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THEBIGGERPICTURE Annotating data at scale is time consuming, especially in specialized domains, such
as healthcare, agriculture, and autonomous driving. The scarcity of labeled data can limit the effectiveness
of supervised learning. In contrast, there is usually access to more unlabeled data. Unlabeled data can be
used through unsupervised learning. One type of unsupervised learning is self-supervised learning, where
representations of data are learned from unlabeled data through pretext tasks and are later used for super-
vised learning tasks. We propose a new contrastive learning framework that leverages metadata in select-
ing pairs during contrastive learning. We demonstrate the application of the framework in diagnosing heart
and lung diseases through heart and lung sound recordings and associated clinical metadata. Our strategy
could also be applied in other medical settings such as electronic health records and medical imaging, as
well as beyond medicine.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Data labeling is often the limiting step in machine learning because it requires time from trained experts. To
address the limitation on labeled data, contrastive learning, among other unsupervised learning methods, le-
verages unlabeled data to learn representations of data. Here, we propose a contrastive learning framework
that utilizes metadata for selecting positive and negative pairs when training on unlabeled data. We demon-
strate its application in the healthcare domain on heart and lung sound recordings. The increasing availability
of heart and lung sound recordings due to adoption of digital stethoscopes lends itself as an opportunity to
demonstrate the application of our contrastive learning method. Compared to contrastive learning with aug-
mentations, the contrastive learning model leveraging metadata for pair selection utilizes clinical information
associated with lung and heart sound recordings. This approach uses shared context of the recordings on
the patient level using clinical information including age, sex, weight, location of sounds, etc. We show
improvement in downstream tasks for diagnosingheart and lungsoundswhen leveragingpatient-specific rep-
resentations in selecting positive and negative pairs. This study paves the path for medical applications of
contrastive learning that leverage clinical information. We have made our code available here: https://github.
com/stanfordmlgroup/selfsupervised-lungandheartsounds.
INTRODUCTION
 models, which rely on labeled data for generalization, thus
Data labeling is an expensive and time consuming process in

machine learning. This problem is exacerbated in domains

where trained experts are required to label data, such as agricul-

ture, healthcare, and language translation. Supervised learning
This is an open access article und
encounter a bottleneck when obtaining large amounts of labeled

data is prohibitive.

Contrastive learning, a type of SSL, is a potential solution to

the problem of limited labeled data by using unlabeled data to

learn general representations of data, contrasting similar
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(positive) and dissimilar (negative) pairs of examples.1 Employ-

ment of contrastive learning has shown powerful results through

applications in imaging,2 video,3 audio,4,5 etc. One way to

generate a positive pair of examples is through augmentation.

The quality and choice of augmentation influences whether

models can learn good representations.6 It has been observed

that augmentation methods used for computer vision may not

perform well for signal data such as electrocardiograms.2 These

results prompt exploration of optimal augmentation methods

specific for each type of data, as well as experimentation with

frameworks that leverage metadata to improve learned repre-

sentations. Previous work has explored methods to leverage

metadata associated with unlabeled data in SSL, including en-

coding genre and playlist associated with song audio for song

representation,5 using patient metadata associated with ultra-

sound as weak labels,7 and selecting contrastive pairs based

on patient and study information.8

Here, we propose a contrastive learning framework that utilizes

unlabeled data with additional associated information for select-

ing contrastive pairs. We apply the framework on heart and lung

sounds. Specifically, our method uses audio and spectrogram

augmentation on unlabeled heart and lung sounds, with the

downstream task of classifying diseases using heart and lung

sounds. We further explore the use of clinical information

includingagegroup, sex, and recording location tocreatepositive

and negative pairs of examples and to leverage insights fromclin-

ical information associatedwith the recordings.We show that us-

ing age group (adult versus children), sex, and performance,

measured with area under the receiver operating characteristic

(AUROC) (area under the ROC curve [AUC]), increases to 0.854

(95% confidence interval [CI]: 0.823, 0.882) and 0.863 (95% CI:

0.834, 0.890), compared with baseline AUCs of 0.512 (95% CI:

0.484, 0.536) and 0.516 (95% CI: 0.463, 0.559), when using

10% and 100% of labeled training data, respectively. These re-

sults demonstrate the potential of contrastive learning, especially

when leveraging associated clinical information in medicine,

including future applications in video monitoring, home moni-

toring,9 health records,10 medical imaging, and even beyond

medicine, including vehicle identification and autonomous

driving,11 photometric plant phenotype estimation in agricul-

ture,12 speech recognition,13 and text characterization.14

RESULTS

Framework for evaluating contrastive schemes
Through contrastive learning, we are able to pre-train an encoder

backbone (pre-trained model) to provide feature representations

of the initial input data.Wecan either use the resultant feature rep-

resentations for inference or further fine-tune the pre-trained

model with the addition of a two-layer SSL evaluator using labeled

data. Details of the SSL evaluator are described in the experi-

mental procedures. To measure the performance of contrastive

schemes, we consider two tasks: How well does the pre-trained

model generate latent representations of the data and how

good are the pre-trained weights for initialization before fine-tun-

ing? We compare the results of SSL to linear baselines and

supervised learning to establish performance comparisons for

representations and initializations, respectively. We train and

evaluate these methods on two datasets: the respiratory sound
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database for lung sounds15 and the PhysioNet Heart Challenge

for heart sounds.16 The databases are labeled with diseases

and demographic information. For each dataset, we evaluate

models with 10% and 100% of the labeled training data.

Augmentation-based contrastive learning
As a baseline, we examine whether our contrastive learning

methodology can better leverage limited labeled data needed

compared to supervised learning through three experimental

setups using two different fractions of labeled data (10% or

100%) in each. For generating contrastive views, we use aug-

mentations to hide spectrogram information (time and frequency

dimensions) from the model. We consider the following augmen-

tation schemes: splitting, time masking, frequency masking,

spectrogram masking, and spectrogram masking and splitting.

With splitting, we slice a contiguous section from the sample

with a time duration of half of the original. Time and frequency

masking zero out bands of values along the respective dimen-

sions in the non-zero portion of the sample. Spectrogram mask-

ing consists of applying both frequency and time masking. We

also consider spectrogrammasking and then splitting. Examples

of augmentations are shown in Figure 1.

Evaluating representations via linear evaluation

When examining representations with linear evaluations, we

observe baseline AUCs of 0.664 (95% CI: 0.630, 0.694) and

0.803 (95% CI: 0.755, 0.841) when using 10% and 100% of

labeled training data, respectively. We note that learned repre-

sentations from unlabeled data are dependent on the augmen-

tation scheme utilized. At both 10% and 100% data levels,

masking along the time dimension alone provides the strongest

boost (p < 0.001 and p < 0.001, respectively) in performance,

with AUC levels of 0.808 (95% CI: 0.772, 0.838) and 0.874

(95% CI: 0.841, 0.905). Statistical significance is measured

against the second-best augmentation (splitting), using a two-

tailed two-sample paired t test. Splitting and spectrogram

masking and splitting are also effective at improving perfor-

mance in the limited data regime (AUCs of 0.744 [95% CI:

0.711, 0.778] and 0.752 [95% CI: 0.715, 0.791] at 10%, respec-

tively). On the other hand, spectrogram masking and frequency

masking alone do not show significant improvement.

Evaluating initializations via end-to-end fine-tuning

For initializations, we record baseline performance of 0.773 (95%

CI: 0.737, 806) and 0.930 (95% CI: 0.904, 0.954) at 10% and

100%. We find that, again, masking along the time axis provides

significant improvement (p < 0.001) in performance at the 10%

level, approaching supervised performance on the full pre-train

split (0.857 [95% CI: 0.828, 0.885] versus 0.889 [95% CI:

0.865, 0.913]). None of the remaining augmentations match su-

pervised performance. We further observe that at 100% training

data, all schemes provide comparable performance with no sig-

nificant difference in performance (0.925 [95% CI: 0.900, 0.950]

for frequency masking, for example).

We present experimental testing results for heart sound clas-

sification in Figure 2.

Contrastive learning for lung sounds
Evaluating representations via linear evaluation

In order to evaluate representations learned from the contrastive

learning framework, we find that all contrastive schemes provide



Figure 1. Examples of spectrogram augmentation strategies

Note that in masking routines, masking is only applied to the only central audio sample, not left or right padding.
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comparable or improved performance compared to the baseline

at both 10% and 100% levels, with baseline performance of

0.512 (95% CI: 0.484, 0.536) and 0.516 (95% CI: 0.463, 0.559),

respectively. Of the schemes, spectrogram masking provides

the most pronounced increase in performance relative to the

baseline with AUCs of 0.652 (95% CI: 0.597, 0.704) and 0.659

(95% CI: 0.600, 0.716), with frequency masking and time mask-

ing performing comparably. At both 10% and 100% data levels,

masking along the time dimension only provides significant

improvement compared to spectrogram masking and splitting

(p < 0.001 and p < 0.001, respectively), with AUCs of 0.643

(95% CI: 0.598, 0.695) and 0.654 (95% CI: 0.595, 0.715)

compared with AUCs of 0.533 (95% CI: 0.498, 0.568) and

0.609 (95%CI: 0.549, 0.668). Statistical significance ismeasured

using a two-tailed two-sample paired t test.

Evaluating initializations via end-to-end fine-tuning

In terms of weight initializations, of the augmentation strategies,

the best performance is provided by spectrogram masking with

AUCs of 0.633 (95% CI: 0.582, 0.697) and 0.691 (95% CI: 0.628,
Figure 2. Experimental results for heart sound classification

AUCs are reported with 95% confidence intervals (CIs) (error bars). Asterisks ind

100% training data levels are presented for each learning scheme. All contrastive

contrastive schemes match or surpass baseline performance at 10% with perfo
0.758) at 10% and 100%, respectively. This is comparable to

performance with supervised training, which achieves 10%

and 100% AUCs of 0.628 (95% CI: 0.585, 0.730) and 0.690

(95% CI: 0.636, 0.754).

Figure 3 shows experimental test results for lung sound

classification.

Incorporating sample metadata for lung sounds
We further explore the effect of using metadata-based contras-

tive views. Notably, we do not use augmentations in this setup to

isolate the effects of metadata selection compared to estab-

lished field methodologies (augmentations). In our incorporation

of metadata, we consider explicit selection criteria for negative

pairs aswell as positive pairs. This is not part of the simple frame-

work for contrastive learning of visual representations (SimCLR)

framework. The available metadata consist of whether the pa-

tient is a child or adult (which we refer to as "age"), the patient’s

sex, and the recording location (trachea, anterior left, anterior

right, posterior left, posterior right, lateral left, or lateral right).
icate statistically significant differences (p < 0.001). Performance at 10% and

schemesmatch or surpass baselines for linear evaluation at 10% and 100%. All

rmance saturation for 100% in fine-tune evaluation. See also Table S1.

Patterns 3, 100400, January 14, 2022 3



Figure 3. Experimental results for lung sound classification

AUCs are reported with 95% confidence intervals (error bars). Performance at 10% and 100% training data levels are presented for each learning scheme.

Asterisks indicate statistically significant differences (p < 0.001). All contrastive schemes match or surpass baselines for linear evaluation at 10% and 100%. For

fine-tune evaluation, spectrogram masking provides the best performance, comparable with supervised training at both 10% and 100%. See also Table S2.
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We speculate that these factors are either correlated with pres-

ence of disease (age and sex17) or can provide insight into spatial

information for improved learning (recording location18).

We construct contrastive schemes by selecting from these

metadata features to create rules for positive and negative pairs.

Starting with age, we consider positive pair selection as well as

negative pair selection, abbreviated as ‘‘pos. sim. age’’ and

‘‘neg. sim. age,’’ respectively. For locations, we consider positive

selection for the same location (pos. same loc.) as well as posi-

tive selection for different locations (pos. dif. loc.) to determine

the importance of spatial association.We also consider the com-

bination of positive and negative selection on location with pos.

same loc./neg. same loc. We finally consider choosing negative

pairs by sex (neg. sim. sex) and choosing negative pairs by age

and sex (neg. sim. age + sex).

In terms of representations, we see marked differences be-

tween different selection policies. Forming negative pairs with

respect to age bands (adult versus child) provides significant

improvement (AUCs of 0.788 [95% CI: 0.739, 0.834] and

0.773 [95% CI: 0.718, 0.82] for 10% and 100%, respectively)

over other contrastive schemes, other than neg. sim. age +

sex. Statistical significance is measured using a two-tailed

two-sample paired t test compared with neg. sim. sex with

p < 0.001 and p < 0.001 at both 10% and 100%. The further

selection of sex along with age provides an additional increase

in performance (AUCs of 0.854 [95% CI: 0.823, 0.882] and

0.863 [95% CI: 0.834, 0.890] for 10% and 100%, respectively)

over neg. sim. age. Statistical significance is measured using a

two-tailed two-sample paired t test with p < 0.001 and p <

0.001 at both 10% and 100%.

Observing performance for weight initializations, we see corre-

sponding trends to that of representations. Negative selection for

age bands provides improvement over other demographic

methods (AUCs of 0.782 [95% CI: 0.737, 0.830] and 0.785 [95%

CI: 0.734, 0.838] for 10% and 100%, respectively). We further
4 Patterns 3, 100400, January 14, 2022
note significant performance significant improvement at 10%

and100% (p< 0.001 andp< 0.001, respectively) whencompared

with the supervised baseline. Statistical significance is measured

using a two-tailed two-sample paired t test. The addition of nega-

tive selectionbysexprovides further improvement (AUCsof 0.822

[95% CI: 0.782, 0.854] and 0.842 [95% CI: 0.803, 0.876] for 10%

and 100%, respectively) over neg. sim. age. Statistical signifi-

cance is measured using a two-tailed two-sample paired t test

with p < 0.001 and p < 0.001 at both 10% and 100%.

Further analyzing trends between selection groups, we find

that positive selection in general has less efficacy than negative

selection. For representations, for example, we observe AUCs of

0.663 (95%CI: 0.610, 0.713) and 0.674 (95%CI: 0.618, 0.726) for

10%and 100%, respectively for pos. sim. age. Using a two-sam-

ple paired t test against neg. sim. age, we observe a statistically

significant difference, with p < 0.001 for both 10% and 100%.

This result may be due to the fact that positive selection by

age matches up multiple samples that do not share true labels.

The SSL with linear evaluation outperforms SSL with fine-tuning.

We hypothesize that this resulted from overfitting of the fine-tun-

ing method on the data, which may be expected given the small

number of samples in the train set. We expect that fine-tuning

would perform better given more training data. Furthermore,

both representation and initialization experimental performances

show that age is a more valuable metadata tool. Given that there

are strong correlations between age and presence of respiratory

disease,19,20 it follows that selection by age provides more

difficult pairs to differentiate compared with other metadata

features. Finally, we remark that the combination of these

factors enables better performance compared with either of

the factors alone (age and sex, 0.854 [95% CI: 0.823, 0.805];

age alone, 0.788 [95% CI: 0.739, 0.834]; sex only, 0.723 [95%

CI: 0.675, 0.770]).

Figure 4 presents results for contrastive self-supervised meth-

odologies based on sample metadata.



Figure 4. Experimental results for lung sound classification with incorporated sample metadata

AUCs are reported with 95% confidence intervals (error bars). Asterisks indicate statistically significant differences (p < 0.001). Performance at 10% and 100%

training data levels are presented for each learning scheme. In both linear and fine-tune evaluation setups, there are marked differences between contrastive

schemes, with the negative pair selection of age and sex providing superior performance in both setups. See also Table S3.
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DISCUSSION

We introduce a contrastive learning framework that utilizes unla-

beled data with associated metadata to select positive and

negative pairs. We first compare different augmentation

methods for sounds.We find that timemasking and spectrogram

masking are the best performing methods for heart sounds and

for lung sounds, respectively. These results demonstrate that

augmentation methods perform differently in different contexts,

and it is important to optimize contrastive learning frameworks

according to the type of data. We then describe the contrastive

learning framework utilizing metadata to select positive and

negative pairs, rather than augmentation methods. Results in

lung sounds show that negative pair selection based on age

improve downstream lung sound diagnosis tasks the most, fol-

lowed by those based on sex. This is in accordance with clinical

experience that lung diseases correlate with age and sex.21,22

These results show that metadata, especially when used in cor-

relation with domain expertise, can be a powerful way to select

positive and negative pairs in contrastive learning and that

leveraging such information can further improve representations

learned from contrastive learning.

Limitation in labeled data is a bottleneck for many applications

of supervised learning. Self-supervised learning can leverage un-

labeled data to learn general meaningful representations and use

labeled data for fine-tuning. This approach has been applied with

success across domains, including for natural language process-

ing23–25 and computer vision1,2,26,27 tasks. In the domain of audio
signals, most studies have focused on speech recognition tasks,

showing better results with less labeled data in downstream

tasks, such as predicting characters,28 spoken language

modeling without text,29 and speaker recognition.30

Contrastive learning has been used to leverage unlabeledmed-

ical data to improve performance on downstream tasks.18,31 For

example, a study used contrastive learning to explore patient-

level shared context in electrocardiogram signals across different

temporal and spatial segments.18 Another example of contrastive

learning for time-series data builds upon the SimCLR framework

to learn channel-specific features in electroencephalograms.31

These two studies focus on representations for either individual

patients or a channel of signal, while our study focuses on using

shared characteristics between different patients to find repre-

sentations for a group of patients, potentially leading to greater

generalizability. Another study uses contrastive learning for med-

ical imaging, leveragingpatientmetadata, including samepatient,

same imaging study, or same laterality to select positive pairs.8

Contrary to our results, this study saw no benefit in using patient

metadata to select negative pairs, which may be due to high sim-

ilarities among chest images compared to sound recordings.

In conclusion, our work presents a contrastive learning frame-

work that is able to leverage associated information for pair se-

lection despite imbalanced source datasets. We demonstrate

its application in audio processing in the medical context using

heart and lung sounds and related clinical data for selecting

contrastive pairs across different segments and sources. The

performance of our model decreases with external validation
Patterns 3, 100400, January 14, 2022 5
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using heart and lung sounds collected at a different clinical sites.

The suboptimal generalizability could be potentially due to the

limited size of the training data. During training, the model may

not have learned features that are generalizable across different

populations. One potential improvement that can bemade could

be pre-training with a larger dataset with a wide variety of

sounds. Batch effects may explain the suboptimal generaliz-

ability given that the lung and heart sounds from training data-

sets and external validation datasets were collected using

different stethoscopes at different sites. Carefully tuning mix-

tures of metadata and augmentation-based contrastive method-

ologies may prove to be fruitful future explorations as could

systematically exploring the effect of imbalanced pre-training

datasets. Our study provides useful insight across domains

beyond healthcare, as associated information can also be

used in other contexts. Audio augmentation methods continue

to develop and become more and more versatile.32 As shown

by our results and previous work,33,34 the best performing

augmentation method may depend on the type of signal data

used. Leveraging metadata rather than solely relying on

augmentation can be a powerful tool for generating positive

and negative in contrastive learning in various types of audio

and signal data. With advancement of databases that include

multiple types of information on each patient, including omics

and medical images, the power of contrastive learning could

potentially be augmented, and the connection between meta-

data, lung and heart sounds, and diseases could potentially be

better elucidated. In addition, the contrastive learning approach

with metadata we outlined could be tried with multiple types of

metadata to broaden the application of our current methods.

However, further research in this area is limited by a general

lack of interlinked multi-type datasets, an area of focus for

healthcare artificial intelligence research.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Pranav Rajpurkar

(pranav_rajpurkar@hms.harvard.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. The respiratory sound

database can be found at https://bhichallenge.med.auth.gr/. The PhysioNet

Heart Challenge can be found at https://physionet.org/content/challenge-

2016/1.0.0/#files. The DOI for the external validation dataset is https://doi.

org/10.17632/jwyy9np4gv.3.

All original code has been deposited at Zenodo under https://doi.org/10.

5281/zenodo.5715686 and is publicly available as of the date of publication.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Data

We consider two datasets for training and internal testing; for lung sounds, we

use the respiratory sound database,35 and for heart sounds, we use the Phys-

ioNet Heart Challenge.16 We use another dataset for external validation: lung

sounds recorded at a different clinical site.36

For the PhysioNet Heart Challenge, we consider the task of classifying

normal sounds versus abnormal sounds. The dataset consists of 3,240

samples (2,575 normal and 665 abnormal), which were center-padded and
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cropped to a consistent size. 400 examples each were reserved for testing

and validation with a one-to-one ratio of classes in the samples. The remaining

2,440 examples represent the pre-train set, of which 400 examples were taken

for fine-tuning (again with a one-to-one ratio of classes). The pre-train set is

used for contrastive learning with the fine-tune set used for downstream

training for representation/initialization tasks. The test set is finally used to

evaluate trained models.

For the respiratory sound database, we modify the original task from multi-

class diagnosis to the same binary classification problem from above (normal

versus abnormal) due to limitations in data independence between samples,

as there is only one asthma patient. The original classes presented are healthy,

chronic obstructive pulmonary disease (COPD), upper respiratory tract infec-

tion (URTI), bronchiectasis, bronchiolitis, pneumonia, lower respiratory tract

infection, and asthma, with some classes having only one patient (asthma).

As such, we shift the task from differentiating between multiple signal classes

to differentiating between abnormal and normal signals. However, we do test if

the pre-trained models are able to extract features differentiating the original

classes; these extracted features were plotted using a 50-dimensional prin-

cipal component analysis dimensionality reduction followed by a two-factor

t-distributed stochastic neighbor embedding as shown in Figure 5, with spec-

trogram and neg. sim. age + sex on the left and right columns, respectively.We

present perplexity levels of 5, 25, and 50. The differentiation between COPD-

and URTI-labeled samples, as well as the general clustering of pneumonia

samples, indicates that the models do in fact learn to implicitly differentiate

these different signal classes within the larger abnormal class.

The respiratory sound database contains incomplete demographic informa-

tion and metadata including age, sex, height, weight, and body mass index, as

well as recording location. Missing patient demographics information was

imputed using multiple imputation by chained equations. Notably, one patient

does not have any associated demographic data, so data were imputed by

averaging across all other patients.

The lung sound external validation dataset includes lung sounds and related

demographics information about patients. As above, we modify the original

task to the binary classification of normal versus abnormal. The original clas-

ses are normal, asthma, pneumonia, COPD, bronchitis, heart failure, lung

fibrosis, and pleural effusion. The dataset contains 112 recordings, each

from a unique patient.

Tasks

We test pre-training schemes using the downstream tasks of representations

and initializations. For comparing representations, we consider the task of

passing inputs through an encoder model (pre-trained with self-supervision,

then freezing the base network parameters) to generate a lower-dimensional

latent space and then training a linear evaluator with the transformed data.

We compare results against a linearmodel directly taking in the flattened spec-

trogram. This serves as a benchmark to evaluate the efficacy of the encoder

backbone and pre-training methodology at extracting relevant features.

For comparing initializations, we consider the task of using pre-trained

weights to initialize a classification model constructed by appending a two-

layer SSL evaluator and then fine-tuning all of the model parameters with

labeled data. We compare against an equivalent model but with randomly

initialized weights rather than the pre-trained ones, which serves to show

the effectiveness of pre-training data as away to jumpstart supervised learning

and the overall final performance of the model.

Contrastive learning

With contrastive learning, we build robust vector representations using unla-

beled or weakly labeled data. When considering the overall embedding space

defined by these learned vectors, we wish for these representations to be

close for similar inputs and apart for dissimilar inputs. We then use the learned

vectors/pre-trained model for downstream tasks, such as the diagnosis clas-

sification as in this study.

To obtain these vectors, we apply and extend the self-supervised method-

ology employed in SimCLRv2, as shown in Figure 6. As our inputs, we consider

views ~xi and ~xj, generated by applying randomized augmentations or selecting

against recordings from the same sample (samplemetadata experiments). The

pair is then encoded (using a Resnet-18 backbone) to vector representations

hi and hj , respectively. The representations are then passed through a linear

mailto:pranav_rajpurkar@hms.harvard.edu
https://bhichallenge.med.auth.gr/
https://physionet.org/content/challenge-2016/1.0.0/#files
https://physionet.org/content/challenge-2016/1.0.0/#files
https://doi.org/10.17632/jwyy9np4gv.3
https://doi.org/10.17632/jwyy9np4gv.3
https://doi.org/10.5281/zenodo.5715686
https://doi.org/10.5281/zenodo.5715686


Figure 5. Two component t-SNE plot for dimensionality reduced embedding vectors for lung sounds

Spectrogram and neg. sim. age + sex are on the left and right columns at perplexity levels of 5, 25, and 50 from the top down. The relative clustering of each of the

abnormal classes (COPD, URTI, and Pneumonia) indicates that the models learn to differentiate these signal classes even without these explicit labels.
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Figure 6. SimCLR learning framework
For a given input x, we apply random transforms to produce x_i and x_j. We

then use encoding function f to produce representations that are projected by

projection head g to get z_i and z_j. During contrastive learning, we maximize

the agreement between z_i and z_j.

ll
OPEN ACCESS Article
projection head to reduce dimensionality. This gives us zi and zj, and we wish

to maximize the similarity of this pair. By maximizing this agreement, we

encapsulate the complexity of the unlabeled data for use as representations,

as well as using pre-training the encoder as an initialization point for further

fine-tuning.

We measure agreement for the singular positive pair (zi and zj ), using

normalized temperature-scaled cross entropy (NT-Xent) loss, as shown in

Equation 1. NT-Xent loss measures the ratio of the similarity between the pos-

itive pair to the sum of similarities across all possible pairs, positive and nega-

tive, in the batch represented by A(i).

[ = � log

(
expðsimðzi; zjÞ

�
TÞP

a˛AðiÞexp ðsimðzi; zaÞ=TÞ

)

Models

We utilize a ResNet-18 backbone to generate encodings in the latent space of

length N. For pre-training, these latent encodings are cast through a projection

head to a dimensionality of 256. For downstream evaluation, this projection

head is removed and replaced with a single linear layer (with encoder weights

frozen) and an SSL online evaluator for representation and initialization fine-

tuning, respectively, as shown in Figure 7. In linear evaluation, the linear layer

takes in a length N feature vector and outputs a single output passed through

sigmoid activation. In the SSL evaluator, a length N feature vector is passed

through a linear layer without output length N, and batch normalization is

then applied followed by ReLU activation. The subsequent linear layer pro-

vides a single output passed through sigmoid activation.

Learning framework modifications for incorporation of metadata

The selection criteria for metadata, as part of an SSL method, only makes

use of available metadata (age, gender, and location), and does not use

the annotations (diagnoses) associated with any of the data points. We

generate contrastive views by selecting two independent samples for a given

patient subject to the specified condition on positive pairs. We note that the

default SimCLR setup does not support negative pair selection by default,

which becomes relevant for our metadata studies. For the following setups,

we modify batch generation so that all samples within the batch share the

negative selection trait: pos. same loc./neg. same loc., neg. sim. age, neg.

sim. sex, and neg. sim. age + sex. For pos. sim. age, we adapt the super-

vised contrastive learning methodology, using the age bands as weak labels.
8 Patterns 3, 100400, January 14, 2022
The dataset for heart and lung sounds did not provide other types of meta-

data. In our example, age is a very generalizable metadata item for positive

and negative pair selection, given that age plays a key role in many medical

diseases.

We hypothesize that the selection of negative pairs by patient and audio

metadata provides a stronger pre-training task. If we consider Equation 1,

with negative pairs that are more similar to the given example, the sum in

the denominator increases, leading to an increase in the sample error. There-

fore, the model must work harder to differentiate these pairs from positive

ones, improving downstream performance.

Supervised contrastive learning

Supervised contrastive learning leverages labels to provide better contrastive

strategies.37 In this study, instead of true labels (classifications), we utilize soft

labels sourced from metadata. In this setup, models of the same class are

considered positive pairs, while those of different classes are negative. This

method therefore introduces additional positive pairs into the fold. We modify

the loss function from NT-Xent to incorporate these additional pairs, as shown

in Equation 2. In this modified setup, for each of the positive pairs, P(i), we take

the ratio between its similarity and the sum of the similarities of all pairs, pos-

itive and negative, as represented byA(i). We then average these scores before

taking the negative logarithm.

L = � log

(
1

jPðiÞj
X
p˛PðiÞ

expðsimðzi; zjÞ
�
TÞP

a˛AðiÞexp ðsimðzi; zaÞ=TÞ

)

Model training and hyperparameters

We train all models with a batch size of 16 and a learning rate of 1E-5. For pre-

training,weuseanL2penalty factor of 1E-6, and fordownstream trainingweuse

an L2 penalty of 1E-2. Unless otherwise noted, linearly evaluated models (rep-

resentations) are trained for 5,000epochs, andfine-tunedmodels (initializations)

are trained for 25 epochs. For linear baselines, we train for 500 epochs for heart

data and 1,000 epochs for lung data, at which point convergence is achieved.

For the 10% data level, 20 models were trained in parallel; for the 100% data

level, 5 models were trained in parallel. Testing performance is evaluated using

AUROC, using bootstrapped CIs with 1,000 replicates for each model.

Data processing

Both the lung and heart datasets contain samples of vastly varying lengths.

In order to standardize, samples are cropped/padded at a threshold of the

75th quartile of recording lengths. Cropping/padding is done so that re-

cordings are aligned to the center (the middle of the recording is the middle

of the spectrogram). Furthermore, when masking data, we apply transfor-

mations to only data regions with five bands in the time dimension and

two bands in the frequency dimension. We chose a target of 50% data

masking on average and manually checked samples to ensure features of

interest were not lost.
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Figure 7. Block diagrams illustrating pipe-

lines for evaluators used for representation

(linear) and initialization (SSL online evalu-

ator), respectively

Note that in the linear pipeline, the encoder pa-

rameters are frozen; they are not updated during

fine-tuning. On the other hand, the SSL online

evaluator is part of an end-to-end pipeline where the

encoder parameters are updated alongside the

evaluator.
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