating it with
social network models. In our case, this social information, which shows how many of a
person’s Facebook friends have attended a festival, was gathered using a form with 67 valid
answers. The survey asked participants what festivals they attended in the last year and,
through Facebook check-ins, which of their social network friends also participated. The
results of the survey show that the majority of people participating in this study have
between 3 and around 50 Facebook friends that attended the same festival as them, as can
be observed in Figure 3.

Figure 3. Number of Facebook friends attending a festival.

The information provided by this form has been used as a pool of values when
assigning the number of friends to a node. The weights of the interaction matrix have been
generated randomly, but making sure a node is part of a custom-sized community. The
second step of CMM has been skipped and the communities have been established along
with the number of friends per node. It was assumed that a person attending a festival has
around five close friends who form its community.

The reason behind choosing 5 as the average community size is the result of a study
on human social behavior at large-scale events [19]. The event where the experiment took
place was an 8-day 6-stage music festival with 130,000 attendees. A part of this research
was to model the crowd’s internal structure with the help of a community discovery
algorithm. The groups are defined as sets of people that are frequently located in the same
spatio-temporal bins. The model consists of directed graphs, with the weight of an edge
being defined as “the number of co-occurrences of participant A with participant B divided
by total number of occurrences of participant A” [19]. For an edge to be accepted as valid,
a constraint was imposed, which specifies that the only links chosen were the ones that
occurred in more than two different locations, with a weight of at least 0.5 [19]. After
employing a rewiring algorithm [20] and performing 35 tests, the conclusions were that
the average group size was 5 (with a standard deviation of 4.32) and the average number
of links for a node was 3 (with a standard deviation of 2.60). A rewiring algorithm is
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the process of creating a randomly generated network from an existing network while
preserving some of its topological properties, such as the degree of nodes, so one can focus
only on certain aspects of the network design instead of dealing with the whole complexity
of the system.

The groups are assigned randomly to a cell in the grid, but not without taking into
account the density of the crowd. A crowd safety and risk analysis study [15] conducted in
2019 shows that the upper limit for standing/viewing spaces is 5 people per square meter.
The study also maps different densities of people per square meter. For this model, 4 ppsm
(people per square meter) has been chosen as the upper limit for the most crowded areas at
a festival, usually registered near the stage. 3 ppsm has been chosen as an intermediary
density, as the distance to the stage increases. 2 ppsm will be the minimum density, used
for the back rows of a crowd.

Another shortcoming of the implementation of HCMM, which emerges from the
fact that a cell can host only one community, is that the members of that community are
randomly placed in that cell, sometimes at distances that would not comply with a festival
crowd distribution.

One important aspect of our proposed festival mobility model is the way it handles
crowd distribution. First of all, depending on the position of the stage (assumed to be in
the north of the grid), the model computes a maximum number of hosts per cell based on
the three values for crowd density mentioned earlier. Moreover, it randomly chooses a cell
for a group, without exceeding the maximum number of hosts allowed in that cell. Lastly,
it generates coordinates for every host in a group. This process is done randomly, but only
after further partitioning the cell, so the nodes of a group do not appear scattered across
the cell. Depending on the dimensions of the grid, the area of the cell can be divided by its
width or by its height. The model randomly places a maximum of two groups in the same
partition, after the division of the cell area.

The results of this approach can be noticed in Figure 4, which shows screenshots
captured from the MobEmu simulator, where nodes with the same color are part of the
same community. Figure 4a displays community placement without partitioning the cell
area. Some of the groups appear to be composed of nodes far away from each other, which
is very unlikely in a festival crowd. Figure 4b, which shows the case where the partitioning
mechanism is employed, looks more similar to a real crowd distribution.

The model keeps the CMM and HCMM node categories, i.e., hosts and travelers.
The hosts are the nodes belonging to a custom-sized community and might play the role
of festival attendees, while the travelers are independent nodes, community-free, which
might play the role of festival staff.

In terms of movement, a node can move by itself or can move along with its community.
Given this behavior, three types of movement are distinguishable:

• Move alone towards a target destination;
• Move with the whole group towards a target destination;
• Return to the community after having spent a certain time at the destination.

FMM has been configured to perform the first type of movement three times more
often than moving an entire community with the help of a Zipf distribution of size 4. The
reason behind this choice is that, during a short simulation (30 min–1 h), it is more likely
that a festival attendee will move alone to the food court or the restroom area and then get
back to the group rather than an entire group relocating.

As for the target destinations which drive the movement, we have identified two main
categories: edge cells (assumed to be the food court area or restroom area) and friend cells
(where determining the friend cells of a node is a process very similar to the one employed
by CMM). For a given node, the process consists of the following steps:

• For every cell on the grid, compute a metric called cell attractivity, defined as the sum
of the social relationship weights of the nodes present in that cell with regards to the
given node;

• Normalize the sum by the total number of nodes present in that cell.
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(a) Random (b) Controlled
Figure 4. Crowd distribution in FMM (nodes with the same color belong to the same community).

It is only natural that a node would choose as its target a cell where more friends will
be. Another aspect of node movement is the time it would take for a node wandering away
from its community to get back. FMM will pick a time between two ranges depending
on the type of movement. For instance, a node moving towards a friend cell will be away
from the community for a time interval of 10–20 min.

Given the fact that a festival stage is a crowded place, we have chosen a threshold
that measures how many nodes are moving at every time instance t of the simulation. This
limit is configurable and is currently set at 5% of the number of nodes in the simulation.

Thus, as shown here, the proposed festival mobility model generates the movements
of nodes inside a given space. Then, based on the protocol that we want to test and analyze,
we consider a contact whenever two nodes are closer to each other than the range of the
short-distance protocol employed. The mobility model is therefore decoupled from the
actual routing algorithm implementation, which comes on top of the contacts generated by
the model. At each contact (per the model), the routing decision function is run on the two
encountering nodes, thus deciding which messages are exchanged.

We performed a validation of our model using the Sonar festival dataset, in terms of
similarity between number and duration of contacts, interactions, etc., which we wish to
present in future work. We would also like to extend this model to be able to accommodate
more stages, to implement conclusions found in real festival traces, and to support more
types of node movement.

4. An Opportunistic Routing Protocol for a Festival Scenario

In this section, we propose and present two opportunistic routing protocols especially
designed for music festivals. Our aim is to determine a routing protocol which will best
suit the communication patterns at a music festival. We formulate the following qualities
of such an algorithm:

• Ideally, it should consume a small amount of resources;
• The delivery delay should be less than 5–10 min for an acceptable quality of service;
• The delivered messages ratio should be above 90%.
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In Section 3, we pointed out that a festival crowd mimics a social structure. The natural
behavior of attendees is to share these collective experiences with a group of friends. Thus,
we argue that a routing algorithm could benefit from taking into consideration the social
dimension when deciding the next hop for a message.

To make our approach more resource-efficient, we have decided to use the idea
proposed by the Spray-and-Wait algorithm [4], which bounds the number of copies a
message can have at any given time. By limiting the number of copies, a flood-based
forwarding scheme is avoided. Moreover, we base the forwarding decision on two social
factors, namely node centrality and the number of common friends.

Node centrality was first proposed by the algorithm Bubble Rap [21] as a metric
to quantify node popularity. Bubble Rap embraces the fact that because a smartphone
is carried by a person, the mobility pattern exhibited by such ad hoc networks closely
follows people’s mobility patterns. Consequently, the forwarding decision relies on two
social metrics: centrality and community structure. Detecting the community structure is
performed using the K-clique algorithm [22]. Although the MobEmu simulator has this
mechanism for community detection already implemented, it is a time-consuming process.

Our algorithm measures the centrality of nodes similarly to the Degree forwarding
scheme [21] proposed by Bubble Rap. Thus, centrality is defined as the number of unique
encounters a node has over a period of time. Besides being an indicator of node popularity,
centrality can also be used to depict the mobility degree of a node. During a concert, most
people remain static, while some may go to the food court and drinks area or briefly join
another group of friends. In the case of movement, such a person will make contact with
other nodes and become a better candidate to carry a message from one place to another.

The number of common friends is another valuable social metric we have chosen as a
substitute for community detection. Given the fact that the number of common friends
is public information on Facebook, with the appropriate permissions from the owning
company and the festival attendees, it could be easily collected. For this to work, each
device should store an offline list of Facebook (or other social network) friends that can be
securely exchanged with an encountered node at the beginning of a contact. This way, a
node would not depend on global information when encountering a node, only what it has
stored locally and what the encountered node advertises.

We favor the number of common friends over K-clique community detection due
to the complexity of the two processes. Retrieving the number of common friends has
a complexity of O(1), whilst detecting the community structure can have a worst-case
complexity of O(n2) if we use a global approach, or O(n) if we use a local approach when
computing the familiarity set of a node. The familiarity set is the set of nodes which
have been in contact with a node for a period which exceeds a certain threshold. In
terms of graph theory, there is an undirected edge between the nodes which have fulfilled
that criteria. In the worst case scenario, a node keeps track of the familiarity sets of all
encountered nodes.

The centerpiece idea is that we prioritize nodes with higher centrality values or nodes
that have more common friends with the destination, giving them more message copies to
spread on their own, whilst we give just one copy of the message to the other nodes. In
other words, we combine the two versions of the spray phase of the algorithm Spray-and-
Wait (SW) [4]. We perform the binary version (give away half of the copies) for nodes that
are likely to spread the message over a bigger area (high-centrality nodes) or for nodes that
are more socially connected to the destination (more friends in common). With regard to
the rest of the nodes, they receive only one copy (as in the source version of Spray-and-Wait)
and proceed to the wait phase. The wait phase implies forwarding the message only to the
destination node.

We have designed two different algorithms based on these observations: Social Spray-
and-Wait 1 (SSW1) and Social Spray-and-Wait 2 (SSW2). The former has a more strict
forwarding decision: a node gives away half of a message’s copies if the encountered node
has superior values for centrality or the number of common friends. This prevents a node
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from forwarding half of the number of copies to another node that is too similar to itself. To
overcome this potential issue, a centrality threshold was introduced in SSW2. We present
the two proposed solutions in Algorithms 1 and 2.

Algorithm 1: SSW1 forwarding.

Node node, encounteredNode;
Message m;
if m.copies == 1 then

return false;

if node does not contains message m then
if node.centrality > encounteredNode.centrality ||
node.commonFriends[m.dest] > encounteredNode.commonFriends[m.dest] then

encountered node keeps m.copies/2;
node receives m.copies/2;

else
encountered node keeps m.copies - 1;
node receives 1 message copy;

end
return true;

Algorithm 2: SSW2 forwarding.

Node node, encounteredNode;
Message m;
if m.copies == 1 then

return false;

if node does not contains message m then
centralityDiff = abs(node.centrality - encounteredNode.centrality);
if node.centrality > encounteredNode.centrality ||
node.commonFriends[m.dest] > encounteredNode.commonFriends[m.dest] then

encountered node keeps m.copies/2;
node receives m.copies/2;

else if centralityDiff < CENTRALITY_THRESHOLD then
encountered node keeps m.copies/2;
node receives m.copies/2;

else
encountered node keeps m.copies - 1;
node receives 1 message copy;

end
return true;

It should be noted here that, although in Section 5 we evaluate the viability of Bluetooth
and Wi-Fi Direct as means of communication in a festival scenario, they have certain
limitations that would need to be addressed. The main issue is that, in normal functioning
and most cases, both protocols require pairing, which would not be easily done in a large
scenario. Furthermore, high congestion may be caused by many devices communicating
wirelessly at the same time, as shown in [23]. However, the solution we envision would
also include a component that can allow a node to actively communicate on a wireless
interface only at certain times, as we have shown in [24]. This would reduce the congestion
and the observed node density. Furthermore, such a scenario would benefit from other
orthogonal solutions, such as having edge nodes that could take some of the load, or other
similar devices. This is an interesting topic and something that we intend to further pursue
in the future.
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5. Evaluation

In this section, we evaluate the performance of the opportunistic algorithms proposed
and presented in Section 4. We first introduce and explain the metrics used to measure
performance and then we focus on the characteristics of the mobility traces that we used
for evaluation. In the end, we compare and contrast our two algorithms to other existing
solutions, and focus on the most suitable design for a music festival.

5.1. Algorithms and Metrics

In order to highlight the benefits of our proposed solutions in a festival environ-
ment, we compared them with several well-known algorithms previously proposed: Epi-
demic [11], Spray-and-Wait [4], Spray-and-Focus [25], and Bubble Rap [21].

The Epidemic protocol operates on a flooding-based scheme. A node exchanges
messages with the other nodes in range. The only constraint is that, if a node already has
a specific message, it is not duplicated. On the other hand, Spray-and-Wait (SW) bounds
the number of message copies allowed to exist at a given time. It has two stages: if the
number of copies is greater than 1, a carrier forwards only a part of the message copies to
encountered nodes; if there is only one message copy left, the carrier waits to encounter
the destination. The first stage can be accomplished in two ways: forward a single copy
(the source version of the algorithm) or half of the message copies (binary version) to an
encountered node. The binary and source versions of the algorithm will be abbreviated as
SWb and SWs, respectively.

Spray-and-Focus combines the binary version of the spray phase of SW with a utility-
based forwarding decision. The utility function replaces the wait phase of SW and uses
last-encounter timers in order to decide whether to relay a message or not.

As was already discussed previously, the Bubble Rap forwarding decision relies on
two social metrics: centrality and community structure. Nodes with higher centrality or
community members of the message destination will be selected as relays. It is worth
mentioning that we have tested Bubble Rap without having nodes store and update a local
approximation of each encountered node’s familiarity set due to high RAM usage. As a
result, community detection is performed based on contact duration and a node’s local
familiarity set.

Besides the opportunistic routing protocols proposed and presented in Section 4, we
have also tested different combinations of the same ideas, in order to see the differences
in performance. There were four criteria which could be applied at different stages of
the algorithm (with Table 1, describing the actions performed during each phase of the
forwarding decision):

• Forwarding criterion 1 (FC1)—forward the message if the encountered node is a friend
on a social network with the message destination and the carrier node is not;

• Forwarding criterion 2 (FC2)—forward the message if the encountered node has more
friends in common with the message destination;

• Forwarding criterion 3 (FC3)—forward the message if the encountered node has a
higher centrality;

• Forwarding criterion 4 (FC4)—forward the message if the centrality difference is less
than a predefined threshold.
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Table 1. Opportunistic algorithm versions.

Name Spray Phase Wait Phase

SWv1 SWb FC1
SWv2 SWb FC2
SWv3 SWb FC3
SWv4 if FC3 {SWb} else {SWs} SW wait
SWv5 if FC2 {SWb} else {SWs} SW wait
SSW1 if (FC2 or FC3) {SWb} else {SWs} SW wait
SSW2 if (FC2 or FC3) {SWb} elseif FC4 {SWb} else {SWs} SW wait
SWv6 if (FC2 and FC3) {SWb} else if FC1 {SWs} SW wait
SWv7 if FC3 {SWb} else if FC2 {SWs} SW wait

The performance of the analyzed algorithms is established with the help of the follow-
ing metrics:

• Delivery rate—the ratio between the number of delivered messages and the total
number of created messages;

• Delivery delay—the time elapsed between the generation of a message and its delivery;
• Overhead—the ratio between the total number of exchanged messages and the total

number of created messages;
• Number of hops—the number of nodes through which one message has been relayed

until reaching its destination; this metric and the overhead are indicators of the
network and node congestion.

5.2. Test Data

The test data consist of two traces generated in the MobEmu simulator [14] using
the mobility model described in Section 3.5, customized with different parameters (as
presented in the rest of this section).

5.2.1. Bluetooth Trace

The first trace that we generated simulates communication via Bluetooth. The input
and output parameters for this trace are displayed in Tables 2 and 3. The number of nodes
is among the output parameters because it is determined by the number of grid cells and
the crowd’s density at different points on the map. For this scenario, Bluetooth was the
only protocol used as means of exchanging data during contacts.

Table 2. Input parameters for the Bluetooth and Wi-Fi traces.

Parameter Value

Area 30 × 20 m2

Protocol Bluetooth
Bluetooth range 5 m

Wi-Fi Direct range 30 m
Message size 100 KB
Data memory 5000 messages
Trace duration 1 h

Group size 5

Table 3. Bluetooth trace output parameters.

Parameter Value

Nodes 1700
Contacts 839,680
Messages 8282

Maximum neighbors 7
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The contact duration distribution for the Bluetooth trace is displayed in Figure 5. The
vast majority of contacts, slightly under 350,000, lasted less than 1 min. This trend is due to
the fact that, at a concert, the crowd is very dense, so a node will encounter many people
as it moves towards a target. The contacts with a duration of more than 55 min correspond
to the nodes which have remained static for the entire trace time. The other values can
be explained by the nature of the movement. To make this clear, we illustrate an example
in Figure 6. As node A moves away from its community to a cell on the edge of the grid
(assumed to be the food court and drinks area), it breaks the long contacts maintained with
its community, then it creates very short-lived contacts with the nodes on its way to the
edge of the map. After a while, it goes back to its community, creating other short-lived
contacts as it makes its way back through the crowd.

Figure 5. Contact duration distribution for the Bluetooth trace.

Figure 6. Node behavior example.

5.2.2. Wi-Fi Direct Trace

The Wi-Fi Direct trace was designed taking into consideration the protocol’s transfer
speed, its radius in a dense crowd environment, and a 7-client limit per mobile access point
for Android phones. It implements the following constraints, which will be later motivated
by a Wi-Fi Direct analysis:

• Only nodes moving away from their community will play the role of access point (AP)
or group owner (GO);

• Once a node is reunited with its community, it stops being an AP;
• to preserve their battery, AP nodes will alternate between being on and off for intervals

of 5 min;
• A node can connect to an AP for 1 min;
• A node cannot connect to the same AP twice in a row;
• The rest of the nodes also exchange data via Bluetooth.

In a real-life scenario, a node could detect that it is moving away from its community
by employing the following logic: among its Bluetooth peers, the number of friends is less
than a certain threshold. As a node moves further away, its friends will no longer be within
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reach. This will trigger the node to switch from Bluetooth to Wi-Fi Direct and become an
AP for the other nodes.

We have chosen to emulate this behavior due to the limited area of the simulation.
The grid in the Wi-Fi Direct trace is 30 × 20 m2, while the Wi-Fi Direct radius has been set
at a maximum of 30 m. Hence, an AP node will cover the entire space. If we were to allow
all the nodes to form Wi-Fi Direct groups in such a restricted area, our results would not be
relevant. The end goal was to see what happens in a less interconnected environment.

The Wi-Fi Direct architecture, built upon the infrastructure mode defined by the IEEE
802.11 standard, specifies two roles: a P2P group owner (similar to the role of an AP in
a classic infrastructure) and a P2P client, which can act as a legacy station and become a
client to an AP/GO, while simultaneously playing the role of a GO. The terms AP and GO
will be used interchangeably, as they both refer to the same concept.

P2P groups can be regarded as Wi-Fi infrastructure networks. The standard way of
establishing a group is comprised of multiple stages:

• The P2P devices perform a classic Wi-Fi scan, which may lead to discovering other
Wi-Fi networks and P2P groups;

• A process called device discovery happens afterward; the devices alternate between
two states for randomly distributed periods: search state and listen state; during the
search state, a device sends probe requests on channels 1, 6, and 11 in the 2.4 Ghz
frequency band; in the listen state, a device will listen for probe requests and then
send probe responses;

• GO negotiation will be initiated after two devices have discovered each other; the
GO will be elected as a result of a three-way handshake, after which the devices will
exchange their GO intent values.

Should all the nodes be Wi-Fi Direct-enabled, they would perform the device discovery
process, negotiate group ownership and form a highly interconnected network, a scenario
we would like to avoid. Consequently, we propose that a moving node can create a P2P
group by sending beacon frames on an individual channel, making its network discoverable
by other devices. Legacy clients who perform a Wi-Fi scan can connect to a P2P GO,
provided that they implement the required security mechanisms. This way, legacy devices
see the P2P group owner as a traditional AP [26].

Both Bluetooth and Wi-Fi Direct traces had the same input parameters shown in
Table 2. The output parameters for the Wi-Fi Direct trace, taking into consideration the
transfer speed, are presented in Table 4.

Table 4. Wi-Fi Direct trace output parameters.

Parameter Value

Nodes 1700
Contacts 683,945
Messages 8282

Maximum neighbors 7

Figure 7, which shows the contact duration distribution for the Wi-Fi Direct trace,
displays a trend very similar to the one in Figure 5, the only exception being that there are
more long contacts than short-lived contacts. This observation can be explained by the
behavior of AP nodes, which aim to preserve battery life. As these nodes alternate between
the on and off states in 5-min intervals, the gap is caused by the 5 min when the AP is off.
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Figure 7. Contact duration distribution for the Wi-Fi Direct trace.

5.2.3. Transfer Speed

As mentioned in Section 3.2, the transfer speeds for Bluetooth and Wi-Fi Direct are
2 Mbps and 250 Mbps, respectively. This is a parameter of paramount importance if we
want to achieve a realistic behavior. Assuming the message size to be 100 KB, this means
that we can send 2.5 messages per second using Bluetooth, and 300 messages per second
with Wi-Fi Direct.

5.3. Results

The results will be illustrated using the metrics presented in Section 5.1: delivery rate,
overhead, delivery delay, and hop count. The two traces presented in Section 5.2 were used
in order to demonstrate the performance of our opportunistic algorithms compared to the
other algorithms tested. All simulations were performed using the MobEmu simulator [14]
and the proposed festival mobility model. For each experiment, we performed five simula-
tion runs with different random number generator seeds, and we show the average values
in each chart. The rest of the simulation details are presented in Tables 2–4.

5.3.1. Bluetooth Trace

Figure 8a shows the delivery rates obtained by the analyzed algorithms for the Blue-
tooth trace. While most of the solutions tested have high delivery rate values in general,
SF and Bubble Rap did not reach peak performance. SF proves that using last-encounter
timestamps in a concert scenario is not a good strategy due to the lack of structure or
repeating patterns. A node may choose another node as a relay for a message, even though
it had recently encountered the message destination by chance and their paths are not
likely to cross again. Moreover, the mechanism Bubble Rap uses for community detection
is not reliable in the studied scenario. A node A is accepted as a member of the local
community of another node B, provided that they have been in contact for a period of time
which exceeds a threshold, or the familiarity set of node A contains enough community
members of node B. Although this may work in most cases, a crowded event like a concert
can mislead the algorithm to establish communities between nodes that have been staying
next to each other, but have no social relationship in real life. There is a good potential for
improving Bubble Rap with this knowledge, and we plan on doing so as future work.
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(a) Delivery rate (b) Overhead
Figure 8. Delivery rate and overhead for the Bluetooth trace.

As expected and as shown in Figure 8b, Epidemic has the highest overhead (due to its
flooding-based mechanism), followed closely by SWs, whereas SWv6 might have too many
constraints which prevent it from delivering the messages efficiently. Figure 8b narrows
down our search for the most suitable opportunistic algorithm to be deployed at a music
festival to three candidates: SWb, SSW1, and SSW2. For SSW2, we have performed the
tests with two threshold values for centrality, each value corresponding to a version of the
algorithm in the charts. SSW2v1 used a threshold of 50, while SSW2v2 used 100.

Figure 9a shows that, although there are other protocols with better delivery delay
values than our selected algorithms, high overheads or low delivery rates prevent them
from being considered. SWv5 has a comparable delivery rate and delivery delay to SSW1,
but its more than double overhead disqualifies it from being taken into consideration.
Furthermore, all three candidates have delays below 5 min, which should be considered an
acceptable time in a delay-tolerant network.

(a) Delivery delay (b) Hop count
Figure 9. Delivery delay and hop count for the Bluetooth trace.

Finally, Figure 9b shows that SWb has a lower hop count than the other two candidates
(SSW1 and SSW2), aside from its slightly lower overhead. However, we have considered
delivery delay to be the most essential criterion, so we can conclude that all three algorithms
perform well in a festival scenario. While SWb may be the better choice if we want
optimal resource usage, SSW1 and SSW2 will lead to lower delivery delay values with an
insignificant extra cost.

5.3.2. Wi-Fi Direct Trace

The results for the Wi-Fi Direct trace entirely support the conclusions stated in the
Section 5.3.1, as Figure 10a,b shows that the same trends are followed. What immediately
stands out are the improved delivery delay values for all the algorithms. In most cases, the
delivery delay was reduced by more than half when combing Bluetooth with Wi-Fi Direct,
as shown in Figure 11.
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(a) Delivery rate (b) Overhead
Figure 10. Delivery rate and overhead for the Wi-Fi Direct trace.

Figure 11. Delivery delay comparison between the Bluetooth and Wi-Fi Direct traces.

5.3.3. Discussion

The best-performing algorithms, as stated previously, were SWb, SSW1, SSW2v1,
and SSW2v2. In order to study their scalability and have a better understanding of their
behavior, we further tested them using a larger simulation area of 40 × 40 m2. The results
are thus shown in Figures 12 and 13.

Figure 12. Results for the larger Bluetooth trace.
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Figure 13. Results for the larger Wi-Fi Direct trace.

Furthermore, we also analyzed ML-SOR [27], which is a more advanced opportunistic
routing and dissemination solution which assumes that there are multiple layers for device
interaction, such as social connections, interests, etc. Based on these layers, ML-SOR nodes
apply a utility function to each message upon a contact, in order to decide which message
is forwarded to which encountered node. The solution thus uses multi-layer context
information in order to improve the routing process. We chose this algorithm because it is
a recent one that has been proven to have good results for various use cases, but was not
tested in a festival scenario.

Thus, Figures 12 and 13 show that all Spray-and-Wait-based algorithms scale relatively
well, except for SSW1, which has a more dramatic overhead increase, from 1300 (on the
larger Bluetooth trace) to 1527 (on the larger Wi-Fi Direct trace), but which is compensated
by a decreased hop count. Moreover, while the hop count stays almost constant for SSWb,
SSW2v1, and SSW2v2, SSW1 performs better when Wi-Fi Direct is used, as the hop count
drops from 260 to 168. Furthermore, it can be observed that ML-SOR does not behave well
at all in terms of overhead, which is far larger than that of any of the other algorithms.

Aside from this, ML-SOR does not manage to deliver a single message in this scenario,
having a delivery rate of 0 (which is why the delivery delay and hop count are not depicted
in Figures 12 and 13, since they are only computed when messages reach their destinations).
This shows that a solution such as ML-SOR might not be suitable for a festival scenario out
of the box, mainly because of the density of the network and the large number of contacts in
a short period of time. From our analysis, it appears that messages tend to bounce around
between nodes in small areas, and thus are not able to move towards their destinations,
which might be located farther. We plan to further extend this analysis and even modify
ML-SOR to adapt it to a festival scenario.

Looking at the results, it can be observed that smaller delivery delay values can be
accomplished at the price of higher overheads. Even so, there is a small difference in terms
of overheads between SWb and SSW2, while the latter achieves better delivery delay values
by far.

6. Conclusions and Future Work

In this paper, we introduced opportunistic routing in a scenario pertaining to a music
festival, which is defined by a small space, a high number of participants, and a large
density. In such a use case, congestion problems may easily arise due to the fact that people
simultaneously connect to mobile broadband or Wi-Fi access points.

In order to assess the feasibility of opportunistic solutions in a festival scenario, we
first analyzed existing mobility traces for such events and proposed a mobility model
called FMM, which behaves similarly to real-life human behavior, considering the crowd’s
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social structure. We have also designed a more realistic way of selecting the destination of
a message, since some works leave this decision to a random event generator.

Then, we analyzed existing opportunistic solutions and proposed and implemented
our own custom opportunistic routing algorithms. We analyzed their performance on the
FMM mobility model, and the results obtained indicated three potential candidates: binary
Spray-and-Wait and our two custom opportunistic algorithms, Social Spray-and-Wait-1
and Social Spray-and-Wait 2. Moreover, this work further emphasizes two design decisions
one such algorithm may implement, which can lead to high performance: a mechanism that
bounds the number of message copies in order to avoid a resource-consuming flood-based
forwarding scheme [4]; and incorporating social metrics [21] in the forwarding decision,
which can enhance an algorithm and achieve lower delivery delay values.

Another goal was to study the impact of Bluetooth and Wi-Fi Direct on performance.
The findings show that all three algorithms perform better when combing Wi-Fi Direct
with Bluetooth, mostly due to the increased speed of transfer and communication range of
Wi-Fi Direct.

In terms of future work, we would like to implement a more complex battery con-
sumption mechanism, extend the Festival Mobility Model to be able to produce larger
maps with more stages, and modify the speed of transfer according to the number of
simultaneous contacts. Furthermore, we wish to extend our analysis of both the FMM
mobility model, as well as of the two proposed routing solutions, in order to have a better
view of the requirements and behavior of a music festival scenario.

In conclusion, using opportunistic networks for end-to-end message delivery at music
festivals is a viable option with promising performance results. Where the traditional
network infrastructure fails, opportunistic networks may be the solution we are looking for.
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