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Abstract

The house mouse or Mus musculus has become a premier mammalian model for genetic

research due to its genetic and physiological similarities to humans. It brought mechanistic

insights into numerous human diseases and has been routinely used to assess drug effi-

ciency and toxicity, as well as to predict patient responses. To facilitate molecular mecha-

nism studies in mouse, we present the Mouse Interactome Database (MID, Version 1),

which includes 155,887 putative functional associations between mouse protein-coding

genes inferred from functional association evidence integrated from 9 public databases.

These putative functional associations are expected to cover 19.32% of all mouse protein

interactions, and 26.02% of these function associations may represent protein interactions.

On top of MID, we developed a gene set linkage analysis (GSLA) web tool to annotate

potential functional impacts from observed differentially expressed genes. Two case studies

show that the MID/GSLA system provided precise and informative annotations that other

widely used gene set annotation tools, such as PANTHER and DAVID, did not. Both MID

and GSLA are accessible through the website http://mouse.biomedtzc.cn.

Introduction

Because of its close genetic and physiological similarity to human, the ease of the manipulation

and analysis of its genome, the convenience of its breeding in the laboratory, the house mouse,

Mus musculus, has emerged as a leading model of human biology and disease [1, 2]. Genomic

studies have highlighted that the genome of mice is very similar to that of human. 99% of

mouse protein coding genes have human orthologues [3–5]. These similarities to human,

together with the development of powerful methods and tools for mouse research, have greatly

expanded our understanding of human biology [1, 6]. However, because of technological limi-

tations, a limited number of experimentally reported protein-protein interactions have been
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integrated into mouse databases. Therefore, an accurate prediction interactome with high cov-

erage is valuable for mouse researchers.

In addition to databases integrated with interactions from experiments, studies of potential

interaction prediction based on high-throughput technology have also been a focus area,

including MouseNet [7], mentha [8], MIST [9], Hitpredict [10], and STRING [11]. However,

the computational identification of potential interactions shows a high false-positive rate. A

prediction approach was hence developed with indirect protein interactions, such as gene

coexpression and gene colocalization [12]. These studies reported that the predicted protein

interactions were more accurate than the high-throughput experimental data. Further studies

demonstrated that it is possible to directly infer protein interactions from this indirect evi-

dence alone [13]. To ensure the accuracy and effectiveness of protein interaction prediction

using indirect evidence, various types of evidence have been thoroughly assessed [14, 15].

These investigations broaden our horizons on how to accurately predict protein interactions

on a proteomic scale.

The process of attaching biological information to a set of simultaneously changed genes

(genes that are differentially expressed, GDE) is knowns as functional annotation, which is a

frequent component of bioinformatics analysis in omics research [16]. As the state of the art,

functional annotation of GDE observed in an omics research relies on enrichment analysis

[17]. Currently, a series of enrichment-based tools are widely used for the analysis of observed

GDEs, including PANTHER [18], KEGG [19], DAVID [20], etc.

The enrichment-based strategy summarizes the observed GDEs to established biological

concepts. This strategy is successful in many cases. However, when there is no established

annotation term that can accurately describe these changes, enrichment-based approaches fre-

quently report terms that are conceptually very general (such as GO: 0016020, membrane) or

simply report no term. These results provided limited help for investigators to formulate fur-

ther hypotheses and design studies to elucidate the mechanism underlying the observed GDE.

On the other hand, even in cases that no established biological concept is available to accu-

rately describe what these GDEs are, we may still use established biological concepts to

describe what potential functional impacts may be collaboratively exerted by these GDEs. For

instance, the observed GDEs may collectively interfere with the function of GO:1903393 (posi-

tive regulation of adherens junction organization), even when the GDEs themselves are not

enriched with this term (an example is provided in Discussion).

To interpret the potential functional impacts of observed GDEs, we developed a web tool,

gene set linkage analysis (GSLA), which complements the existing enrichment-based

approaches, and are available for human and Arabidopsis transcriptome interpretations [21,

22]. The strategy of GSLA interpretation is that if a GDEs is frequently functionally associated

with genes in a biological process, then the GDE is expected to interfere with this biological

function. Successful interpretations by GSLA require a high-quality functional association net-

work, such as the human interactome resource (HIR) and predicted Arabidopsis interactome

resource (PAIR) that we developed for human and Arabidopsis GSLA [21, 23].

In this work, we developed a high-quality functional gene association network, the mouse

interactome database (MID), for searching potential functional gene associations in mice. We

also constructed the GSLA web tool for interpretation of mice transcriptomes. To infer high-

quality functional associations between mice protein-coding genes, MID integrates six types of

evidence from 9 public databases. All evidence used for inference predate the end of 2018.

Newly reported experimentally confirmed protein-protein interactions (after 2018) were used

to assess the inference accuracy. The current version of MID includes 155,887 gene associa-

tions. These gene associations are expected to cover 19.32% of the protein-protein interactions

in mice, and 26.02% of the gene associations may represent protein interactions. The web
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interface for MID is available for users to investigate the functional associations among the

protein-coding genes, and provides a GSLA web tool for interpretation of the collective func-

tional impacts of mice GDEs. In the end, two case studies are provided to illustrate the use of

the MID/GSLA system.

Materials and methods

Evidence data of functional gene interactions

Protein-protein interactions are considered evidence of strong functional associations. A total

of 32,997 experimentally reported unique protein-protein interactions between mouse pro-

tein-coding genes were collected from BioGRID [24], and IntAct [25] (S1 Table). To ensure

the quality of our collected protein-protein interactions reported by experiments, we removed

interactions that were reported in less than two independent studies and those that were

reported only in high-throughput experiments. After filtration, 11,203 protein-protein interac-

tions with high quality were left for subsequent support vector machine model training so that

we could obtain the predicted functional associations that are as strong as protein interactions.

In this study, we used UniProt [26] and BioMart software [27] to convert different gene IDs to

the unique MGI ID based on the reference gene ID from the MGI database [28] (Fig 1).

Apart from the experimentally confirmed protein-protein interactions, we also collected six

types of functional association evidence from 7 public databases with the year set to before

Fig 1. The workflow for the prediction of functional associations between mouse genes. The training dataset consists of 1). Positive examples. High-

quality protein interactions that were reported in at least two databases were used as positive examples. 2). Negative examples. Random gene pairs that

did not overlap with the positive examples (positive: negative = 1:100). 3) Functional association evidence. Six types of functional association evidence

data were collected from 9 databases. 36 different mathematical characterizations of these six types of evidence data produce 36 feature values, which

were described in S2 Table. A total of 15 high-quality features (AUC> 0.6) were selected as high-quality features and were used for functional

association inference. Details of the feature computing methods can be found in the MID website (the section of Indirect Evidence).

https://doi.org/10.1371/journal.pone.0264174.g001
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2018. These evidence data include 17,738 expression profiles (COXPRESdb) [29], 402,516

gene annotations (GOC) [30], 104,093 domain interactions (IDDI and Pfam) [31, 32], 22,515

subcellular gene localizations (Compartments) [33], 22,380 phylogenetic profiles (DIOPT)

[34], and inparalog/ortholog relationships between 15,115 mouse proteins and proteins from

A. thaliana, C. elegans, H. sapiens, D. melanogaster, R. Norvegicus, S. cerevisiae and S. pombe to

compute interologs [35]. 36 features belonging to six categories were computed based on these

evidence data, each suggesting a certain kind of functional association (Fig 1 and S2 Table)

[36, 37]. Detailed methods and equations can be found in website help (the indirect evidence

section, http://mouse.biomedtzc.cn./#/help/feature).

Computation of feature values

To characterize the functional associations between mouse protein-coding genes, 36 feature

values were selected for computation (Fig 1 and S2 Table). The 36 feature values include 1

homologous interaction feature, 3 phylogenetic profile features, 23 domain interaction fea-

tures, 4 subcellular co-localization features, 2 coexpression features and 3 shared annotation

features (S3 Table).

The calculation of functional gene interactome size

To calculate the fraction of protein interactions that were covered by these putative functional

gene interactions, we used the following equation.

Ninteractome � Sensitivityþ ðNall� pairs � NinteractomeÞ � ð1 � specificityÞ ¼ Npredict

Here, Ninteractome is the estimated number of mouse protein interactions; Npredict is the size of

the predicted functional gene interactome; Nall-pairs is the number of all protein-coding gene

pairs in mice; and the sensitivity and specificity measure the accuracies of the prediction

model to predict the newly published (after 2018) protein interactions and random gene pairs.

Evaluation of feature values

To evaluate the power of our selected 36 feature values to indicate functional associations, we

used the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. For

the computation of protein-protein interaction predictions, each feature value will produce a

series of sensitivities and specificities based on different cut-offs with the training dataset (col-

lected before 2018). The sensitivity and specificity pairs of the ROC curve (X-axis, 1-specificity;

Y-axis, sensitivity) were plotted corresponding to different cut-offs. In this study, the feature

values with an AUC greater than 0.6 were considered informative to indicate functional associ-

ations (S1 Fig). A total of 15 features were finally selected for functional association prediction.

Functional association inference between mouse protein-coding genes

To train and infer functional gene associations, we used the LIBSVM software package [38]

with the above selected 11,203 high-confidence, experimentally-confirmed protein-protein

interactions, which served as positive examples during the prediction model training. The col-

lection date of these high-confidence protein interactions was reported before 2018. During

the prediction model training, negative examples are also needed. In this study, the negative

model involved the gene pairs that were randomly generated after removing the overlapping

gene pairs with the positive examples. These randomly generated gene pairs may include rare

false negatives. To reduce the impact from the low probability of randomly generated gene

pairs with strong functional associations, the positive-to-negative ratio was set as 1:100 in the
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training dataset to assume that only a small fraction of random gene pairs could have strong

functional associations as in the real-word scenario.

To train the SVM prediction model, we used the soft-margin Gaussian kernel algorithm. A

5-fold cross-validation method was implemented to evaluate the sensitivity and specificity, the

optimal harmonic mean of which was targeted by the kernel width parameter σ and soft mar-

gin parameter C. The optimized σ and C were used to train the prediction model, which was

then validated by the experimentally reported protein-protein interactions published after

2018 and the randomly generated negative examples. Finally, our optimized model reported

155,887 functional associations with a sensitivity of 19.32% and a specificity of 99.95%. Table 1

shows how well different predicted interactomes included the newly published protein interac-

tions. For this assessment, only those predicted interactomes were included (i.e., STRING, the

predicted interactions in MID, MouseNet [7], and MIST [9]). Datasets comprising of only

experimentally reported interactions were not included, as they are sources of our newly pub-

lished gold-standard protein interactions. In this comparison, only MID showed a balance

between sensitivity and reliability.

Applying this model to all mouse protein-coding gene pairs produced 144,477 inferred

functional associations. These inferred functional interactions together with the 11,410 known

protein interactions make the MID dataset, which consists of 155,887 interactions. Solving this

equation that described in the methods section, we obtained the estimated mouse protein

interactome size of 1.95 x 105. Based on the estimated interactome size (1.95 x 105) and the

estimated sensitivity (19.32%, the lower one of training stage sensitivity 19.40% and evaluation

stage sensitivity 19.32%), the predicted interactions in MID is expected to include 144,477 rue

protein interactions. Therefore, 26.02% of the MID functional interactions (37,592 out of

144,477) are expected to represent protein interactions.

Website construction

The LNMP system is an integrated system that was used to deploy the online database. The

LNMP system includes Linux, Nginx, MySQL, and PHP. We used the MySQL database to

store data. The web interface of the online database was developed using the Laravel frame-

work using PHP. The front-end of the online database was implemented with the Vue.js script

library, which implements single page application (SPA). Vue.js is an open source JavaScript

library designed for SPA web interface creation. Cytoscape [39] was used for the visualization

of the functional association networks.

Microarray and RNA-seq data analysis

From the GEO database [40, 41], we retrieved the microarray dataset GSE39989 and RNA-seq

dataset GSE135282. The microarray dataset GSE39989 compared gene expression between

wild type and Olfm4-knockout mice in the prostate tissue [42]. Five biological replications

were used for the Olfm4 (+/+) or Olfm4-knockout (-/-) prostate RNA extracted from five indi-

vidual mice. The RNA-seq dataset GSE135282 showed 560 genes were up-regulated and 297

Table 1. Evaluation of the predicted interactions in available mice interactomes.

Interactome Sensitivity Reliability

STRING 52.17% 1.06%

MIST 28.99% 5.17%

MID 19.32% 26.02%

MouseNet 21.26% 5.23%

https://doi.org/10.1371/journal.pone.0264174.t001
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genes were down-regulated in Piezo1-knockout (Piezo1fl/fl) mice relative to the wild type. Four

biological repeats were performed for both the wild type and Piezo1-knockout mice.

In this study, we used the online tool GEO2R [43–45] to re-analyse these two dataset with

default parameters. The top 250 transcriptionally changed genes were selected for annotation.

The microarray dataset was selected based on the P value (P Value < 0.05) and the RNA-seq

dataset was based on the FDR value.

Results

Evaluation of the predicted functional gene association network

To evaluate the quality of the predicted functional gene association network of MID, we mea-

sured its capacity to group functionally related genes together. This capacity is evaluated as the

accuracy of using a gene’s network neighbours to predict the gene’s function, i.e., the “guilt-

by-association” prediction of gene functions. We evaluated the newly inferred mouse interac-

tome (MID) together with five other available interactomes, including MouseNet [7], mentha

[8], MIST [9], Hitpredict [10], and STRING [11]. For each gene in each interactome, its GO

biological process annotations were predicted as the terms enriched in the annotations of its

first-degree network neighbours. Here, the term enrichment tool PANTHER [18] was used to

find enriched annotation terms.

The data used to predict functional gene interactions in MID were collected before 2018

(Dec 31,2017). A total of 7,935 genes with new annotations (added after Dec 31, 2017) were

collected from the GO database [46, 47] to evaluate the prediction accuracy. These genes had a

total of 327,092 annotations, of which 40,949 annotations were newly added. We relied on

these genes and their annotations to evaluate the gene function prediction performance.

We used the precision-recall curve to measure the overall accuracy of new annotation

prediction across six interactomes. Here, precision means the proportion of annotations

predicted by PANTHER that were consistent with the total 327,092 annotations. Recall

means the proportion of PANTHER-reported annotations that were successfully covered

40,949 newly added annotations. Each PANTHER-predicted annotation has an enrichment

significance (P-value). Therefore, when different cut-offs on P-values were applied, the

number of annotations predicted by PANTHER will change accordingly. More reported

annotations would result from a higher cut-off, which would lead to higher recall but lower

precision. In contrast, if a lower cut-off was used, fewer annotations would be predicted,

leading to more reliable predictions and higher precision. In general, the precision-recall

curve is a cut-off-independent approach that shows the advantage of providing a more com-

prehensive view of the capability of an interactome to predict new gene annotations. An

interactome with a higher AUC may be better to support “guilt-by-association” prediction

of gene function.

The precision-recall curves of the six interactomes are shown in Fig 2. MID shows the best

performance in the prediction of new annotations with the evidence of its curves located

above others. When MID reached the high-recall region, it still maintains the highest preci-

sion. Although the curves of the STRING and MouseNet interactomes reached the high-recall

region, their precisions were low; especially for STRING, its precision did not increase as

much as that of other interactomes in the low-recall region. This observation indicates that the

STRING interactome may contain a high proportion of weak functional gene associations.

However, except for STRING and MouseNet, the other interactomes did not reach the high-

recall region. In conclusion, only MID shows balanced coverage and precision during gene

function prediction when compared to the other five interactomes.
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The website interface of MID/GSLA

We provide two search modes in the MID website: single gene search and multiple gene search

(Fig 3A). The single search option reports all inferred functional gene interactions containing

the query gene, while the multiple search option reports the whole functional gene interactions

between two query genes. In the MID website, both the gene name and MGI ID are offered for

users to query their genes of interest. The resulting putative functional interactions are listed

in tabular form (Fig 3B). A graphical view of these functional interaction networks is presented

on the right side of the query interface. Moreover, in the network diagram, users can right-

click on their interested interaction, which will show the feature values used in our prediction

model for this interaction. If users click on a node of the interested gene, the detailed annota-

tions of this selected gene will be shown. Users can download all putative functional gene inter-

actions. The functional gene interaction network also provides a download link for users.

Previously, we developed the GSLA tool as a transcriptomic analysis tool for potential func-

tional impact predictions of Arabidopsis based on the observed GDEs [22]. The strategy of

GSLA evaluates whether a set of changed genes have more frequent functional interactions

with genes that comprise a biological process or biological function. Here, we used two

hypotheses (Q1 and Q2) to measure the significance of the functional associations between

two gene sets (Fig 4). Q1 measures whether the inter-gene set gene association density between

functionally associated gene sets is higher than the background gene association density

between random gene sets. Q2 measures whether the functionally associated gene sets with

high density can be only observed in the biologically correct functional gene interaction net-

work (our knowledge of molecular mechanisms). In other words, Q2 assumes that the density

in MID is higher than that in a random functional gene interaction network consisting of the

Fig 2. Quality assessment of six interactomes. To assess the quality of our predicted functional association network,

MID, we evaluated how well it groups functionally related genes together. Precision measures the fraction of correct

annotations predicted using an interactome, while recall measures the fraction of new annotations successfully

predicted using an interactome.

https://doi.org/10.1371/journal.pone.0264174.g002
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same genes, with each gene having the same number of neighbours. Therefore, from a biologi-

cal perspective, Q1 evaluates the strength of a functional association between two gene sets,

while Q2 verifies that the observed strong functional association is the result of a biologically

correct network topology that represents our knowledge of the molecular mechanisms rather

than the result of the compositions of these two gene sets. In fact, some genes, such as hubs,

may have substantially more neighbours in the interactome than others. Gene sets may easily

have much more inter-gene set functional interactions that contain a number of hubs relative

to other gene sets without hubs. Q2 is therefore used to control this confounding factor of

gene set composition. In general, the two hypotheses, Q1 and Q2, are different but also com-

plementary. They work together to make the functional impact prediction of GSLA more sen-

sitive and more specific.

The default significance cut-offs for GSLA to report a gene set interaction are density>0.01

(Q1) and p<0.001 (Q2).

The GSLA web service is provided on the MID website and is based on GSLA, which is

used to interpret the potential functional impacts of the observed GDEs in the mouse tran-

scriptomic experiments. The main website interface of GSLA is presented in Fig 3C. When

users submit a set of GDEs, GSLA can recognize six types of mouse gene IDs, including MGI

ID, gene name, UniProt ID, Ensembl gene ID, Ensembl protein ID, and NCBI Entrez ID.

GSLA prefers to use MGI ID because the internal sever works only with MGI ID. While MGI

IDs provide a framework for unification of various gene IDs, most experiments are performed

with the Ensembl and RefSeq gene IDs. Therefore, the GSLA web service provides a

Fig 3. MID website. (A) Single gene search and multiple gene search interface. (B) Search result page. The functional associations between the query

genes are illustrated in a graphical view. Right clicking on an interaction in the diagram will show its details. (C) The gene set linkage analysis webtool,

GSLA interface. GSLA prefers to use MGI ID because the internal sever works only with MGI ID, it will map other ID systems (MGI ID, gene name,

UniProt ID, Ensembl gene ID, Ensembl protein ID, and NCBI Entrez ID) to MGI IDs.

https://doi.org/10.1371/journal.pone.0264174.g003
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functionality that automatically converts other ID systems (MGI ID, gene name, UniProt ID,

Ensembl gene ID, Ensembl protein ID, and NCBI Entrez ID) to MGI IDs, so that the analysis

can be performed on the predicted mouse functional gene interactome based on MGI IDs. To

avoid a user’s query loss, it is suggested that users provide GDEs directly as MGI IDs. The cut-

offs for Q1 and Q2 (density and p) of the GSLA web tool can be adjusted by users (Fig 3C).

Before submission, an email address is needed for receiving the analysis results, the top ten

lines of which are the analysis parameters. S4 Table shows the identified functionally associated

biological processes, functional gene interactions between the GDEs and genes in the query

GDEs. Finally, the top 50–200 GDEs as a query dataset is suggested for users to obtain specific

and focused functional impact annotations.

Using the MID/GSLA system to re-analyse the Olfm4-knockout mice

microarray dataset

Prostate cancer is common in males and is the second leading cause of cancer-related death in

men in the United States [48]. The roles and molecular mechanisms in human prostate cancer

progression are not completely understood. The olfactomedin 4 (OLFM4) gene in humans has

been documented to express normally in prostate tissue but reduced in prostate cancer cells

[49]. To explore the effects of OLFM4 on the progression of human prostate cancer, Li et al.

utilized Olfm4-knockout mice to investigate the function of Olfm4 in murine tissues [42].

They discovered that the Hedgehog signalling pathway was significantly upregulated with

Olfm4-knockout, and the loss of Olfm4 promoted progression of prostatic neoplasms. Li et al.

Fig 4. The GSLA interpretation strategy. GSLA uses two hypothesis tests to identify biologically significant

functional associations between two gene sets. Q1 evaluates whether the inter-gene-set interaction density between two

gene sets is higher than that between random gene pairs. Q2 evaluates whether the dense functional interactions

between gene sets can only be observed within the biologically correct network, rather than in randomly generated

interactomes with the same node degree distribution.

https://doi.org/10.1371/journal.pone.0264174.g004
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also found that OLFM4 protein interacts with sonic hedgehog protein [42]. These discoveries

were consistent with previous results that Hedgehog signalling mediates prostate ductal mor-

phogenesis and prostate cancer cell metastasis [42, 50–52]. Together, these data suggest that

olfactomedin 4 plays an important role in the regulation of prostate cancer progression.

Three gene set annotation tools, MID/GSLA, DAVID [20], and GO enrichment analysis

[46, 47] were compared for their usefulness to derive functional insights from genes that

changed expression in Olfm4-knockout mice (GEO database: GSE39989) [42]. DAVID, a

widely used tool that relies on a term clustering technology, reported a total of 261 terms in 42

clusters (S5 Table). Among these terms, Hedgehog signalling and related pathways were not

found (Fig 5A). Both DAVID and GO enrichment analysis identified cell adhesion related

pathways (Fig 5A), though these pathways were not the major functional impacts subsequent

Olfm4-knockout, as stated in the original publication [42]. In contrast, MID/GSLA reported

13 terms (S4 Table). In addition to the Hedgehog signalling and cell adhesion-related path-

ways, MID/GSLA also identified cell apoptosis-related pathways, suggesting its involvement in

cell survival regulation (Fig 5A). GW112 (also known as OLFM4 [42]) is associated with

GRIM-19, which is involved in regulating cellular apoptosis [53]. Apart from this, compared

to the wild type, GW112 knockdown cells showed a more prominent signal of genomic DNA

Fig 5. The functional categories of the terms reported by MID/GSLA, DAVID, and PANTHER (GO ontology analysis). The annotations produced

by MID/GSLA are more comprehensive and informative for further mechanistic study.

https://doi.org/10.1371/journal.pone.0264174.g005
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fragmentation, which is a hallmark of apoptosis [54]. In this case study, compared to the other

two widely used annotation tools, our GSLA web tool presents more comprehensive and

inspiring annotations for molecular investigators.

Using the MID/GSLA system to re-analyse the Piezo1 deficiency mice RNA-

seq dataset

Throughout the lifetime of a mammal, natural bone is constantly renewed and remodeled.

This complex process involves both the osteoblasts mediated bone formation phase and osteo-

clasts mediated bone resorption phase [55–57]. The balance between bone formation and

resorption is essential for bone health and fracture healing [58]. Bone remodeling is affected

by mechanical loading, which is essential for the development of robust weight-bearing bones

[59].

To understand the mechanism of how mechanical loading coordinates bone remodeling,

Wang et al. generated Piezo1-knockout mice and discovered that Piezo1-deficiency in osteo-

blasts cells lead to decreased bone mass, increased bone resorption, and spontaneous frac-

tures after weight bearing [60]. In addition, Piezo1 deficiency mice displayed a resistance to

further bone loss and osteoclast accumulation, suggesting that the PIEZO1 mediated osteo-

blast-osteoclast crosslink responses to mechanical loads. Mechanistically, Piezo1 deficiency

impaired the production of COL2 and COL9 through decreasing YAP nuclear transloca-

tion, which in turn regulates a number of bone matrix proteins including collagens. Their

study also suggested that integrins may be a candidate that mediates matrix bridging and

osteoclast regulation. Wang et al. performed RNA-Seq of the tibial and femoral cortical

bones of the WT and Piezo1-knockout mice (GEO database, GSE135282) [60]. Among a

total of 19,201 expressed genes, they reported that 560 genes were up-regulated, and 297

genes were down-regulated (fold change > 1.5, p value <0.05) in Piezo1-knockout cortical

bones.

In this study, the top 250 transcriptionally changed genes were chosen for analysis by

DAVID, PANTHER and MID/GSLA. As shown in Fig 5B, the three gene set annotation tools

all reported collagen, extracellular matrix, and integrins related biological processes, which are

consistent with the terms reported in the original paper (S6–S8 Tables). Apart from these simi-

lar results, our MID/GSLA tool uniquely reported mechanical stimulus process related terms,

which are intuitively true considering the experiment design (Fig 5B and S8 Table). In addi-

tion, MID/GSLA and DAVID reported insulin related pathways. A later study demonstrated

that PIEZO1 plays a role in cell swelling induced insulin release [61]. In summary, in this case

study, compared to the other two annotation tools, the interpretations made by MID/GSLA

are, again, more comprehensive and informative.

Discussion

As an important disease model, many studies have focused on building the molecular interac-

tion network of Mus musculus. To facilitate the hypothesis formulation for molecular investi-

gators, a comprehensive and accurate reference interactome is needed that can serve as a

framework to summarize individual gene changes as high-level biological process changes. To

date, many mouse interactome databases have been developed. Some of them contain experi-

mentally reported molecular interactions, such as BioGRID [24] and IntAct [25]. Others inte-

grate the predicted interactions, including STRING [11] and MIST [9]. In general, it is

considered that experimentally reported interactions are more reliable than interactions that

are predicted. However, protein interactions reported in high-throughput experiments are

well known to include many false positives. Currently, these high-throughput interactions
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make the majority of existing interactome databases. In addition, because of the identification

method, some in-vitro interactions do not have in-vivo significance, for example, they are not

from the same subcellular compartments in normal physiology.

The negatively correlated accuracy measurements, sensitivity and specificity, are used to

evaluate the quality of predicted functional gene associations. An inferred interactome cannot

improve its sensitivity and specificity at the same time. Low sensitivity leads to less effective

capturing of the true functional interactome, and therefore an insufficient basis for functional

annotation of the observed GDE. In contrast, low specificity results in high level of noise in the

interactome, leading to a high level of false positive annotations in interactome-based func-

tional annotation of GDEs. Therefore, a high-quality functional gene interactome requires bal-

anced sensitivity and specificity.

On the other hand, available predicted interactions show different sensitivity-specificity

characteristics. STRING is a widely used predicted interactome. It has 9,536,624 predicted

mouse interactions that are expected to cover a large proportion of mouse protein interactome

(52.17%). The fraction of these interactions representing true protein interactions is expected

to be low, only 1.06%, as shown in the results section. In contrast, the MID interactome

showed balanced coverage and reliability (19.32% coverage and 26.02% reliability if assessed as

a protein interaction network), if compared to other existing mice interactomes. Therefore,

MID complements existing resources and provides a suitable basis for GSLA annotation of

GDEs in mice.

To this date, a variety of tools have been developed for omics data interpretation, includ-

ing PANTHER [18], KEGG [19], and DAVID [20] etc. Most of them were based on the anno-

tation enrichment strategy. These tools use existing concepts (biological processes or

functions) to describe the observed omics changes. However, when the observation (i.e. the

actual biological process) cannot be accurately described by an existing concept, these tools

tend to report no biological process or very general biological processes, which do not help

researchers to understand the data or to suggest directions for further investigation. On the

other hand, doing innovative research typically means to explore previously uncharted areas

of life mechanisms, where there are no well-established concepts to accurately describe the

observed changes.

To meet this challenge, we developed the gene set linkage analysis (GSLA) method, which

relies on a functional association network to evaluate whether an observed omics change will

collectively interfere with functions of known biological processes. Even when an omics

change itself cannot be accurately described by an existing concept; its functional impact may

still be described by well-established concepts. The creation of MID enables the application of

GSLA for functional impact predictions in mice. The density of functional gene interactions

between the component genes in two gene sets can be evaluated by GSLA, which is able to

identify significant functional associations between two gene sets. Based on this strategy, we

required a high-quality reference interactome in mice with balanced coverage and reliability.

The previously developed interactomes cannot serve this purpose, as we discussed above. In

this study, two case studies included a mice microarray dataset and a mice RNA-seq dataset

were analysed based on the MID (Fig 5). Comparisons were performed between MID/GSLA

and other two well documented interpretation tools (DAVID and PANTHER), the results of

which inferred a more comprehensive and informative ability of MID/GSLA. In these cases,

other enrichment-based tools cannot give instructive annotations, while MID/GSLA can still

help researchers to better understand the biological significance of these GDEs. Moreover, the

functional association resource provided in MID is a useful reference for investigators to inter-

pret the molecular mechanisms of their genes of interest.
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