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Abstract Activation of telomerase is a critical step in the

development of about 85 % of human cancers. Levels of

Tert, which encodes the reverse transcriptase subunit of

telomerase, are limiting in normal somatic cells. Tert is

subjected to transcriptional, post-transcriptional and epige-

netic regulation, but the precise mechanism of how

telomerase is re-activated in cancer cells is poorly under-

stood. Reactivation of the Tert promoter involves multiple

changes which evolve during cancer progression including

mutations and chromosomal re-arrangements. Newly

described non-coding mutations in the Tert promoter region

of many cancer cells (19 %) in two key positions, C250T

and C228T, have added another layer of complexity to

telomerase reactivation. These mutations create novel con-

sensus sequences for transcription factors which can

enhance Tert expression. In this review, we will discuss gene

structure and function of Tert and provide insights into the

mechanisms of Tert reactivation in cancers, highlighting the

contribution of recently identified Tert promoter mutations.

Keywords TERT reactivation � NF-jB �
Tert promoter mutation � Transcription � Cancer

Telomere and telomerase holoenzyme

Telomeres are conserved, repetitive sequences located at

the ends of eukaryotic chromosomes which protect the

integrity of genomic DNA [1, 2]. DNA polymerase is

unable to replicate the 50 ends of chromosomes, hence,

cells require a RNA dependent DNA polymerase called

telomerase to synthesize DNA on the lagging strand [3–5].

Telomerase activity is tightly regulated and seen mainly in

germ cells, stem cells and some immune cell types which

have high proliferative needs. In contrast, somatic cells do

not display detectable telomerase activity [6]. As a result,

the chromosomes of normal somatic cells shorten

50–200 bp each replication at the telomeres due to the

problem of end replication. Thus, somatic cells are even-

tually burdened with DNA damage, replication crisis,

cellular senescence or apoptosis and can divide only lim-

ited number of times [7], whereas cells that have active

telomerase possess unlimited proliferative potential.

Telomerase was discovered by Carol Greider and Eliz-

abeth Blackburn in 1984 from ciliate Tetrahaymana [5].

Telomerase holoenzyme is comprised of a catalytic sub-

unit, hTERT (human telomerase reverse transcriptase) that

has reverse transcriptase activity and an RNA component,

hTR (human telomerase RNA component) which primes

DNA synthesis from telomere repeats. The three dimen-

sional structure of human telomerase is yet to be fully

understood. To date, it remains a challenge to purify and

crystallize the entire telomerase complex due to its low

abundance (estimated to be approximately 20–50 mole-

cules of telomerase per HEK-293 cells [8], and estimated

*250 molecules even in the highly telomerase active

cancer cell lines [9]), insolubility problems, and also the

requirement of substantial enrichment. Biochemical char-

acterization, however, suggests that hTERT and hTR are
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sufficient to recapitulate telomerase activity in vitro;

however, other cellular factors may be required for basal

in vivo activity. Mass spectrometric studies and reconsti-

tution approaches suggest that telomerase has a minimum

molecular weight of 650–670 kD and each component

appears as a dimer in the core complex including hTERT

127kd, hTR 156kd, DKC1 (dyskerin) 57 kD and Nop10

9 kD [10]. Cohen et al. also demonstrated that telomerase

can occur as a dimer [8], but in a recent study Wu et al.

showed that telomerase can also function as a monomer

and is able to add telomeric ends [11]. Furthermore, pro-

teins like Pontin, Reptin, Gar1, Nhp2, and Tcab1 were

shown to be transiently associated with the telomerase core

complex and are thought to be required for proper telom-

erase assembly and recruitment to chromosomes [12, 13].

Current knowledge proposes that the limiting factor for

telomerase activity is the level of TERT which is kept

under tight transcriptional control. Expression of Tert

mRNA in somatic cells is sufficient to reconstitute telom-

erase activity [14–16] and expression levels of Tert always

show strong correlation with telomerase activity [17, 18].

Although the level of RNA component of the telomerase

holoenzyme hTR is high in all tissues regardless of

telomerase activity [19] it is generally expressed at a lower

level in normal somatic cells as compared to cancer cells

[20]. Furthermore, half-life experiments for hTR showed a

higher turnover rate (*5 days) in somatic cells, whereas

the half-life is proposed to be between 3 and 4 weeks in

cancer and highly proliferative stem cells [20]. Most cancer

cells have more than 10,000 hTR molecules per cell

whereas quantification studies by competitive RT-PCR

assays show that hTert mRNA range between 1 and 30

molecules in human cancer cells [21]. Other quantification

studies determined that TERT protein numbers range

between 600 and 700 molecules per cell in HeLa cells [22].

It was also reported that the half-life of hTert mRNA is

only 2–3 h [23], while the half-life of active telomerase

complex appears to be approximately 24 h according to

activity assays [24]. These observations indicate that hTR

is essential for the activity of telomerase; however, the

limiting factor for telomerase activity is strictly dependent

on transcription of hTert mRNA with confounding effects

on the stability of the complex by yet unidentified factors.

On the other hand, it is noteworthy that hTR can be the

limiting factor for telomerase activity in some cases like in

the fibrosarcoma-derived HT1080 cells [25]. In general,

these results underlie the complexity of telomere mainte-

nance but overall any defect in telomere maintenance

failure results in general genomic instability. In particular,

DNA damage, increased cellular senescence and organ

degeneration are key features of aging phenomena due to

telomere shortening [26–28].

Telomerase reactivation in cancer cells

Tert expression is reactivated in*85 % of all cancers [29].

Recently numerous reports have indicated oncogenic

effects of TERT independent of its role in telomere elon-

gation [30–32]. Telomere length in mice (20–50 kb) is

greater than in humans (5–10 kb) [33–35]. However, Tert

expression is upregulated in murine breast [36] and skin

[37] tumors despite their long telomeres. These results

suggested that TERT could be playing other roles in can-

cer. Moreover, overexpression of Tert resulted in increased

cell proliferation in mammary carcinomas [38] and epi-

dermal tumors [39] in mice. Similarly, increased

expression of Tert initiated T cell lymphomas in mouse

thymocytes [40] without significant changes in telomere

length, thereby supporting its telomere independent role

[32]. Moreover, in human cancer cell lines, knocking down

Tert resulted in rapid decreases in cell proliferation and

growth [41]. Mechanistically, TERT was shown to indi-

rectly associate with promoters of NFjB target genes

interleukin (IL)-6, tumor necrosis factor (TNFa) and IL-8,

which are critical for inflammation and cancer progression,

to increase expression [42]. Expression of catalytically

inactive Tert in mouse model led to the activation of hair

follicle stem cells and induction of hair growth [43].

Although the major function of telomerase is thought to be

telomere elongation, accumulating evidence has suggested

that it can modulate expression of various genes including

target of Wnt/b-catenin [44] and NFjB signaling [42]

which affect cancer progression and tumorigenesis [45].

High throughput genomic and transcriptomic analysis has

revealed that TERT can regulate expression of about 300

genes involved in cell cycle regulation, cellular signaling,

and cell proliferation [46]. Non-canonical roles of telom-

erase have been discussed previously [31, 32], hence in this

review we will be focusing on Tert re-activation via reg-

ulation of Tert transcription.

Structure of Tert gene

The hTert gene is 42-kb long and located on chromosome 5

with 16 exons. The reverse transcriptase domain is coded by

exons 5–6–7–8–9. It has been suggested that the telomerase

transcript containing 16 exons can be spliced into 22 iso-

forms [47] but only full length Tert transcript possesses

reverse transcriptase activity essential for elongating

telomeres [48, 49]. The most commonly studied isoforms in

cancer cell lines involve exon 6–9 that partially encode the

reverse transcriptase domain [49]. Alternative spliced iso-

forms within this region produce isoforms named minus

alpha, minus beta and minus alpha/beta. Minus alpha
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isoform is spliced from a 36-bp acceptor site into exon 6

that creates dominant-negative protein without reverse

transcriptase activity [49]. Overexpression of the minus

alpha form resulted in inhibition of telomerase which leads

to either cell death or senescence [50]. The minus beta

isoform has a stop codon in exon 10 due to a frameshift after

skipping exons 7 and 8. This isoform is the most common

form among cancer cell lines. Although minus beta Tert is

subjected to non-sense mediated mRNA decay due to a

premature stop codon, it has been shown that its transcripts

can be translated into protein [51]. Listerman et al. have

reported that overexpression of the minus beta form com-

peted for hTR with endogenous telomerase activity. In their

study, Listerman and colleagues reported that overex-

pressed minus beta form conferred a growth advantage in

breast cancer cells by protecting cells from cisplatin-in-

duced apoptosis [52]. However, it remains to be determined

why cancer cells preferentially express the catalytically

inactive minus beta spliced variant of Tert. Tert isoforms

can be expressed in a given cell simultaneously; however,

ratios may differ among different cell types according to

external stimuli [51]. Deletions/insertions distant from the

RT domain also result in truncated forms of TERT protein,

the functions of which are not fully understood and need

careful characterization.

The Tert promoter has complex regulation dynamics

whereby multiple transcriptional regulatory elements play

functional roles in different contexts either individually or

interactively. Although the Tert promoter does not have

typical transcription regulatory elements like TATA and

CAAT boxes [53], it contains recognition sequences for

multiple important transcription factors such as p53, p21,

SP1, ETS, E2F, AP1, HIF1 and c-myc (Fig. 1) [54–62].

Increasing evidence shows that the level of telomerase

activity is primarily regulated through levels of Tert which

are primarily controlled by transcription of Tert gene.

Although the transcription factors stated above may alter

the ability to regulate Tert transcription under specific cell

type and physiological conditions, none of them are suffi-

cient on their own to promote immortalization of somatic

cells [63].

The Tert promoter region contains E-boxes and GC-

boxes which are the consensus binding sites for transcrip-

tion factors c-myc and SP1, respectively. These factors are

known to regulate many cellular events like cell growth,

apoptosis, and chromatin remodeling. Sp1 and c-myc

cooperatively regulate Tert expression in a cell type

specific manner [58]. One of the prominent characteristics

of Tert promoter is its high GC-rich content without a

typical TATA box or a CCAAT box. There are five GC-

boxes in the proximal Tert promoter which serve as SP1

binding port and two E-boxes (CACGTG) located in the

-165 and ?44 regions which are targetable by c-myc

and\or max proteins through their helix–loop–helix leucine

zipper domains [58]. Luciferase reporter assays reveal that

deletion of the E-box at the -165 position results in 60 %

reduction in transcriptional activity in C33A and ME180

cells but not in SiHa cells. Interestingly, mutating the other

E-box domain at position ?44 led to a 60 % reduction only

in ME180 cells. Expression of estrogen, a sex hormone,

exhibits a strong concordance with Tert transcription.

Mutations in the estrogen receptor (ER) binding sites of

Tert promoter dramatically reduced Tert transcription.

Moreover, c-myc is a known target of ER and some other

growth factors. Kyo et al. demonstrated that the effect of

estrogen was completely abrogated upon mutating E-boxes

in proximal Tert promoter [57]. Furthermore, mutating the

GC-box, located -32 from TSS, reduced transcription by

20–40 % in all cell lines and a 90 % reduction was

detected when all SP1 binding sites were mutated [58]. We

can thus conclude that Sp1 binding sites (GC-boxes) are

essential for Tert transcriptional activity and E-boxes can

accelerate transcription in a cell-type specific manner. E2F

transcription factors are involved in cell cycle regulation

and DNA synthesis [64, 65]. Ectopic expression of E2F1

repressed Tert promoter activity through inhibition of SP1

binding to DNA in cancer cells. In contrast, overexpression

of E2F1 in normal human fibroblasts increased Tert pro-

moter activity through a non-canonical E2F1 site which is

located –51 to –88 [66]. All these data suggest that E2F1

has a dual role for regulating Tert expression that requires

further investigation.

The tumor suppressor gene p53 has two binding sites

-1240 and -1877 upstream of the transcription start site

of the Tert promoter (Fig. 1). Overexpression of p53

together with SP1 leads to suppression of Tert expression

while siRNA silencing of p53 delays senescence but is

insufficient to drive cells to an immortal state [67, 68].

Overexpression of Tert is not sufficient to drive cells to the

immortal state as well. Tert expression and telomerase

activity could be enhanced by suppression of p53; how-

ever, both actions are required for immortalization of

primary human ovarian surface epithelial cells [67, 68].

NFjB is a key regulator of innate and adaptive immu-

nity which is essential for host defense [69, 70]. Activated

NFjB activates the expression of target genes that are

responsible for cell survival, proliferation, differentiation

of cells and for mounting appropriate immune responses

for host defense [71]. NFjB was also reported to be

associated with tumorigenesis and chemoresistance [71,

72]. The Tert promoter contains a NFjB binding site

upstream of its translation start site. A significant increase

in Tert expression was observed through NFjB activation

[73]. Moreover, NFjB can mediate TERT translocation to

the nucleus from the cytoplasm whilst IKK2 inhibitors can

reverse this effect in MM.1S cells [74].
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The PI3K-AKT pathway regulates various cellular

events such as proliferation and differentiation which are

important in tumorigenesis [75]. It has been reported that

Tert expression was increased by receptor tyrosine kinases

and VEGF which are controlled by PI3K in ovarian cancer

cells [76]. Moreover, Tert expression is increased

depending on two VEGF isoforms, VEGF165 and

VEGF189, which are also positively regulated upon Tert

expression regardless of its telomeric function in HeLa

cells [77]. Under physiological conditions, all of the

molecules listed above are responsible for specific cellular

processes and almost all somatic cells can achieve these

processes without reactivating their Tert gene. However,

multiple changes and impairments evolve during cancer

progression that cause chromosomal re-arrangements,

point mutations, deletions/insertions, translocations and

copy number changes.

The Tert gene has a GC rich promoter which contains

three CpG islands [53, 78]. Methylation of gene promoters

is generally known to repress transcription; however, sev-

eral studies revealed complex methylation patterns for the

active/inactive Tert promoter. The Tert promoter region

has a CpG island (positions -1100 to ?150), that is mostly

hypermethylated through specific DNA methyltransferases

(DNMTs) in cancer cells [79]. The Tert promoter between

-150 and ?150 represents a usual pattern of gene

expression. Absence of methylation causes constitutive

expression particularly in this region, hypermethylation of

50 Tert promoter prevents binding of methylation sensitive

CTCF repressor to the first exon; however, partial

hypomethylation of core promoter is required for Tert

transcription. Thus, Tert promoter methylation represents a

unique model for transcription in which hypermethylation

of cytosine islands causes inhibition of Tert expression and

this differs among different cell types [79, 80]. Hyperme-

thylation of the Tert core promoter results in low

telomerase activity and better survival rate in B cell

chronic lymphocytic leukemia [81]. On the contrary, sev-

eral studies reported that hypermethylation in telomerase

active cancer cells and hypomethylation of normal tissues

may inhibit binding of repressor elements to the Tert pro-

moter region and enhance transcriptional activity [78, 80,

82–84]. A comprehensive study by Renaud et al. demon-

strated that the Tert promoter in most cancer cell lines is

heavily methylated between -500 and -600 bp upstream

of TSS; however, they tend to be partially methylated at

TSS region [79]. The Myc/Max proteins are responsible for

recruiting Histone Acetyl transferases (HATs) to the pro-

moter regions where they can bind through their consensus

sequences [85]. Increased acetylation of H3 and H4 his-

tones creates more open chromatin structure, thereby

enhancing the accessibility of other transcription regulatory

elements. However, Mad proteins could bind to the same

E-boxes and heterodimerize with Max proteins that act

antagonistically to inhibit transcription [86].

In conclusion, Tert promoter specific methylation anal-

ysis revealed a complex/unusual methylation pattern for

the promoter region, indicating that distal and proximal
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Fig. 1 Schematic of Tert promoter region with regulatory protein

binding sites and de-novo mutations. The ?1 and ?78 (ATG)

indicates transcription start site (TSS) and first codon for TERT

protein, respectively. Dark blue regions correspond to CpG islands.

Highly recurrent mutations C228T and C250T are shown at -46 and

-68 positions from TSS. The rs2853669 polymorphism is shown in

ETS2 binding site (-167 from TSS). The sites on the promoter are

not precisely scaled
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promoter regions have different methylation patterns that

can be partially modified due to activation or inactivation

of the Tert gene. These results highlight importance of

chromatin modifiers, especially the roles of histone methyl

transferases and demethylases in transcription dynamics.

Tert promoter mutations in cancer

Point mutations in the Tert promoter are highly recurrent in

cancer cases including glioblastoma, melanoma, urothelial,

bladder, hepatocellular carcinoma, and thyroid cancers

[87–91]. These mutations generally create new consensus

motifs for transcriptional regulators like ETS/TCF factors

and are associated with increased Tert mRNA (Fig. 2).

Therefore, point mutations in the Tert promoter could

unravel a novel mechanism for Tert reactivation in cancer

cells. Recurrent mutations have been identified in

Chr.5:1,295,228(C[T) or (CC[TT), Chr.5:1,295,250 C[T,

Chr.5:1,295,242_1,295,243CC[TT mutations in 19 % of

cancers [90].

Alternative lengthening of telomeres (ALT) is a recom-

bination-based mechanism that is activated in the absence of

telomerase activity. ALT recombination is stimulated by the

signals of double-strand DNA break and meiotic HOP2-

MND1 heterodimer induces RAD51 and DMC1 mediated

recombination [92]. ALT is observed frequently in sarcomas

(25–60 %) [93], brain tumors (10–25 %) [93], and pancreatic

neuroendocrine tumors (40 %) [92], but is rare in colon,

breast, lung, prostate and pancreas cancers. Generally, can-

cers with ALT show poor prognosis as compared to

telomerase activity. However, glioblastomas with ALT rep-

resent two- to threefold longer survival [92, 94]. Recently it

was also shown that mutations in ATRX or DAXX genes

cause increase in non-coding RNA TERRA expression

which is known to inhibit telomerase activity [95–98]. Fur-

thermore, TERRA can induce ALT through R-loop

formation in telomeres [92]. ATRX and DAXX alter

telomeric chromatin dynamics that function as a chromatin

remodeler and histone chaperone, respectively. Therefore,

cells having these mutations depend on ALT for telomere

maintenance. Interestingly, ATRX/DAXX genes and Tert

promoter mutations are mutually exclusive [87]. Besides,

there are subpopulations that display both ALT and telom-

erase mechanisms for telomere maintenance [99] which

could be a temporary/transient stage before final commit-

ment to ALT and/or telomerase as the major telomerase

mechanism depending on the cellular context and other

signaling milieu. However, there is very little knowledge

regarding the mechanism by which cells can utilize both

mechanisms or how they choose between ALT or telomerase

as a preferred mechanism to maintain their telomeres.

Hepatocellular carcinomas (HCCs) are the third leading

cause of cancer deaths and are mostly associated with

- - - CCCCTTCCGGGTCCCCG - - -
p52

Tert Promoter
(Wild Type)

TERT promoter
(C250T mutation)

ETS1/2

- - - CA GCCCCTTCCGGGCCCT - - -

GABP

Tert mRNA Tert mRNA

Tert mRNA

- - - CCCCTCCCGGGTCCCCG - - -

TERT promoter
(C228T mutation)

- - - GGGGAGGGCCCAGGGGC - - -

- - - GGGGAAGGCCCAGGGGC - - - - - - GT CGGGGAAGGCCCGGGA - - -

Tert Reactivation
in Cancer

GABP

Fig. 2 Highly recurrent mutations C228T and C250T create novel

ETS binding sites in Tert promoter. Tert promoter with wild type,

C250T and C228T are shown with their reported binding partners.

Red and green rectangular boxes indicate ETS and p52 consensus

sites on Tert promoter, respectively. ETS1/2 and p52 binds Tert

promoter harboring C250T mutation while GABP binds to Tert

promoter bearing either C250T or C228T mutation, resulting in

increased Tert mRNA expression
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hepatitis B or C virus infection while a minority is asso-

ciated with alcoholic cirrhosis, obesity and rare genetic

diseases [100, 101]. Recently, somatic mutations in the

Tert promoter region have been reported in HCC. Killela

et al. reported that 44 % of HCC tumor samples have Tert

promoter mutations (27/61) and the mutations tend to

occur relatively early during tumorigenesis [87]. Other

teams have also identified these mutations and, according

to recent reports, Tert promoter mutations are less frequent

in Eastern countries (29 to 31 % of HCC), whereas

54–60 % of HCC are mutated in Western countries [87,

102–104]. The most frequent Tert promoter mutations in

HCC (93 %) were observed at the first hot spot and consist

of G to A (-124G[A) mutations. While mutations in the

second hot spot -146 bp G to A substitutions (-146G[A)

were significantly less frequent than those found in mel-

anoma (46 %) [105]. Interestingly, Tert promoter

mutations are more frequent in older patients and signifi-

cantly associated with activating mutations of the beta

catenin pathway [103, 105]. These data suggest that

aberrant activation of the b-catenin pathway associated

with Tert promoter mutations can be one of the mecha-

nisms of telomerase reactivation in HCC. Taken together,

these data suggest that somatic mutations in the Tert

promoter region are one of the most frequently observed

genetic alterations in human HCC. Although Tert ampli-

fication and insertion of HBV in the Tert promoter has

been considered as the alternative mechanism leading to

telomerase reactivation in HCC [106, 107], identification

of Tert promoter mutations in HCCs has opened new

insights into telomerase reactivation and telomere main-

tenance in liver carcinogenesis.

Bladder cancers represent the most common urinary

tract cancer worldwide [108, 109] and recent studies have

showed that Tert promoter mutations are the most common

mutations in all stages and grades of bladder cancer with an

even distribution [110–112]. In addition, the frequency of

Tert promoter mutations detected in these studies was

higher than any earlier reported genetic alteration in any

gene in bladder cancer [112, 113]. Tert promoter mutations

were detected in both low-grade and high-grade tumors of

bladder cancer [90] and, in particular, the -124C[T

mutation was detected as the most frequent alteration in

175 (53.5 %) tumor samples [112]. In contrast, the preva-

lence of ALT in bladder cancer is as low as 1 % in 188

samples [114]. Intriguingly, Tert promoter mutations in

conjunction with the identified common polymorphism

have effects on both survival and recurrence in bladder

cancer. The common polymorphism rs2853669 from

-245 bp ATG start site in the Tert promoter acted as a

modifier of survival and recurrence in bladder cancer

patients. Bladder cancer patients who do not harbor a

variant allele of rs2853669 showed almost twofold

reduction in survival and increased disease recurrence.

Mechanistically, the variant allele of polymorphism dis-

rupts a pre-existing non-canonical ETS2 binding site in the

proximal region of the Tert promoter, adjacent to an E-box

(Fig. 1). This mechanism is in contrast to the two highly

recurrent Tert mutations which generate an ETS/TCF

binding site [112]. Disruption of the ETS2 binding site in

Tert promoter or silencing of ETS2 in breast cancer cells

has been shown to result in decreased Tert expression and

cell proliferation due to the disabling of c-Myc binding to

the E-box in Tert promoter [62]. Moreover, the variant

allele of the SNP has been previously shown to affect

telomerase expression and telomere length maintenance in

non-small lung cancers [115]. Tert promoter mutations in

combination with the polymorphism can have the potential

to serve as clinical biomarkers for prediction of survival

and recurrence in bladder cancer patients [112].

Another cancer type that harbors Tert promoter muta-

tions is urothelial cancers (UC). Borah et al. reported that

when compared to -146C[T mutation, -124C[T muta-

tion is a frequently altered lesion in 23 UC cell lines

derived from different stages and grades, including muscle

invasive and non-invasive tumors. These promoter muta-

tions provide increased Tert mRNA levels with an 18-fold

increase in median value according to qRT-PCR analyses.

Although most of these transcripts were found to be

alternatively spliced variants of Tert which lack functional

reverse transcriptase activity, both TERT protein and

telomerase enzymatic activity were higher in tumor sam-

ples harboring promoter mutations. However, compared to

the 18-fold increase in Tert mRNA level, they reported

much more modest 2-fold increases in the TERT protein

and telomerase activity that may indicate higher expression

of inactive Tert isoforms [91]. These results revealed that

Tert promoter mutations are an effective strategy to boost

the level of telomerase activity in UC which do not employ

ALT [114]. It remains to be determined why cancer cells

express catalytically inactive TERT isoforms and whether

expression of specific isoforms would change in cancers

harboring promoter mutations.

Thyroid cancer is an endocrine malignancy that can be

classified into two common groups: papillary (*85 %) and

follicular (*10 %) thyroid cancers. C228T mutation was

observed in 30 of 257 (11.7 %) papillary thyroid cancers

(PTC) and 9 of 79 (11.4 %) follicular thyroid cancers

(FTC) while interestingly, no mutations were detected in

benign thyroid tumors (0 of 85). C250T mutation was

uncommon in all groups of thyroid tumors, but is mutually

exclusive with C228T mutation. BRAF (v-Raf murine

sarcoma viral oncogene homolog B) mutation (V600E),

which activates the MAPK pathway, is commonly

observed in thyroid cancers [116]. It is also known that

cancers harboring BRAF mutation are more aggressive
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than WT counterparts [117]. Tert C228T mutation was

correlated with BRAF mutation and it was reported that 19

of 104 cases (18.3 %) coexist in PTC while 11 of 153

(7.2 %) BRAF negative tumors exclusively harbor C228T

mutation. In a separate study, BRAF mutation was found to

exist in 19 of 30 (63.3 %) C228T mutant tumors, and 85 of

227 (37.4 %) C228T negative tumors [118]. Similarly,

Vinagre et al. investigated Tert promoter mutations in large

thyroid cancers categorized as normal, benign and malig-

nant lesions. Tert promoter mutations were only detected in

malignant lesions in 11 % of PTCs, 14 % of FTCs, 21 % of

poorly differentiated thyroid carcinomas and 13 % of

anaplastic carcinomas. The majority of these mutations

were C228T. Correlation analysis revealed that Tert pro-

moter mutations were highly associated with larger tumor

size, older patients, lymph node metastasis and BRAF

(V600E) mutation. Tert mRNA was also significantly

higher in patients with BRAF and Tert promoter mutation

[90]. These results indicate that Tert promoter mutation is

prevalent in more aggressive tumors.

Gliomas are the most common cancer of the central

nervous system (CNS), with four major subtypes including

primary glioblastoma, astrocytoma, oligodendriogliomas

and oligoastrocytomas [119]. Primary glioblastomas are

the most common glioma among adults with very poor

survival rates. It was shown that 83 % of the 78 tumors

analyzed harbored Tert promoter mutations which were

correlated with high Tert expression levels and poorer

patient survival [87]. Remarkably, EGFR amplification, a

common phenomenon in GBM tumors, was observed to be

mutually exclusive with Tert mutations [87]. Astrocytomas

are another frequently occurring glioma subtype. This

group displays rare Tert promoter mutations (10 %);

however, IDH1 and IDH2 mutations (75 %) as well as

ATXR mutations (70 %) are common, which is also cor-

related with the high prevalence of ALT (63 %) in these

gliomas. In contrast to astrocytomas, oligodendrogliomas

frequently (78 %) harbor Tert promoter mutations. Inter-

estingly, more than 90 % of this glioma subtype seems to

strictly depend on mutations either in ATRX gene or Tert

promoter for telomere maintenance, indicating the

requirement of these genetic alterations for tumorigenesis

of this subtype. Oligoastrocytomas have features of both

astrocytomas and oligodendriogliomas and have a 25 %

frequency of Tert mutations [87].

Recently it was reported that 15 % of grade II and III

glioblastoma patients had Tert promoter mutations in their

genome; however, the mutation rate increases dramatically

in grade IV patients to 76 % [90]. Patients with Tert pro-

moter mutations in combination with common gene

alterations found in gliomas including IDH mutations and

1p19q deletion showed poorer survival rate as compared to

patients without Tert mutations [120]. This is a clear

indication that these promoter mutations increase the

malignancy of gliomas through Tert activation.

Although a majority of neuroblastoma tumors possess

Tert promoter mutations, alternative genetic alterations like

copy number increase and Tert gene re-arrangements

leading activation of Tert have been observed in cancer

patients. Genome wide sequencing analysis of neuroblas-

toma patients revealed recurrent Tert gene re-arrangements

occurring at 5p15.33 region leading to a juxtaposition of

the Tert promoter with strong enhancers. Tert re-arrange-

ment was observed in 13 % (28 of 217) of high-risk

neuroblastoma tumors. Patients with these re-arrangements

had increased Tert mRNA expression and poor survival

rate. Moreover, multiple active enhancer clusters were

detected in the translocated regions adjacent to Tert rear-

rangements indicating that translocation of cis-acting

regulatory elements can cause up-regulation of Tert

expression [121]. These results suggest that genomic

rearrangements rather than Tert copy number changes

could be the major cause of aberrant Tert expression in

neuroblastoma in addition to Tert promoter mutations.

Similar observations have been shown in melanoma

patients and cell lines. Melanomas frequently harbor

mutations in oncogenes like BRAF, NRAS (neuroblastoma

RAS viral oncogene homolog), KIT (v-kit Hardy–Zucker-

man 4 feline sarcoma viral oncogene homolog) and tumor

suppressors CDKN2A and PTEN. These mutations occur

according to cancer stage. Recently a high frequency of

Tert promoter mutations was reported in melanoma

patients and cell lines by several groups [90, 122–124].

Horn et al., observed Tert promoter mutations in a mela-

noma-prone family where all members developed

melanomas at early ages. Furthermore, the same group

reported that 125 of 168 (74 %) metastatic melanoma cell

lines carry Tert promoter mutations which are located 124

(C[T), (CC[TT), 138 and 146 bp upstream from the ATG

start codon with frequencies of 27.4, 4.2, 4.8 and 38.1 %,

respectively [122]. Whole genome sequencing analyses

revealed that Tert promoter mutations are the most frequent

mutations after BRAF and NRAS genes in melanomas

[123]. Both groups observed two- to fourfold increases in

Tert expression by Luciferase reporter assays due to novel

ETS site generation upon mutations [122, 123]. It is

noteworthy that Tert mutations are more common in

patients with BRAF and/or NRAS mutations [124] and Tert

mRNA levels are higher when Tert and BRAF mutations

coexist [90].

Recently two independent groups have studied binding

of ETS factors on mutated sites. Bell et al. identified sev-

eral ETS factors such as ELF1, ETS1 and ETV4 which can

bind to the mutation site significantly; however, GABP was

enriched more in mutation regions together with PolII

(Fig. 2). In addition, chromatin immunoprecipitation
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experiments for GABP did not show enrichment in K562,

A549, HeLa, MCF-7 cells which do not harbor the Tert

promoter mutation. GABP knockdown also led to a rapid

decrease in Tert transcription [125]. Li et al. identified

binding partner p52 for ETS factor—ETS1/2 to drive Tert

transcription in cells containing C250T Tert mutation

(Fig. 2). They showed that non-canonical NFjB signaling

is necessary to drive Tert transcription particularly in

C250T mutant Tert promoter by direct interaction with

ETS factor. Consistent with their biochemical data, knock

down of p52 during non-canonical NFjB activation abol-

ished tumorigenesis in C250T-mutant glioblastoma cells

transplanted mouse models. C250T mutation creates a half

site NFjB consensus sequence (50-GGGGG-30 or 50-
GGAA-30) and increased p52 binding was observed in the

mutant promoter as compared to WT Tert sequence in

electrophoretic mobility shift assays (EMSA). The group

further demonstrated that Tert expression increased upon

binding of p52 to the novel half site in cells harboring

C250T but not C228 mutation. Moreover, ETS1/2

heterodimerized with p52 at C250T region and coopera-

tively activated Tert gene expression, thereby

demonstrating the non-canonical role of NFjB in telom-

erase reactivation in cancer cells harboring Tert promoter

mutations [126].

Conclusion

Reactivation of telomerase has been considered as a strat-

egy for telomere maintenance and is a major hallmark of

cancer. Telomerase reactivation mostly depends on the

amount of TERT in the cell since there are sufficient

amounts of other telomerase complex molecules as sum-

marized above. Therefore, increases in TERT could be

substituted by increasing gene copy number as in HeLa

cells (five copies), overexpression of oncogenes that can

bind its promoter for transcription like c-Myc or using

alternative splicing to form catalytically active/inactive

proteins.

More importantly, Tert promoter mutations which create

new consensus sequence for ETS and NFjB binding result

in increased transcription of Tert mRNA. It is also note-

worthy that these mutations could lead to chromatin

conformation changes by novel short, middle and long

distance interactions, which could, in turn, directly regulate

the Tert gene and possibly other genes simultaneously.

Since these mutations are highly recurrent in many cancer

types and occur at high frequency, the mechanisms

underlying regulation of Tert expression at its promoter

need to be deciphered. We can speculate that the presence

of these mutations could modulate core transcriptional

machinery by recruiting additional factors to the Tert

promoter to regulate expression of specific isoforms of Tert

transcript preferentially in cancers. Furthermore, it would

be interesting to determine why mutations occur persis-

tently in the -146 and -124 positions in a wide range of

various cancer types. Recently, Chiba et al. revealed that

introducing any of the three most frequent Tert promoter

mutations using CRISPR/Cas9 genome editing in human

embryonic stem cells did not increase Tert expression,

activity or telomere length. However, when these engi-

neered stem cells were differentiated to either fibroblast or

nerve cells, all of the Tert promoter mutations, without any

additional oncogenic mutations, prevented silencing of the

Tert promoter and resulted in enhanced Tert expression,

telomerase activity, telomere length and growth compara-

ble to cancer cell lines [127]. These results indicate that

Tert promoter mutations do not affect already active pro-

moters but prevent proper silencing of the Tert gene in

differentiated cells. Recently, it was shown that cancer cell

lines harboring Tert promoter mutations represent display

histone marks [128]. It would be intriguing to speculate

that the presence of Tert promoter mutations may affect

recruitment of epigenetic modulators and enhancers to the

Tert promoter to drive Tert expression.

Since Tert promoter mutations are not present in stem

and healthy proliferating cells, it will be crucial to decipher

the mechanistic pathways which regulate Tert gene silenc-

ing and understand how they are affected by these promoter

mutations. It will also be a wise strategy to identify specific

therapeutic approaches targeting only Tert promoter muta-

tions so that only tumor cells but not telomerase positive

stem cells are eliminated in cancer patients.
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