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Is mitral annular ascent useful in studying left ventricular function
through left atrio-ventricular interactions?
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A B S T R A C T

Background: The mitral annulus (MA) is a crucial structure that is in constant motion throughout the
cardiac cycle. The main purpose of this study was to determine if M-mode evaluation of the longitudinal
motion of the MA could be useful to examine atrio-ventricular interactions.
Methods: Echocardiographic data obtained from 150 patients (mean age 56 � 16; 82 males) from the
University of Cincinnati College of Medicine was evaluated to examine if any relationship exists between
MA motion and measures of atrio-ventricular interactions.
Results: Even though left atrial size, left ventricular (LV) mass index, LV ejection fraction (LVEF) and degree
of LV diastolic dysfunction (LVDD) were significant echocardiographic variables affecting MA motion;
LVEF and the degree of LVDD were the main determinants of MA excursion during systole (MAPSE) and
after atrial contraction (MAa). Our results confirm the surrogate value of MAPSE with regards to LVEF and
also show that the extent of MA excursion during systole is the main determinant of MAa. The effect of LV
diastolic function applies more strongly to MAPSE than to MAa. However, the maximal MAa amplitude
varies in accordance to the type of LVDD.
Conclusions: We have shown for the first time that M-mode interrogation of the MA longitudinal motion
appears useful to assess atrio-ventricular interactions. Since LV systolic and diastolic functions are so
closely related; additional studies are now required to examine how this longitudinal measure correlates
with known circumferential rotational data obtained with other imaging modalities.
© 2017 Published by Elsevier B.V. on behalf of Cardiological Society of India. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The mitral annulus (MA) is a crucial structure that plays an
important role in mitral leaflet coaptation, unloading mitral valve
closing forces, and promoting left atrial (LA) as well as left
ventricular (LV) filling and emptying.1 The three-dimensional
saddle shape of the MA is well characterized in both animals and
humans.2 In fact, the systolic excursion of the MA has been
correlated to LV systolic function.3–7 During the cardiac cycle not
only the MA is in constant motion, but also its excursion
encompasses a volume that is part of the total LV volume change
during both filling and emptying.8

Longitudinal myocardial function has attracted interest in
recent years. Specifically, this interest was greatly advanced by the
work of Torrent-Guasp that introduced the concept of the
myocardial band, which explained the architecture of all cardiac
chambers.9 In addition, a 180� twist in the middle portion of this
band has been implied as the responsible element for the twisting-
untwisting motion of the LV.10,11 This twisting-untwisting move-
ment of LV myofibers from base and apex rotating in opposite
directions, and their spatial and directional orientation changes
during the cardiac cycle, have shown a close relationship between
LV systolic and early diastolic function.12,13 In fact impairment of
this long-axis LV contraction and relaxation has been reported in
experimental and clinical studies in the setting of coronary artery
disease, myocardial infarction, LV hypertrophy, dilated cardiomy-
opathy, and hypertrophic cardiomyopathy.14

Our laboratory has previously shown that both mitral annular
plane systolic excursion (MAPSE) and the mitral annular ascent
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(MAa) component, occurring during late ventricular diastole, were
useful in identifying serial activation differences between the right
and left heart.4,5 We now hypothesized that closer inspection of
the MA M-mode signal, with its excellent temporal resolution,15,16

might be useful to examine atrio-ventricular interactions between
the LA and LV.

2. Methods

2.1. Population studied

The University of Cincinnati IRB office approved the study
(protocol number 12061302) and no written consent was needed
since this was a retrospective study.

The echocardiographic database at the University of Cincinnati
College of Medicine Main University Hospital Echocardiography
Laboratory was queried for patients who had a complete
transthoracic echocardiogram performed between July 1, 2013
and July 31, 2014 for any clinical indication meeting all of the
following inclusion criteria.

Inclusion criteria for this study required that all patients at the
time of the echocardiographic study were in normal sinus rhythm
during the examination. In addition, there had to be good
visualization of the LA and LV endocardium with complete M-
mode tracing interrogation as well as tissue Doppler signal of the
lateral portion of the MA. Furthermore, a complete spectral
Doppler study to examine LV diastolic function had to be acquired
as recommended by published guidelines.17–19 Since interpretation
of multiple echocardiographic parameters that vary with loading
conditions might provide conflicting diagnostic information that
could limit LV diastolic function characterization20–22; only
echocardiographic studies with non-conflicting LVDD diagnostic
criteria were included into the final analysis.

Finally, studies were excluded if patients had atrial fibrillation
or rhythm abnormalities at the time of the study, mitral annular
calcification, mitral valve stenosis, previous mitral valve repair or
valvular replacement surgery.

Since our laboratory had previously shown significant differ-
ences with regards to LV systolic function and MAa using 75
patients,5 for this study we targeted a total of 150 patients to
analyze atrio-ventricular (LA and LV) interactions with an a value
of 0.05 and desired power of 0.80.

Therefore, from a total number of 425 echocardiograms
performed during that time frame, the first 150 consecutive
echocardiograms that met all inclusion and none of the exclusion
criteria were included in to the final analysis.

Calculation of body surface area was performed as previously
described by Mosteller as follows23:

BSA (m2) = ([Height (cm) � Weight (kg)]/3600)1/2

2.2. Echocardiographic studies

We utilized commercially available systems (Vivid 7 and 9; GE
Medical Systems, Milwaukee, WI, USA) to perform two-dimen-
sional echocardiographic studies. Images were obtained in the
parasternal and apical views with the patient in the left lateral
decubitus position and in the subcostal view with the patient in the
supine position using a 3.5 MHz transducer. Standard two-
dimensional, color, pulsed, and continuous-wave Doppler data
were digitally acquired in gently held end-expiration, and saved in
regular cine loop format for subsequent offline analysis.

Left ventricular end-diastolic and end-systolic volumes were
traced from the apical 4-chamber view in accordance to published

data; while ejection fraction calculations were done using the
Simpson’s rule algorithm.6

Calculation of LV mass was performed according to the
American Society of Echocardiography (ASE) recommended
formula using LV linear dimensions based on modeling the LV
as a prolate ellipse of revolution using the following formula 6:

LV mass = 0.8 � {1.04[(LVIDd + PWTd + SWTd)3 � (LVIDd)3]} + 0.6 g

Specifically, in this formula PWTd and SWTd correspond to
posterior wall thickness at end diastole and septal wall thickness at
end diastole, respectively.6 Since this formula is appropriate for
evaluating patients without major distortions of LV geometry such
as patients with hypertension, it was appropriate for utilization in
this study. Correction for BSA was then performed to express LV
mass as LV mass index (LVMI) as g/m2.

Measurement of LA volume was performed following the ASE
guidelines using the area-length method from the apical 4-
chamber and apical 2-chamber views at ventricular end systole
(where LA size is largest) using the following formula 6,17:

LA Volume = 8/3p [(A1) � (A2)/(L)]

In this formula, L is measured from back wall to line across
hinge points of mitral valve and is the shortest length from either
the 4-chamber (A1) or 2-chamber (A2). To accurately correct for
the effect of body habitus, LA volumes were corrected for BSA and
consequently LA volumes were expressed as LAVI (mL/m2).

Mitral inflow velocity was obtained using pulsed-wave Doppler
examination at a sweep speed of 100 mm/s from the apical four-
chamber view by placing the sample volume at the tips of the
mitral leaflets.17–19 Peak velocity in early diastole (E-wave, LV
relaxation) and late diastole (A-wave, LA contraction) and
deceleration time of the E-wave were measured as previously
described.17–19

Since our laboratory has previously described that maximal MA
excursion and MA ascent are better assessed when the lateral
portion of the MA is interrogated,4,5 pulsed-wave tissue Doppler
imaging (TDI) was only performed on the lateral portion of the MA
in order to perform direct ipsilateral correlations.

In terms of the lateral MA TDI, peak velocity in systole (S0), early
diastole (E0), and late diastole (A0) were measured by placing the
sample volume at the junction were the mitral valve plane
intersects the left ventricular free wall using images obtained from
the apical 4-chamber view. As previously explained, for the
purpose of this study LV diastolic pressure was estimated only
using the E/E0 ratio obtained from the lateral MA E’ velocity.18,19

Finally, LV diastolic function was classified as normal, impaired
relaxation, pseudonormal and restrictive pattern following pub-
lished recommendations.17

Overall MA motion was examined by M-mode by placing the
cursor in the same orientation as previously described for TDI. The
resulting M-mode tracing generated a signal containing both
MAPSE and MAa. Specifically, MAa was measured as the distance
traveled by the lateral portion of the MA from the end of diastasis
until the end of atrial contraction.4,5 MAPSE was measured as the
total excursion of the mitral annulus from the end of atrial ascent
until the end of ventricular systole. A representative MA M-mode
tracing showing both MAPSE and the MAa component is shown in
Fig. 1.

2.3. Statistical analysis

The commercially available software Merge Cardio Workstation
(Merge Healthcare) was used to calculate all echocardiographic
measurements. All continuous data are presented as mean and
standard deviation. Comparison between groups’ baseline
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characteristics was performed using analysis of variance (ANOVA)
for continuous data and Fisher’s exact test for categorical data.
Multivariate logistic regression analysis was performed to detect
significances to identify with accuracy abnormalities with both
MAPSE and MAa.

Intra-class correlation coefficient was utilized to assess
reliability of MAa. In order to compare reproducibility of a single
reader, ten patients were randomly selected from each group and
variables of interest were re-measured after a 6-month span. For
comparison among different readers, 10 patients were randomly
selected from each group and a trained and blinded reader
measured variables of interest. Intra-class correlation coefficients
were calculated using one- and two-way agreement models for
comparison between single and multiple readers, respectively.24

All statistics were calculated in MedCalc Software bvba Version
14.12.0 (Belgium). P-values of <0.05 were considered to be
statistically significant.

3. Results

A total of 150 patients (mean age 56 � 16; 82 males) that met all
the inclusion and none of the exclusion criteria comprised the
study population. The main indication for obtaining the echocar-
diogram is listed in Table 1. Furthermore, all recorded echocardio-
graphic data can be found on Table 2.

We found no difference in either MAPSE or MAa measurements
with regards to age, gender and body surface as seen on Table 3.
However, we noted significant differences in MAPSE and MAa
measures when examined against known variables that affect
atrio-ventricular interactions such as LAVI, LVMI and LVEF.25 To
simplify these assessments, we utilized recently published
reference values suggested by the American Society of Echocardi-
ography and the European Association of Cardiovascular Imaging.6

First, the relationship with regards to LAVI was investigated. We
noted that MAPSE values were significantly higher in patients with
a normal LAVI value (<34 ml/m2) when compared to patients with
abnormally high LAVI (�34 ml/m2) values (1.3 � 0.3 cm versus
1.1 �0.5 cm; p < 0.001). Similarly, differences were also noted for
MAa values (0.5 � 0.2 cm versus 0.4 � 0.2 cm; p = 0.0001).

Second, a similar analysis was then performed after adjusting
for gender specific values. In this analysis, MAPSE values were also
significantly higher for patients with normal LVMI (<95 g/m2 for
females and <115 g/m2 for males) values (1.4 � 0.3 cm) when
compared to MAPSE values in patients with abnormally higher
LVMI values (1.1 �0.4 cm; p < 0.0001). However, the impact of
LVMI on MAa values, though still significant, was less robust
(0.5 � 0.2 cm versus 0.4 � 0.1 cm; p < 0.04).

Third, when we examined the effect of LV systolic function on
both MAPSE (1.4 � 0.3 cm) and MAa (0.5 � 0.2 cm), these were
significantly higher in patients with an LVEF � 55% when compared
to patients with an LVEF <55% (0.7 � 0.2 cm and 0.3 � 0.1 cm;
p < 0.0001, respectively).

Finally, significant differences in terms of both MAPSE and MAa
were identified as seen in Fig. 2A and B when the study population
was divided in terms of their LV diastolic function according to
published guidelines.17–19 Interestingly, MAPSE was progressively
smaller with worsening LV diastolic function. In contrast, MAa was
the highest among LVDD stage 1 patients and then progressively
smaller as LV diastolic function deteriorated.

Fig. 1. Representative, MA M-mode image with a corresponding to MA motion
showing MAPSE (straight line and dashed arrows) and MAa (dotted line and straight
arrow) that is measured after atrial contraction. The location of the lateral mitral
annulus (MA) is shown in relation to both LV and LA in the superior portion of the
image.

Table 1
Main indication to obtain an echocardiogram on the studied population.

Indication Number of studies

Syncope 2
Hepatitis 4
Abnormal ECG 3
COPD 5
Diabetes mellitus 6
Malignancy 8
History of PAF 9
Chest pain 9
CVA 10
Aortic valve disease 11
CAD 13
Shortness of breath 14
Renal disease 17
CM/HF 18
Hypertension 21

Table 2
Main echocardiographic findings for the entire studied population.

Variables Mean � SD Range

BSA 2.0 � 0.3 1.2–3.2 m2

LVMI 113 � 42 38–275 g/m2

LAVI 31 � 15 12–100 ml/m2

LV end systolic volume 58 � 60 10–378 ml
LV end diastolic volume 133 � 60 38–415 ml
LVEF 63 � 20 10–85%
MAPSE 1.2 � 0.4 0.2–2.6 cm
MAa 0.5 � 0.2 0.1–0.9 cm
MV deceleration time 182 � 53 69–366 ms
MV E velocity 79 � 34 0.4–186 cm/s
MV A velocity 68 � 35 0.4–168 cm/s
MV E/A ratio 1.5 � 1.1 0.4–11
MA S’ velocity 8 � 3 2–19 cm/s
MA E’ velocity 9 � 4 2–21 cm/s
MA A’ velocity 8 � 3 1–21 cm/s
MV E/MA E’ ratio 12 � 9 0.1–53

Table 3
Examination of age, gender and body surface area on MAPSE and MAa.

Variables MAPSE p value MAa p value

Patients <55 years of age 1.3 � 0.4 cm p = 0.2 0.5 � 0.2 cm p = 0.8
Patients �55 years of age 1.2 � 0.4 cm 0.5 � 0.2 cm

Females 1.2 � 0.4 cm p = 0.3 0.5 � 0.2 cm p = 0.5
Males 1.3 � 0.4 cm 0.5 � 0.2 cm

Normal BSA adjusted for gender 1.2 � 0.4 cm p = 0.5 0.4 � 0.2 cm p = 0.5
High BSA adjusted for gender 1.2 � 0.4 cm 0.5 � 0.2 cm
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In a stepwise multiple regression analysis using echocardio-
graphic parameters that were found statistically significant, LVEF
and type of LVDD were the best predictors of both MAPSE and MAa
as seen on Table 4.

Inter-rater agreement (K, Kappa) value assessment between
MAa measurements was then utilized to determine variability. In
general, the strength of the agreement was very good (K = 0.985,
standard error = 0.094 and 95% confidence interval = 0.711–1.000)
if a trained observer (intraobserver) was performing these
measurements. The strength of the agreement was moderate
(K = 0.546, standard error = 0.158 and 95% confidence
interval = 0.237–0.855) when untrained observers (interobserver)

were asked to reproduce MAa measurements. While their
measurements improved with repeated measurements, the first
recording was used for the purpose of the analysis.

4. Discussion

This study highlights that close examination of MA motion is
useful to explain the relative importance of atrio-ventricular
interactions. Even though LAVI, LVMI, LVEF and the degree of LVDD
are the most important measured echocardiographic variables in
this study that affect MA motion; LVEF and the degree of LVDD
were found as main determinants of both MAPSE and MAa.
Specifically, our results confirm the surrogate value of MAPSE with
regards to LVEF and also show that the extent of MA excursion
during systole is the main determinant of MAa. The effect of LV
diastolic function applies more strongly to MAPSE than to MAa.
However, the maximal MAa amplitude varies in accordance to the
type of LVDD. Interestingly, even though LAVI and LVMI influence
both MAPSE and MAa, the effect of both LVEF and type of LVDD was
stronger in determining MA motion.

Even though numerous techniques have been applied to study
cardiac rotation, both cardiac magnetic resonance imaging and
speckle-tracking echocardiography are the most useful clinical
tools for this assessment, with cardiac magnetic resonance
imaging currently considered the reference standard.12 The
concept of cardiac rotation, signifying the wringing or twisting
motion of the LV along its long-axis, has been anatomically and
functionally described by the work of Torrent-Guasp after the
introduction of the myocardial band.9 The three-dimensional
representation of this single strip of muscle arranged in a double-
loop helical orientation extending from the pulmonary artery to
the aorta helped explain the architecture of all cardiac chambers.
Furthermore,180� twist in the middle portion of this band has been
implied as the responsible element for the twisting-untwisting
motion of the LV.10,11 It is now recognized that rotation of
myocardial fibers from base and apex in opposite directions, as
well as their change in spatial directional orientation that occurs
dynamically during the cardiac cycle, might explain the close
relationship existing between LV systolic and early diastolic
function.12,13 In this particular study, M-mode interrogation was
used for the first time to examine axial MA motion in relation to
atrio-ventricular interactions as a result of cardiac rotation.

From a mechanistic point of view, it is important to remember
that in diastole, chamber wall relaxation unmasks stored elastic
strain, allowing the LV to recoil and act as a suction pump by
promptly aspirating blood into the LV favoring LV filling.26 In this
kinematic model,27 the MA is seen as a piston located in between
atria and ventricle. Our results are certainly in agreement with this
kinematic model as we showed that the extent of MAPSE and MAa
are mainly determined by LVEF and LVDD when assessed
longitudinally. In addition, our MA motion data is also in
agreement with work published by van Dalen et al. that
demonstrated a close relationship existing between LV shape
and twist angle.28 As seen by our results, the highest MAa was seen
in LVDD stage 1 patients and then progressively smaller as LV
diastolic function deteriorated. These results are in agreement
with current knowledge of LA contribution to LV filling is basically
dependent on LV diastolic properties. Specifically, with abnormal
relaxation (LVDD stage I), the relative contribution of LA contractile
function to LV filling increases. As LV filling pressures progressively
increase and LVD diastolic function worsens, the limits of atrial
preload reserve are reached and the LA serves predominantly as a
conduit.29

The following limitations need to be acknowledged. First, this
was a retrospective study; however, the main goal was attained.
Second, even though a small number of patients were included for

Fig. 2. Box plot representations of (A) MAPSE and (B) MAa according to LV diastolic
function.

Table 4
Stepwise multiple regression analysis individually performed for MAPSE and MAa.

Multiple regression analysis for MAPSE:

Independent variables Coefficient Std. Error r P-value

LVAI 0.0007663 0.001651 0.03851 0.6433
LVMI �0.0007844 0.0005385 �0.1201 0.1474
LVEF 0.007693 0.001228 0.4615 <0.0001
LVDD type �0.1578 0.02905 �0.4112 <0.0001

Multiple regression analysis for MAa:

Independent variables Coefficient Std. Error r P-value

LVAI �0.0009532 0.001021 �0.07733 0.3518
LVMI �0.0001156 0.0003328 �0.02884 0.7288
LVEF 0.003634 0.0007591 0.3695 <0.0001
LVDD type �0.03973 0.01795 �0.1808 0.0020
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analysis, the main purpose of this study was to determine if a
correlation existed between MA motion and measurements of
atrio-ventricular interactions and this was demonstrated. Third,
based on the pre-specified exclusion criteria, no assumptions can
be made on how atrial fibrillation, frequent ectopy, or mitral valve
abnormalities affect the studied relationship. However, most likely
none of these measurements could be obtained in these patients.
Finally, LV speckle-tracking analysis was not performed concur-
rently in this study to make any potential correlations between MA
motion and twisting as well as untwisting variables.

Atrio ventricular interactions are important in determining LV
function. The MA is anatomically located between the atria and
ventricle; hence, it should be functionally linked with regards to
cardiac performance. Even though the surrogate value of MAPSE
with regards to LVEF is well documented; the potential utility of
the MAa component has not been either well studied or
characterized. Our results not only suggest that the overall
excursion of the MA during systole is the main determinant of
MAa; but also that maximal MAa amplitude varies in accordance to
LV diastolic function. Moreover LV systole is coupled to LA systole.
This is a relatively new concept in which even late diastolic events
are dependent upon systole. Since LV systolic and early diastolic
functions are closely related as a result of the twisting motion of
the myocardial band, additional studies are now required to
examine how this longitudinal measure of MAa correlates with
circumferential rotational data obtained with other imaging
modalities.
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