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Abstract: Inflammation is a common feature of neurological diseases. During neuroinflammation,
neutrophils are recruited to the brain vasculature, where myeloperoxidase can produce hypochlorous
acid and the less well-studied oxidant hypothiocyanous acid (HOSCN). In this study, we exposed
primary brain endothelial cells (BECs) to HOSCN and observed a rapid loss of transendothelial
electrical resistance (TEER) at sublethal concentrations. Decreased barrier function was associated
with a loss of tight junctions at cellular contacts and a concomitant loss of dynamic microtubules.
Both tight junction and cytoskeletal disruptions were visible within 30 min of exposure, whereas
significant loss of TEER took more than 1 h. The removal of the HOSCN after 30 min prevented
subsequent barrier dysfunction. These results indicate that BECs are sensitive to HOSCN, resulting
in the eventual loss of barrier function. We hypothesise that this mechanism may be relevant in
neutrophil transmigration, with HOSCN facilitating blood–brain barrier opening at the sites of egress.
Furthermore, this mechanism may be a way through which neutrophils, residing in the vasculature,
can influence neuroinflammation in diseases.

Keywords: blood–brain barrier; oxidative stress; myeloperoxidase; hypothiocyanous acid; brain
endothelial cells; tight junctions; cytoskeleton

1. Introduction

The brain is perfused by a network of specialised blood vessels that facilitate the
delivery of oxygen and nutrients, while restricting the access of unwanted compounds.
Brain homeostasis and neuronal function are dependent on the restricted permeability of
the brain vasculature, termed the blood–brain barrier (BBB), and are achieved through the
unique properties of brain endothelial cells (BECs), comprising pericytes and astrocytes,
which interact with neurons to form the neurovascular unit (NVU) [1]. BECs contain tight
junction (TJ) proteins that are scaffolded by adherens junctions to create a restricted barrier
that prevents paracellular leakage of blood molecules. Junction proteins are linked to
the cytoskeleton via zona occludens and β-catenin, with microtubule and actin dynamics
regulating barrier opening [2–4]. BBB disruption drives the early pathology of cognitive
decline and neurological diseases such as Alzheimer’s disease (AD) [5,6], and involves a
loss of tight junction integrity [7], but the mechanisms initiating the breakdown of the BBB
are unclear.

BBB disruption is often accompanied by neuroinflammation, increasing the expression
of cell adhesion molecules to promote the association of circulating immune cells with
blood vessels [8,9]. Myeloperoxidase (MPO) is highly abundant in neutrophils and uses
hydrogen peroxide (H2O2) to oxidise halides to hypohalous acids, such as hypothiocyanous
acid (HOSCN) and the potent bactericide hypochlorous acid (HOCl) [10]. MPO is emptied
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into neutrophil phagosomes where it targets ingested pathogens, but it is also released by
neutrophils, including during the production of neutrophil extracellular traps (NETs).

Although there have been several studies on the effect of HOCl on endothelial cell
function, much less is known about HOSCN. There are reports of HOSCN altering inflam-
matory status, morphology, and calcium homeostasis in peripheral endothelial cells [11–13],
but the impact on BECs has not been reported, despite HOSCN being a significant product
at typical levels of plasma thiocyanate [14]. HOSCN reacts specifically with thiols and
selenothiols, making it longer-lived than other oxidants in biological systems and enabling
diffusion from its site of production, penetration of neighbouring cells, and disruption of
redox-dependent signalling pathways [15]. Several proteins involved in the formation and
regulation of tight junctions and the cytoskeleton are known to be susceptible to redox
regulation [16]. The extracellular loops of both occludin and claudins contain conserved
redox-sensitive cysteine residues that regulate their dimerisation and cell permeability,
respectively [17–20]. However, only occludin seems to be sensitive to changes in thiol
levels [18,19]. In addition, cysteine residues within the cytoskeleton are susceptible to
HOSCN oxidation, which leads to reduced tubulin polymerisation and compromised actin
filaments [21,22]. In this study, we have investigated the effects of HOSCN on BEC junctions
and cytoskeletal proteins, as well as on transendothelial electrical resistance and protein
transport. We show that HOSCN increases the permeability of BECs, accompanied by tight
junctional and cytoskeletal alterations.

2. Methods
2.1. Preparation of HOSCN

HOSCN was enzymatically produced at room temperature by the addition of bovine
lactoperoxidase (LPO; 2 µM) to NaSCN− (7.5 mM) in a 10 mM potassium phosphate buffer
(pH 6.6). Subsequently, at 1-min intervals, H2O2 (75 mM) was added four times. LPO was
removed by centrifugation (14.000× g for 8 min) using 10,000 kDa exclusion filters (Merck
Millipore Ltd., Kenilworth, NJ, USA). The final HOSCN concentrations were then measured
using 5-thio-2-nitrobenzoic acid (TNB) by measuring the change at 412 nm with an 8453 UV-
visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) using the molar
extinction coefficient for TNB (14,100 M−1·cm−1) and adjusting for the 1:2 stoichiometry of
the reaction (HOSCN:TNB) [23]. The concentrations of HOSCN were generally between
1600 and 1800 µM. To investigate whether breakdown products of HOSCN would affect
the BEC barrier integrity, HOSCN was prepared according to protocol and left for 24 h
when used for treatment, called ‘aged’ HOSCN. No TNB-reactive species remained.

2.2. Animals

All animal procedures were approved by the University of Otago, Christchurch Animal
Ethics Committee (AUP 18-157). Male and female C57Bl/6 mice, 6–12 months old, bred
in-house were humanely euthanised before brains were dissected for culture.

2.3. Cell Culture and Treatment

Primary mouse brain endothelial cells were obtained from wild-type C57Bl/6 mice,
and a protocol was adapted to isolate blood vessels from the mouse brain on pre-made
Matrigel (Corning, NY, USA) coated coverslips (Thermo Fisher Scientific, Waltham, MA,
USA) or transwells (0.4 µm pore; Corning, NY, USA) [8]. One brain was surgically removed
to grow cells to cover an area up to 25 cm2 of brain endothelial cells. The brains were
mechanically dissociated with a sterile surgical blade and resuspended in a fresh enzyme
mix (DMEM no adds, 0.5 mg/mL collagenase I, 0.6 U/mL dispase II, and 20 µg/mL DNase),
then placed in a MACS rotor for 30 min in an incubator. One volume of DMEM complete
(10% HI FBS, 1% P/S) was added to quench enzyme activity, and the cells were pelleted at
300× g (5 min). The pellet was resuspended in a 10–15% dextran (Sigma-Aldrich, St. Louis,
MO, USA) solution and spun at 1000× g for 10 min. The top myelin/debris layer was then
aspirated. The vessel pellet was resuspended in a complete pericyte medium (ScienCell,
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Carlsbad, CA, USA). Puromycin (Merck, Kenilworth, NJ, USA) 8 µg/mL was added to the
media and removed a week later to select for endothelial cell cultures. The BECs formed a
confluent monolayer with a stable TEER around 10–14 DIV, which is when the experiments
were performed.

2.4. TEER Measurements

Permeability changes of the BEC monolayer were measured by the ionic conductance
of the paracellular pathway via transendothelial electrical resistance (TEER) [24]. The
BECs were used when a resistance of 100 Ω·cm2 was reached. A cell-free well was used to
calibrate resistance measurements. Resistance was measured with an Evohm Volt-Ohm
Meter (World Precision Instruments, Sarasota, FL, USA) by short and long electrode probes,
washed in 70% ethanol, that were vertically inserted into the medium in the inner and
outer transwell chambers, respectively.

2.5. Dextran Permeability Assay

As a measure of paracellular permeability, media from the inner transwell was replaced
with fresh media containing fluorescein isothiocyanate (FITC)-conjugated 4 kDa dextran
(100 µg/µL) (Sigma-Aldrich, St Louis, MA, USA). After 24 h, 50 µL of media from the outer
well was transferred to a 96-well plate to measure FITC-dextran leakage from the inner to
the outer well (488/516 nm).

2.6. Viability Assays

The BECs were exposed to different concentrations of HOSCN for 24 h. An hour before
imaging, 5 µg/mL Hoechst 33342 (Invitrogen, Waltham, MA, USA) and 50 µM PI (Sigma-
Aldrich, St Louis, MO, USA) were added to visualise live and dead cells, respectively. The
nuclei were visualized using an Olympus IX81 motorized inverted microscope (Olympus,
Tokyo, Japan). Four images per well from triplicate wells were quantified for nuclei count
with a custom CellProfiler pipeline (Version 4.0.7). The overlap of PI and Hoechst staining
showed the number of dead cells per total nuclei.

2.7. Immunofluorescence Microscopy

Depending on the preferred fixation method for the protein of interest, cells were fixed
with PFA (4% + sucrose) for 15 min at room temperature or with methanol and acetone (1:1)
for 10 min at −20 ◦C. The cells were washed and permeabilised with PBS-Tween (0.1%) and
incubated with the the primary antibodies mouse-claudin-5 (ThermoFisher, Waltham, MA,
USA #35-2500, 1:1000), rat-vascular/endothelial (VE)-cadherin/CD144 (#555289 1:1000;
BD Biosciences, Franklin lakes, NJ, USA), rabbit-alpha-tubulin (Abcam, Cambridge, UK
ab7291, 1:250), mouse-end binding protein 1 (BD Biosciences, #610534, 1:1000), and mouse-
paxillin (BD Biosciences, #610051, 1:1000), in 1% BSA (Fraction V; Invitrogen, Waltham, MA,
USA) overnight. After washing, the cells were incubated with the relevant FITC- and Cy5-
conjugated secondary antibodies. Cytopainter phalloidin-iFluor (Abcam, ab176753, 1:1000)
was added 40 min before mounting. Coverslips were mounted with Prolong Diamond
Antifade with DAPI (Thermo Fisher Scientific) and imaged with a 20× (NA 0.5) or a 63×
objective (NA 1.4) on a Zeiss AxioImager Z1, AxioCamHRc (Carl Zeiss, Waltham, MA,
USA). At least five images of relevant areas were taken for each coverslip and processed
with ImageJ software or quantified with CellProfiler (Version 4.0.7).

2.8. CellProfiler Analysis

All the modules in CellProfiler (Version 4.0.7) were made with an initial background
correction. On the images stained for the junction proteins claudin-5 or VE-cadherin,
a threshold was set to identify junction staining following a filter to account for small
unspecific objects. To quantify tight junction discontinuity, the number of objects identified
as tight junctions established a number that was proportional to length. An increased
number of objects identified gaps in the total tight junction length.
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The quantification of tight junction localisation was established by identifying tight
junction staining with a threshold from which the total area of tight junction staining was
measured. The initial tight junction staining was masked to identify low-intensity tight
junction staining in the cytoplasmic area of the cell. Localisation was therefore identified as
a ratio of tight junctions present at cellular contacts versus the cytoplasmic area.

Overall image intensity was measured while correcting for high-intensity objects via
image masking.

2.9. Statistical Analysis

Data are presented as mean ± standard error of the mean of independent experiments.
A one-way ANOVA was performed, followed by Dunnet’s post hoc testing to compare
all means of each treatment group to the control group (0 µM HOSCN). Differences be-
tween experimental groups were considered to be statistically significant when p < 0.05.
Significance levels and statistical tests are denoted in figure legends.

3. Results
3.1. HOSCN Affects Blood–Brain Barrier Permeability Irrespective of Endothelial Cell Death

Primary BECs were isolated from the mouse brains and grown on transwells until they
formed a confluent monolayer. The BECs were determined to be >95% pure with positive
expression of CD144, ETS-related gene (ERG), and claudin-5 (Figure 1a). Cultures achieved
a transendothelial electrical resistance (TEER) of approximately 100 Ω·cm2 following
10–14 days in vitro. To determine whether BECs consume HOSCN, we added it to the
media or BECs and found that decomposition of HOSCN was higher in wells containing
BECs (Figure 1b). Many oxidants cause cell death if delivered in sufficient concentrations.
However, HOSCN is considered a relatively non-toxic oxidant. We therefore wished to
determine what concentrations were lethal, which led to sublethal oxidative stress. We
found that at concentrations above 100 µM, HOSCN led to cell death after about 40–90 min,
depending on the concentration used (Figure 1c, Supplementary Videos S1–S3). One of
the key functions of BECs is the maintenance of the BBB. We asked how high and low
concentrations of HOSCN affected BBB integrity. We found that both 100 and 400 µM
HOSCN significantly lowered the barrier resistance (Figure 1d). Importantly, decomposed
HOSCN (aged HOSCN) had no effect on the barrier resistance of BECs, indicating that the
effects are specific to HOSCN (Figure 1d). The early timing of the loss in barrier resistance,
combined with the similar effects observed with 100 µM and 400 µM HOSCN, indicate
that a loss of permeability is independent of cell death. Similarly, we found an increased
permeability to 4 kDa dextran in cultures treated with HOSCN (Figure 1e).

3.2. HOSCN Disrupts Tight and Adherens Junctions in BECs

To determine whether the effect of HOSCN on BEC resistance was associated with the
disruption of endothelial junction complexes, we initially visualised the junction markers
claudin-5 and VE-cadherin after treatment with 400 µM HOSCN (Figure 2a). Treatment
with 400 µM HOSCN led to the formation of gaps between endothelial cells from 1 h
on alongside a striking shift in localisation from cellular contacts to diffuse membrane
localisation (Figure 2b,c, Supplementary Video S4). At 100 µM HOSCN, an increase in gap
formation and a shift from junctional claudin localisation were seen at 4 h (Figure 2d,e).
These results were consistent with the observed changes in barrier resistance, showing
differences at similar time points and concentrations used. Similarly, when treated with
100 µM HOSCN, significant changes in gap formation and diffuse claudin-5 localisation
were already present at 30 min and did not increase over time (Figure 2f,g).
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Figure 1. Hypothiocyanous acid (HOSCN) affects brain endothelial cell (BEC) barrier function
independent of cell death. (a) Representative images of confluent BEC in phase contrast, and
stained with endothelial markers CD144, ETS-related gene (ERG), and claudin-5, which are absent
in pericytes. Scale = 100 µm. (b) HOSCN was added directly to media and concentration was
measured over time with or without the presence of BECs. n = 3. (c) BECs were treated with
different concentrations of HOSCN for 24 h and viability measured by imaging propidium iodide
incorporation. n = 3. (d) Transendothelial electrical resistance (TEER) was measured over time, and
BECs were treated when at least 100 Ω·cm2 was reached with HOSCN for 24 h. Data are represented
as normalized values to t = 0. n = 5. Two-way ANOVA; *—p < 0.05, **—p < 0.01, ***—p < 0.001 vs. t = 0.
(e) Concurrently, dextran 4 kDa labelled fluorescein isothiocyanate (FITC) (100 µg/µL) leakage to the
outer well was measured 24 h after HOSCN treatment. n = 4–7. One-way ANOVA; ***—p < 0.001 vs.
vehicle control.

VE-cadherin is an adherens junction (AJ) protein that regulates the expression of
claudin-5 [25]. In vehicle conditions, VE-cadherin and claudin-5 were only visible at
cellular contacts and formed uninterrupted lines around the cells. Interestingly, although
claudin-5 showed a diffuse pattern following treatment, VE-cadherin expression was lost.
Image analysis indicated that there was a three-fold reduction in VE-cadherin intensity,
whereas the total claudin-5 intensity remained unchanged (Figure 2h).
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Figure 2. Hypothiocyanous acid (HOSCN) disrupts tight and adherens junctions in brain endothelial
cells (BECs). BECs were exposed to 400 µM HOSCN for various times or with increasing con-
centrations of HOSCN for 4 h and then stained for junction proteins, claudin-5, and VE-cadherin.
(a) Representative images of claudin-5 and VE-cadherin staining are shown with and without 400 µM
HOSCN treatment for 4 h. Gaps between endothelial cells and localisation changes for claudin-5 were
quantified for (b,c) treatments with 400 µM HOSCN for up to 4 h. n = 3, and (d,e) for treatments with
different concentrations of HOSCN for 4 h. n = 3, and (f,g) for cells treated with 100 µM HOSCN
for up to 4 h. n = 3–5. One-way ANOVA; *—p < 0.05, **—p < 0.01, ***—p < 0.001 vs. vehicle control.
(h) Fluorescent intensity of both claudin-5 and VE-cadherin was measured. n = 4. Scalebar = 50 µm.
Two-way ANOVA; *—p < 0.05 vs. vehicle control.

3.3. HOSCN Disrupts BEC Cytoskeletal Structures

Actin has well-documented roles in endothelial barrier function [26]. However, we
found little evidence of profound actin disruption; no visible actin stress fibres appeared,
and actin was still present at cell junctions following HOSCN treatment (Figure 3a). Micro-
tubules, on the other hand, were lost quickly after HOSCN treatment (Figure 3b). Growing
microtubules were visualised by the presence of end-binding protein-1 (EB1) [27]. BECs
exposed to various concentrations of HOSCN had significantly decreased EB1 comets per



Antioxidants 2022, 11, 608 7 of 13

cell (Figure 3c). This effect was seen 30 min after HOSCN treatment (Figure 3d,e), similar
to the kinetics of altered claudin-5 localisation.

Figure 3. Cytoskeletal structures are disrupted in brain endothelial cells (BECs) treated with hypoth-
iocyanous acid (HOSCN). BECs were stained for (a) end-binding protein 1 (EB1) to visualise growing
microtubules and (b) paxillin to visualise focal adhesions on actin structures. Scale (a) = 100 µm,
(b) = 50 µm. The number of EB1 comets per cell was quantified, and results are normalised to control
conditions. Representative images are shown for vehicle and treatment with 400 µM HOSCN for
4 h. (c) The amount of EB1 is shown for increasing concentrations of HOSCN when treated for 4 h
and when treated with (d) 400 µM and (e) 100 µM HOSCN for up to 4 h. Scalebar = 50 µm. n = 3.
One-way ANOVA—*—p < 0.05, ***—p < 0.001 vs. vehicle control.

3.4. HOSCN Removal Prevents Barrier Dysfunction

Since HOSCN affected microtubules and endothelial junctions within 30 min, but a
loss in permeability was not detected until an hour post-treatment, we wanted to investi-
gate whether the removal of HOSCN after 30 min would prevent barrier loss in BECs, or
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whether the changes were irreversible. After the treatment of BECs for 30 min, the media
was removed and replaced with fresh media. The short-term treatment with both 100 µM
and 400 µM of HOSCN did not have the same impact on resistance or dextran permeability
as leaving the HOSCN for an extended period (Figure 4a,b), and it also prevented the cell
death observed at the higher concentration of HOSCN (Figure 4c). Live imaging showed
that evidence of cell death with 400 µM HOSCN started 20–25 min after treatment (Supple-
mentary Videos S1–S3). Indeed, little cell death was seen in untreated BECs (Supplementary
Video S1), or BECs treated with 100 µM of HOSCN (Supplementary Video S2). However,
exposure to 400 µM HOSCN led to BEC death within 30 min (Supplementary Video S3).
This is consistent with limited cell death when HOSCN was removed after 30 min.

Figure 4. Short exposure of brain endothelial cells (BECs) to hypothiocyanous acid (HOSCN) does
not impair endothelial barrier function. BECs were grown on transwells up to 14 DIV until an average
barrier resistance of at least 100 Ω·cm2 was reached. BECs were treated with HOSCN or vehicle for
up to 24 h. Fresh media (FM) was given 30 min after HOSCN treatment. (a) Transendothelial electrical
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resistance (TEER) was measured over time. n = 4. Two-way ANOVA—*—p < 0.05, **—p < 0.01,
***—p < 0.001. (b) Concurrently, dextran 4 kDa labelled fluorescein isothiocyanate (FITC) (100 µg/µL)
leakage to the outer well was measured 24 h after HOSCN treatment. n = 4. Two-way ANOVA—
**—p < 0.01, ***—p < 0.001. (c) Cell death was measured 24 h after HOSCN treatment was given. Total
cell count and cell death were visualised with Hoechst33452 and propidium iodide (PI), respectively.
n = 3. (d) BECs were treated with 400 µM HOSCN for 30 min and 4 h for HOSCN + FM and HOSCN
groups, respectively. Media with HOSCN was replaced with fresh media to remove HOSCN. BECs
were stained for DAPI, alpha-tubulin (α tub), and end-binding protein 1 (EB1). Scale = 100 µm.

4. Discussion

Prior work has shown that hypothiocyanous acid (HOSCN) affects endothelial cells by
altering cell morphology, caspase activity, inflammatory activation, and calcium homeosta-
sis [11–13]. However, the impact of HOSCN on brain endothelial cell (BEC) morphology
and blood–brain barrier (BBB) function has not been addressed. In this study, we found that
sublethal concentrations of HOSCN significantly lowered BEC barrier resistance, translo-
cated the main tight junction (TJ) protein claudin-5 from sites of cellular contact, and
increased gap formation. HOSCN also caused a rapid loss of polymerising microtubules,
which may be an important structure in maintaining TJ integrity. Altogether, these findings
point to HOSCN formation in the brain vasculature as having a significant impact on
the BBB.

HOSCN can be produced by various heme peroxidases, but neutrophil recruitment
and the release of myeloperoxidase (MPO) during vascular inflammation are the most
likely sources for HOSCN that impact brain endothelial cells. Indeed, it is found that
neutrophils drive an increase in MPO in the brain in Alzheimer’s disease (AD), through
their accumulation in the vasculature and the formation of neutrophil extracellular traps,
providing a peripheral target [28]. MPO has been a target for several neurological disorders,
with inhibition showing beneficial outcomes in Parkinson’s disease (PD) and AD patients,
and in murine stroke or atherosclerosis models [29–32], whereas in an animal model for
multiple sclerosis (MS), the presence of MPO seems to have a protective function [33].

SCN− plasma levels vary strongly between individuals due to diet and smoking [15,34].
It is difficult to estimate the levels of oxidant exposure that individual cells will experience
in biological systems. Even with longer-lived oxidants such as HOSCN, it will be the
cells closest to the source of production that will be exposed to the highest concentrations.
This is not replicated in vitro with reagent HOSCN, but we consider the effects observed
at sublethal concentrations to be of biological relevance, and only a small number of en-
dothelial cells need to be disrupted in vivo to have an adverse impact on the BBB. A better
understanding of how HOSCN affects BBB function would provide alternative opportuni-
ties for intervention. Since we observed overt morphological changes in BECs following
HOSCN treatment, we hypothesised that changes to the cytoskeleton may underlie these.
Indeed, we found a rapid loss of polymerised tubulin. We hypothesise that this allows
the retraction of endothelial cells from one another following the disassembly of tight and
adherens junctions to facilitate gap formation. Indeed, other reports indicate that HOSCN
inhibits the polymerisation of β-actin and β-tubulin structures, thus disrupting important
structures to maintain EC barrier properties [22,35–37]. Although actin disruption is more
established in its involvement in increasing EC permeability [17,38–40], our results show no
overt differences in actin structure reorganisation, but a rapid loss of microtubule growth.
Microtubule dynamics are understudied in EC barrier function relative to actin; however,
microtubule-disrupting agents such as nocodazole or vinblastine decrease cortical actin
and promote EC contraction and increased EC barrier permeability [41].

HOCl, H2O2, and superoxide have been previously reported to decrease the integrity
of BEC monolayers [42–45]. Barrier leakage is accompanied with the redistribution of TJ
proteins and the cytoskeleton [46,47], consistent with what we observed with HOSCN.
The function of many tight and adherens junction proteins is regulated by oxidative pro-
cesses. Indeed, the TJ protein occludin is sensitive to changes in the redox state of the
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cell, including glutathione content [18,19]. Claudins also contain a disulfide bridge in
extracellular loop (ECL) 1 (paracellular sealing) [20], but not in ECL2, which is essen-
tial for trans-interactions [48,49]. A loss of dimerisation of claudin-5 by ECL2 mutants
showed no enrichment of claudin-5 at cellular contact sites but exhibited homogenous
claudin-5 distribution over the cell membrane away from sites of cellular contact, similar to
our observations [48]. This would indicate that HOSCN may disrupt the anchoring and
formation of trans-interactions of claudin-5 proteins. Although claudin-5 plays a role in the
size-selectivity of tight junctions, here, we observe profound changes to endothelial junc-
tions. The redistribution of claudin-5, loss of VE-cadherin, and formation of macroscopic
gaps between cells indicate that there is broader junctional dysfunction upon exposure
to HOSCN that leads to non-selective permeability to small and large molecular weight
molecules, as measured by TEER and 4 kDa dextran, respectively [50].

Adherens junction VE-cadherin is an important regulator of endothelial barrier func-
tion by scaffolding junctional proteins. We observed an almost complete loss of VE-cadherin
staining following HOSCN treatment, and we hypothesise that removing this scaffold may
lead to the redistribution of claudin-5 across the cell. Interestingly, a loss of VE-cadherin
also occurs after H2O2 treatment before endothelial permeability is detected [51]. It is
possible that VE-cadherin is uniquely sensitive to oxidative changes and allows dynamic
reorganisation of endothelial junctions during oxidative stress. Strikingly, these changes in
endothelial junction organisation were accompanied by the formation of macroscopic gaps
between cells. Although we only examined how HOSCN influences BECs at the popula-
tion level here, it is possible that these redox-sensitive mechanisms may be important in
the migration of immune cells across the BBB. The production of HOSCN by infiltrating
neutrophils may locally promote gap formation between endothelial cells to allow their
trafficking across the BBB. It will be important to test if MPO−/− neutrophils have the
same capacity to migrate across endothelial barriers in vitro and in disease models such as
experimental autoimmune encephalomyelitis.

5. Conclusions

Neuroinflammation occurs in several neurological disorders, such as AD, PD, and
stroke [33–35], and causes the recruitment of neutrophils to the BBB [8,9]. It is likely that
MPO generates HOSCN at the BBB; however, the consequence of its production and how it
contributes to disease pathology are unknown. We find that HOSCN has drastic effects on
BECs, causing a rapid loss of barrier integrity underpinned by cytoskeletal changes and
changes to the endothelial junction structure. These changes culminate in the formation of
macroscopic gaps between endothelial cells that, we hypothesise, may facilitate neutrophil
trafficking. It will be important to determine whether MPO plays a role in the formation of
these gaps, and if it influences neutrophil transmigration in neuroinflammatory conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11040608/s1, Video S1: Live imaging of untreated brain
endothelial cells, Video S2: Live imaging of brain endothelial cells exposed to 100 µM HOSCN,
Video S3: Live imaging of brain endothelial cells exposed to 400 µM HOSCN, Video S4: Formation of
gaps between brain endothelial cells exposed to HOSCN.
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