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Background and aims: Long-term kinetics of anti-RBD IgG and neutralizing antibodies were analyzed in a cohort 
of COVID-19 naïve health care workers (HCW) undergoing SARS-CoV-2 vaccination. 
Methods: An anti-RBD IgG immunoassay and a surrogate virus neutralization test (sVNT) were performed at 
different time points up to 6 months after vaccination in 57 HCWs. Values of anti-RBD IgG predicting an high 
neutralizing bioactivity (>60%) were also calculated. 
Results: Mean (range) values of anti-RBD IgG were 294.7 (11.6–1554), 2583 (398–8391), 320.4 (42.3–1134) 
BAU/mL at T1 (21 days after the 1st dose [T0]), T2 (30 days after the 2nd dose) and T3 (+180 days after T0), 
respectively. Mean (range) percentages of neutralization (NS%) were 24 (0–76), 86 (59–96) and 82 (52–99) at 
T1, T2 and T3, respectively. Anti-RBD IgG values and NS% were positively correlated at T2 and T3 while anti- 
RBD IgG value predicting a NS% > 60 markedly differed at T2 and T3 (594 vs. 108 BAU/mL, respectively). 
Conclusion: While a high neutralizing bioactivity was maintained at least 6 months after vaccination in almost all 
individuals, the mean values of anti-RBD-IgG showed a marked decline at 6 months. The absolute value of anti- 
RBD IgG is a poor marker of neutralizing bioactivity.   

1. Introduction 

Waning of humoral and cellular immune responses against SARS- 
CoV-2 after infection or vaccination [1] makes the identification of 
correlates of protection (COP) for monitoring immune status and driving 
risk-adapted vaccination schedules a priority [2]. Evidence from real- 
world data suggests that neutralizing antibodies (nAbs) to SARS-CoV-2 
positively correlate with protection against SARS-CoV-2 infection and 
COVID-19 [3–6] by blocking the interaction of the Spike Receptor- 
Binding Domain (S-RBD) with the human cell receptor angiotensin 
converting enzyme 2 (hACE2) [7]. Thus, a number of binding immune 
assays and virus neutralization test (VNT) platforms have been imple
mented, cross-validated and eventually traced to a WHO International 
Standard [8], in order to establish the usefulness of anti-SARS-CoV-2 
antibodies as diagnostic tools or COP [9–13]. While quantitative 

binding assays only identify physical interactions and are mainly used 
for diagnostic purposes, functional neutralizing activity can only be 
directly investigated by means of VNTs platforms, that are grossly 
divided into direct VNTs, which require viable virions of SARS-CoV-2 
and are considered the gold standard, and surrogate (s)VNTs, based on 
binding competition assays between antibodies and target receptors that 
mediate viral attachment and entry. Studies available so far have shown 
a significant degree of correlation between anti-S-RBD Abs levels and 
serum neutralizing bioactivity as assessed by VNTs [14–21], nonetheless 
some other studies have remarked that this correlation might change 
over time due to affinity maturation of humoral response, thus limiting 
the absolute quantitative value of anti-S-RBD Abs as a reliable COP 
[15–16,22–26]. In fact, waning of binding Abs either after natural 
infection or vaccination might be countered by the maintenance of 
neutralizing capacity by ongoing affinity maturation of Spike-specific B 
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Virus Neutralization Test. 

* Corresponding author at: Immunology and Allergy Unit, Ospedale Santa Maria degli Angeli, Pordenone, Italy. 
E-mail address: danilo.villalta@asfo.sanita.fvg.it (D. Villalta).  

Contents lists available at ScienceDirect 

Clinica Chimica Acta 

journal homepage: www.elsevier.com/locate/cca 

https://doi.org/10.1016/j.cca.2021.11.023 
Received 12 October 2021; Received in revised form 16 November 2021; Accepted 24 November 2021   

mailto:danilo.villalta@asfo.sanita.fvg.it
www.sciencedirect.com/science/journal/00098981
https://www.elsevier.com/locate/cca
https://doi.org/10.1016/j.cca.2021.11.023
https://doi.org/10.1016/j.cca.2021.11.023
https://doi.org/10.1016/j.cca.2021.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cca.2021.11.023&domain=pdf


Clinica Chimica Acta 524 (2022) 11–17

12

lymphocytes [27]. Failure of affinity maturation has been previously 
associated with vaccine failure [28] and some Authors have advocated 
that the development of high affinity antibodies targeting multiple 
epitopes of RBD are needed for effective long-term protection against 
SARS-CoV-2 [29–32]. Available studies [30,33–34] have shown parallel 
increases in avidity values, neutralizing activity and quantitative anti- 
RBD antibody titres up to 8 weeks from the second dose of vaccine but 
these short-term analyses were not designed to prove whether quanti
tative RBD-antibody level would predict neutralizing bioactivity and 
clinical protection on the long-term, when divergent kinetics of immu
nogenicity markers may unmask functional mechanistic associations 
[16,22]. 

In this study, an anti-S-RBD IgG quantitative immunoassay and a 
sVNT based on antibody-mediated competitive blockage of hACE2-RBD 
interaction were performed in parallel at four prefixed time points 
across a 6-month period in a cohort of COVID-19-naïve health care 
workers (HCWs) vaccinated with the Pfizer/BioNTech BNT162b2 vac
cine. Temporal trends and quantitative correlations between anti-S-RBD 
IgG values and functional neutralizing bioactivity were reported. 

2. Materials and Methods 

2.1. Study population 

Fifty-seven HCWs, without clinical history of COVID-19 infection 
and persistently negative virus detection by PCR on nasal swab moni
toring, were consecutively enrolled. No information was provided on 
comorbidities and concomitant drug therapy. Serum samples from each 
subject were obtained and analyzed for anti-SARS-CoV2 antibodies at 4 
prefixed time points: T0 (first shot of vaccine), T1 (second shot of vac
cine, i.e. + 21 days from T0), T2 (51 days after T0) and T3 (6 months 
after T0). HCWs were monitored monthly with antigenic tests on 
nasopharyngeal swab for SARS-CoV-2 infection and additional on- 
demand antigenic tests were performed in case of clinical suspicion of 
COVID-19. The study was conducted in accordance with the ethical 
standards as formulated in the Helsinki Declaration and written 
informed consent was obtained from all the participants. The study was 
approved by the local Ethical Committee and assigned the internal 
protocol number 034 2020H EPIDEMIOLOGIA COVID-19. 

2.2. Anti-S-RBD antibody assays 

Anti-S-RBD IgG Abs were detected by a quantitative chem
iluminescence immunoassay (sCOVG, Siemens Healthineers, Erlangen, 
Germany) using the RBD of the Spike protein as capture antigen. All 
samples were processed according to the manufacturer’s instruction 
using the Advia Centaur XPT, CLIA automated platform with a cutoff 
level of 1.0 U/mL for a positive result (sensitivity 96.4%, C.I.95% 
92.7–98.5%; specificity 99.9%, C.I.95% 99.6–100% for a previous 
infection). Results of the assay were given in Binding Antibody Units 
(BAU) per milliliter (BAU/mL) by applying the conversion factor 21.8, 
determined by the manufacturers based on the measurement of the first 
WHO International Standard Anti-SARS-CoV-2 Immunoglobulin 
(NIBSC-Code 20–136) [8]. 

2.3. Antibody-mediated RBD-ACE2 neutralization assay 

The ACE2-RBD Neutralization assay (Dia.Pro Diagnotic Bioprobes, 
Milano, Italy) (REF. ACE2-RBDNEUTR.CE 96 Test) is a CE marked ELISA 
using a recombinant RBD of the SARS-CoV-2 spike protein to detect 
antibodies of any isotype that block the RBD from binding to the hACE2 
receptor. Briefly, the samples and the positive/negative controls pro
vided by the manufacturer are incubated 60′ at + 37 ◦C in microplates 
coated with recombinant glycosilated RBD (traditional strain sequence) 
to allow the interaction and binding of antibodies, if present, with the 
RBD. After washing, recombinant biotinilated hACE2 and streptavidin- 

horseradish peroxidase are added to each well and incubated for 45′

at 37 ◦C. After a second washing, the binding of hACE2 to the RBD-plate 
is visualized by adding tetramethylbenzidine followed by stop solution 
to all wells and measuring the OD450nm intensity. The colour intensity is 
directly proportional to the degree of RBD unbound to specific anti
bodies present in patients’ sera, while a strong inhibition on the colour 
development will be observed in case antibodies to RBD have blocked 
the binding of the biotinylated ACE2 to it. Data are expressed as per
centage of inhibition of the sample (IH%), calculated as follows: IH% =
100 – [(OD450nm value of sample/OD450nm value of Negative Control) ×
100]. Values of IH% < 20 are considered negative; values of IH% be
tween 20 and 29 are considered to have moderate neutralizing activity, 
between 30 and 59, good, and > 60 excellent neutralizing activity. 

2.4. Statistical analysis 

Statistical analysis was performed by using MedCalc Software 
(Mariakerke; Belgium) and Graph Pad (GraphPad Prism 8 XML ProjecT). 
Comparison of continuous variable was performed using Mann-Whitney 
U test. Correlation between continuous variables was performed by 
using Spearman’s rho test. A p-value <0.05 was considered statistically 
significant. Levels of anti-S-RBD Abs able to identify an excellent 
neutralizing activity (IH% > 60) was calculated by using Youden’s index 
(i.e. cutoff at the highest sum of specificity and sensitivity) from a 
Receiver Operating Characteristic (ROC) Curve analysis. 

3. Results 

A total of 57 HCWs were enrolled. Mean age was 51 yrs (range: 
23–69), female/male ratio was 42/15. All patients had available sero
logical data at T0, T1 and T2, and 42 patients at T3. No subject had signs 
or symptoms of breakthrough COVID-19 during the observation period 
and monthly antigenic tests resulted negative in all HCWs. 

At T0 no patient had serological evidence of previous SARS-CoV-2 
infection (Table 1). Mean values of anti-RBD IgG significantly 
increased from 294.7 BAU/mL (range: 11.6–1554) at T1 to 2583 BAU/ 
mL (range: 398–8391) at T2 and then decreased to 320.4 BAU/mL 
(range: 42.3–1134) at T3, levels similar to T1: in fact, no significant 
difference was noted between T1 and T3 (Table 1; Fig. 1, panel A). Mean 
values of IH% significantly increased from 24 (range: 0–76) at T1 to 86 
(range: 59–96) at T2 and then remained at a mean value of 82 (range: 
52–99) at T3 (Fig. 1, Panel B). Proportions of patients stratified ac
cording to the degree of neutralization are reported in Table 2 and show 
that all patients exhibited medium–high neutralizing serum bioactivity 
at both T2 and T3. Temporal trajectories of individual patients’ values 
are illustrated in Fig. 2 for both quantitative anti-RBD IgG and IH%. 

Quantitative correlations between RBD-Abs and IH% at T1, T2 and 
T3 are reported in Fig. 3: while at T1 no correlation could be demon
strated (r = − 0.0688; rho = 0.0422; p = 0.7330), a significant one 
emerged at T2 (r = 0.5887, rho = 0.6700, p = 0.0001) and further 
increased at T3 (r = 0.7332; rho = 0.8640; p = 0.0001). Only a few 
people at T2 and T3 showed a clear discrepancy between antibody level 
and IH%, confirming the individual variability of the immune response. 
The best levels of anti-RBD Abs able to discriminate a IH% > 60%, 
calculated by ROC curves analysis, were different between T2 and T3. 

Table 1 
Mean, median and range of anti-RBD IgG values at T0 (day of first dose), T1 (day 
of second dose, i.e. + 21 days from the first dose), T2 (+51 days from T0), T3 (+6 
months from T0) in a cohort of 57 HCWs vaccinated with the BNT162b2 vaccine.   

Mean (BAU/mL) Min-Max (BAU/mL) Median (BAU/mL) 

T0 3.23 0.0–27.2 0.0 
T1 294.7 11.6–1554 196 
T2 2583 398–8391 2472 
T3 320.4 42.3–1134 227.2  
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Indeed, the Youden’s index was 595 BAU/mL (sensitivity 98.2% and 
specificity 89.5%; AUC 0.939- good accuracy) at T2 and 108 BAU/mL 
(sensitivity 89.7%, specificity 32.2%; AUC 0.597 – very low accuracy) at 
T3 (Fig. 4). 

4. Discussion 

Immunogenicity of vaccines can be evaluated through different 
serum and cellular markers that exhibit a range of kinetics and evolu
tions over time. It became evident early on through the pandemic that 
neutralizing activity is highly correlated with anti-RBD IgG values 
[14–21] but an absolute conversion factor could not be established. That 
may in part be due to major inter-studies heterogeneity as to the kind of 
patients (COVID-19 experienced vs. COVID-19 naive), immune binding 

assays and neutralization assays that were implemented, making com
parisons unreliable, in part to apparent divergent kinetics of neutralizing 
and anti-RBD Abs that some studies highlighted [16,22,35–36]. In 
particular, studies are concordant that the initial immune response to 
the vaccine is characterized by a parallel increase in quantitative anti-S- 
RBD antibodies, neutralizing serum activity and antigen-specific B 
lymphocytes and T lymphocytes clonal expansion. Nonetheless, as long 
as the immune response evolves, studies have provided somewhat 
conflicting results, with some studies showing a parallel decline in anti- 
RBD Ig and neutralizing activity [37] and others not [16,22]. This study 
showed that the anti-S-RBD response elicited by the BNT162b2 vaccine 
was already detectable at the second BNT162b2 dose administration 
(T1), increased after the booster dose (T2) and was still detectable after 
6 months (T3), although at markedly reduced levels. Conversely, the 
serum neutralizing capacity paralleled that of anti-S-RBD-Abs in the first 
weeks after vaccination (T1-T2) but then evolved separately by main
taining medium–high mean values (T3). These data are consistent with 
those of Terpos and Trougakos [16,22], who showed different kinetics of 
decline of nAbs and anti-RBD Abs, namely that anti-RBD levels 
decreased much faster than nAbs levels. 

An important finding of this study was the evidence of the lack of a 
consistent threshold value of anti-RBD Abs able to predict a high 
neutralizing bioactivity at different time points during a 6-month follow- 
up period. When longitudinally analyzed, the correlation between anti- 
S-RBD values and neutralizing bioactivity was not present at T1 but 
progressively increased at T2 and further at T3. Actually, neutralizing 
bioactivity was still high at 6 months and likely protective (which would 
be also confirmed by the fact that none of the patients had clinical or 

Fig. 1. Mean values of anti-RBD IgG (panel A) and neutralization bioactivity, expressed as percentage of inhibition (IH%) of the sample (panel B), at T0 (day of first 
dose), T1 (day of second dose, i.e. + 21 days from the first dose), T2 (+51 days from T0), T3 (+6 months from T0) in a cohort of 57 HCWs vaccinated with the 
BNT162b2 vaccine. 

Table 2 
Percentages of inhibition (IH%) at T0 (day of first dose), T1 (day of second dose, 
i.e. + 21 days from the first dose), T2 (+51 days from T0), T3 (+6 months from 
T0) in a cohort of 57 HCWs vaccinated with the BNT162b2 vaccine. All patients 
had available functional data at T0, T1 and T2, and 42 patients at T3.   

NEG 
(<20%) 

LOW POS 
(20–29%) 

MEDIUM POS 
(30–59%) 

HIGH POS 
(>60%) 

T0 57/57 
(100%) 

0/57 (0%) 0/57 (0%) 0/57 (0%) 

T1 24/57 
(42.1%) 

14/57 (24.6%) 17/57 (29.8%) 2/57 (3.5%) 

T2 0/57 (0%) 0/57 (0%) 1/57 (1.8%) 56/57 (98.2%) 
T3 0/42 (0%) 0/42 (0%) 3/42 (7.1%) 39/42 (92.9%)  

Fig. 2. Individual trajectories of anti-RBD IgG values (panel A) and IH% (panel B) in 42 patients with serological data available at all time points (from T0 to T3).  
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Fig. 3. Correlations between anti-RBD IgG values and percentage of inhibition (IH%) at T1, T2 and T3.  

Fig. 4. ROC curves analysis used to define the best level of anti-RBD Abs able to discriminate an IH% > 60% at T2 and T3.  
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laboratory evidence of SARS-CoV-2 infection at T3), while most subjects 
would be considered at risk if the anti-RBD IgG level estimated by other 
authors as protective [38] was the only marker evaluated. This partic
ular kinetic is highly suggestive of increased avidity of the serum, which, 
in turn, is the overall result of germinal centres-driven affinity matura
tion of nAbs each targeting a specific epitope on the Spike protein 
through somatic mutation in Spike-specific B cells and implies that 
avidity is a variable to factor in when predicting functional serum 
neutralizing activity from purely quantitative antibody values [39]. In 
COVID-19 patients, affinity maturation is potentially impaired by the 
dysfunction of germinal centres associated with severe disease [40–41]. 
Actually, longitudinal studies on functional affinity maturation after 
natural infection have produced heterogeneous results [21,30,42–53] 
with gender, age and COVID-19 severity likely playing a role in driving 
divergent pathways [42–43,48]. On the contrary, in vaccine recipients, 
affinity maturation seems to be guaranteed by the uploading and 
persistence of viral Spike antigen on dendritic cells of germinal centers 
up to 12 weeks after liposomal mRNA inoculation [54], which in turn 
provide a solid background for long-term antigen presentation in 
germinal centres [55] and eventual achievement of high avidity values 
[30,35–36,56]. Notably, a study from Struck et al. [30], which directly 
assessed avidity of anti-SARS-CoV-2 sera from vaccinated subject using 
the chaotropic agent urea, have provided strong evidence that avidity 
significantly increases in the first two months after vaccination, which 
may also explains the persistence of high neutralizing bioactivity in the 
face of declining anti-RBD IgG over a longer period of time, as this study 
showed. While these findings discharge the use of quantitative assays by 
themselves for predicting neutralizing bioactivity, it is clear that a high- 
throughput automated sVNT would avoid the shortcomings of a com
bined evaluation of quantitative and affinity features of antibodies. 

A number of relevant limitations should be discussed. First, the sVNT 
we implemented captures all nAbs in a serum sample and not only S-RBD 
specific IgG isotype antibodies. Consequently, anti-RBD Abs are not fully 
representative of the whole spectrum of possible neutralizing anti
bodies. While anti-RBD Abs of the IgG class seem to progressively gain 
the most relevant role in neutralization, as suggested by the increase in 
correlation at T3, we could not exclude that other more precocious 
immunoglobulin classes, such as IgA or IgM, which were not directly 
measured in our quantitative binding assay, could explain the lack of 
correlation at earlier time points (T1) [57]. Next, it should be pointed 
out that this sVNT was not directly compared with a cell-based VNT, 
which is considered the gold-standard in neutralization assays [13,58]. 
Finally, from a strictly theoretical point of view, the detection of 
neutralizing antibodies should not be viewed as unequivocal evidence of 
sterilizing immunity, which might require mucosal priming of antigen- 
specific cells, mucosal IgA elicitation, etc. [2]. Breakthrough SARS- 
CoV-2 infections have been documented in vaccinated individuals 
[59], even in the presence of neutralizing immunity [60–62]. Moreover, 
since anti-RBD IgG assays are necessarily carried out using a strain- 
specific Spike, either traditional or variant, results cannot directly 
define neutralizing activity of a serum sample to other variants [63–64] 
and cross-neutralization assays should be continuously carried on as 
long as new variants emerge [65]. Our assays, using the traditional Spike 
protein as capture antigen, are fit for investigating the immunogenicity 
of BNT12b, which uses the traditional Spike mRNA sequence but, for the 
above reasons, could prove misleading if used to predict neutralizing 
immunity to SARS-CoV-2 variants. 

In summary, the results of the present study suggest that anti-RBD 
IgG value should not be considered by itself to predict neutralizing 
serum bioactivity, the latter which, in this cohort of COVID-19 naïve 
vaccine recipients without detected breakthrough infections, could be 
easily detected and quantified by means of a hand-friendly, cheap and 
high-throughput automated antibody-mediated neutralization assay. 
The collection of multidimensional data about the long-term kinetics of 
multiple immunogenicity markers in vaccines cohorts, including RBD- 
specific memory B-cells, IgG quantitative values, neutralizing serum 

potency and avidity as well as markers of T-cell responsiveness, should 
be prioritized in order to identify the best COP for clinical practice and 
surveillance studies. 
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