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Abstract: The acute toxicity of divalent mercury ion to Anguilla japonica from seawater and freshwater
aquaculture was assessed. In particular, the effects of toxicity on the microstructures of the gill and
liver tissues were examined using the hydrostatic method, without feeding, at a water temperature
of 20 ◦C. The median lethal concentrations (LC50) of divalent mercury ion to fishes in seawater and
freshwater over various durations were: 24 h = 1.637 and 1.428 mg/L; 48 h = 1.562 and 1.377 mg/L;
72 h = 1.530 and 1.284 mg/L; and 96 h = 1.442 and 1.228 mg/L. The safety mass concentrations were
0.1442 and 0.01228 mg/L, respectively. After exposure to divalent mercury ion, adhesion between
the gill lamellae and massive cellular disintegration and necrotic shedding were observed in the gill
tissue sections. The liver tissues underwent hyperemia and swelling, with the appearance of blood
spots, swelling of the hepatocyte mitochondria, dilation of the rough endoplasmic reticulum, and
intercellular inflation.
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1. Introduction

Rapid industrial and agricultural development, increased urban population size, and
improvements to people’s living standards have caused large amounts of wastewater containing heavy
metals to flow into rivers, lakes, and oceans. The pollution sources of heavy metals include volcanic
activity, rock weathering, soil erosion and other natural factors, as well as anthropogenic factors such
as train flue gas discharge, sewage irrigation, construction engineering, metal products manufacturing,
mining, incineration, smelting and so on (see Figure 1) [1]. Mercury is the main heavy metal pollutant
in many reservoirs and rivers in China. Chromium and lead pollution in drinking water sources of
surface water is common [2]. The resultant pollution of the aquatic environment is seriously affecting
the survival of fishes [3]. Under the action of microorganisms [4], the various forms of mercury present
in water are converted to methylmercury [5], which enters fishes through the enrichment effect of the
food chain [6,7]. This phenomenon is called bioaccumulation [8]. After these fish containing heavy

Int. J. Environ. Res. Public Health 2019, 16, 1965; doi:10.3390/ijerph16111965 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-6489-2867
http://www.mdpi.com/1660-4601/16/11/1965?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16111965
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 1965 2 of 12

metals are eaten by human beings, they will cause greater harm to human health after enrichment and
magnification in the food chain.
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Figure 1. The global mercury cycle as adapted from Lindsay D. Starr [1]. The mercury cycle shows 
the transportation of Hg through the atmosphere, water, soil, and sediment. 
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Figure 1. The global mercury cycle as adapted from Lindsay D. Starr [1]. The mercury cycle shows the
transportation of Hg through the atmosphere, water, soil, and sediment.

According to the priority pollutants list published by USEPA [9], mercury, cadmium, chromium
and zinc are priority pollutants in water environment. Most researchers agree that mercury is the most
toxic element (Hg2+ >> Cd2+ > Zn2+ > Cr+6 >> Ni2+) [10–13]. The toxicity of methylmercury is several
times that of inorganic mercury [14]. However, there is much controversy over whether inorganic
mercury can be methylated inside fishes and converted to methylmercury [15–17]. Mercury is a highly
toxic metal that is found in the spawning and nursery areas of red sea bream, and is believed to have
deleterious effects on wild populations (see Figure 1).

Fishes inhabit in the water constantly, and are highly sensitive to different pollutants in the aquatic
environment throughout the various stages in their lifespans. Hence, using fishes as test organisms for
acute toxicity has the advantages of convenience, sensitivity, and rapidity [18]. The test fish species
used in this study was the Japanese eel (Anguilla japonica), which belongs to the order Anguilliformes,
family Anguillidae, and genus Anguilla. Snake-like, and small its life span is over 50 years, generally
occurring in saltwater and freshwater waters. It is mainly distributed in the Yangtze River, Minjiang
River, Pearl River Basin, Hainan Island and rivers and lakes of China (see Figures 2 and 3). There are
18 species of eels in the world, including Japanese eel, perch eel, Celebes eel and short-fin eel in Taiwan,
but Japanese eels are the most abundant, while the other three species are relatively scarce, because
migratory fish around the world suffer from a variety of threats during migration. This situation is
positively related to the pollution of the living environment, in addition to the heavy fishing pressure.
Eels have existed on Earth for thousands of years. Anguilla grow in fresh water because of their peculiar
growth process (eggs are laid in the marine environment) in order to cope with the environmental
stress, the sex of female and male will change with the change of the environment.
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Figure 2. Distribution map of eel production in China (the output of eel culture in various provinces 
is taken from the 2018 China Fishery Statistics Yearbook [19], and the unit omitted after the number 
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Figure 3. Study area (Meizhou city, Guangdong Province, China). 

Therefore, understanding fish’s response to heavy metal ions in the natural environment from a 
physiological perspective may clarify the vulnerability of fish and the in situ [20–24] repair capacity 
of the fishery environment [25]. These patterns may be particularly important for threatened species, 
as management depends largely on the ability of research groups to determine how major stressors 
directly (e.g., mortality) or indirectly (e.g., growth and/or health disorders) affect their populations. 
Additionally, Anguilla is a suitable organism for testing toxicity to fishes in the laboratory because it 
is easy to breed, with strong mobility, and early sexual maturity. 
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Therefore, understanding fish’s response to heavy metal ions in the natural environment from a
physiological perspective may clarify the vulnerability of fish and the in situ [20–24] repair capacity of
the fishery environment [25]. These patterns may be particularly important for threatened species,
as management depends largely on the ability of research groups to determine how major stressors
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directly (e.g., mortality) or indirectly (e.g., growth and/or health disorders) affect their populations.
Additionally, Anguilla is a suitable organism for testing toxicity to fishes in the laboratory because it is
easy to breed, with strong mobility, and early sexual maturity.

However, in recent years, due to the rise of the animal protection movement, the voice of animal
rights protectionist has become louder and louder, and animal experiments are facing severe ethical
challenges. Emerging topics, such as how to make animal experiments meet the requirements of
bioethics? What is the relationship between bioethics and contemporary biology, environmental health
and medical ethics [26,27]? How to safeguard the welfare ethics of experimental animals have become
a hot issue of concern to the deep-gray public, governments and scientists, and has influenced research
trends, the sociality of results and the public recognition of the subjects related to animal experiments.
The interests of animals can serve as the basis for animal rights, such as the interests of avoiding pain
in order to avoid the responsibility of spasmodic pain and the rights associated with freedom from
pain. Like human rights, there are sometimes good reasons to go beyond animal rights. Human
beings have the right to life, but this right is reasonably overthrown in justice. Animals have the right
to enjoy a painless life, but this right is reasonably covered in important biomedical research. Part
of the reason why humans have reason to overwhelm animal rights is to weigh interests, which is
also the focus of animal ethics research. All this has nothing to do with the topic of this paper with
the rapid development of biomedicine and food pharmacy research, the importance of laboratory
animals in scientific research has become increasingly prominent. Prevention, diagnosis and treatment
of diseases, safety evaluation of drugs and devices, and major research closely related to human
living environment, all need the support of laboratory animal work to complete. There is no doubt
that laboratory animals play an important role in protecting human health and optimizing living
environment. Animal experiment is still an indispensable means in the fields of biology, environment
and medicine. In a word, it is not only rats used in experiments, but also fish in different culturing
environments. The former is more important than protecting human health and avoiding animal pain
or loss of life. This is different from the general view of equal interests.

Although studies on heavy metal residues in Anguilla japonica exist [28], there is no report on the
toxicity of heavy metal to the fish and effects on its histology. In this study, since eels are migratory fish
in rivers (originating from the ocean, growing in fresh water and returning to the ocean to spawn)
the hydrostatic method was used to test the median lethal concentrations of solutions of heavy metal
mercury to A. japonica. In parallel, the effects of this substance on the gill and liver tissues were
evaluated. This study aimed to evaluate the effects of heavy metals on the survival and growth of this
aquatic organism. The purpose of this study is to find the safe and lethal concentration of eel through
sub-lethal tests, which prove that mercury ion has an important impact on eel culture and production,
and the findings are expected to provide a basis for the Chinese Ministry of Environmental Protection
to formulate standards for water quality and wastewater discharge, and for the Chinese Ministry of
Agriculture’s Bureau of Fisheries to propose measures for pollution prevention and the protection of
water environmental resources.

2. Materials and Method

2.1. Test Animals, Experimental Conditions, and Toxic Reagent

The test fishes were A. japonica bred in concrete ponds of seawater and freshwater. In March 2015,
Meizhou Fisheries Station of Guangdong Province introduced 20,000 eel fry from Qidong County,
Nantong City, Jiangsu Province. The fry was healthy and vigorous, bright in color, sensitive in response,
with a body length of 15 cm and a body diameter of 1 cm. After more than two years of feeding, the eel
reached 40 cm and its body diameter reached 2.5–3 cm. In April 2017, experimental fish were selected
from the batch, according to the following inclusion criteria: the fish, which with large size, sensitive
reactions and normal color, were selected as experimental ones. Individuals had an average body
length of 25 cm. The quality of the pond water was in line with the national breeding standards for
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seawater and freshwater aquaculture. The fishes were caught and kept in the laboratory aquarium
for 1 day. Fishes with normal motility, good health, responsiveness, and similar specifications were
screened and randomly divided into groups of 10 individuals for the experiment. The experiment was
carried out at the Meijiang County Aquatic Technology Promotion Station in Meizhou City, China. The
fishes were reared in an aquarium of 50 × 30 × 28 cm size. The water used in the experiment was fully
aerated. Each tank contained 20 L water that was maintained at 20 ◦C. Analytically pure grade HgSO4

was provided by Guizhou Tongren Yinhu Chemical Co., Ltd., Tongren City, China. Stock solution
was prepared in advance and diluted to the various mass concentrations according to the needs of
the experiment.

2.2. Acute Toxicity Experiment

The hydrostatic biological test method was used during the experiment [29]. The test solution was
not replaced during the experimental process, but was continuously aerated throughout the day. The
fishes were not fed during the experimental period to eliminate any effect that the feed might cause. A
preliminary test was carried out to determine the 100% lethal and maximum tolerated concentrations
of the heavy metal divalent mercury ion. Based on the results of the preliminary test, 20 treatment
groups were set up: nine experimental groups were set up in seawater and freshwater, respectively,
with different mercury ion concentrations, and two control groups were set up. Each group contained
10 fishes. The behavior, poisoning symptoms, and mortality rates of fishes were observed during the
exposure process (see Table 1). When an individual fish showed no reaction to multiple stimuli, it
was deemed dead and was removed from the water in a timely manner (before 6 a.m. or 6 p.m.). The
number of dead fishes in the various treatment groups at 24, 48, 72, and 96 h was recorded, and the
average mortality rate of each experimental group was calculated.

Table 1. Divalent mercury ion mass concentrations and mortality rates of Anguilla japonica.

Hg2+ Mass Concentration
Mortality Rate (%)

24 h 48 h 72 h 96 h

Seawater
0.891250938 0 0 0 0

1 0 0 0 10
1.122018454 10 20 20 20
1.258925412 10 20 20 30
1.412537545 30 30 40 50
1.584893192 50 50 60 60
1.77827941 50 60 60 70

1.995262315 70 80 80 90
2.238721139 100 100 100 100

Freshwater
0.891250938 0 0 0 0

1 0 10 20 20
1.122018454 20 30 30 40
1.258925412 30 30 50 50
1.412537545 50 50 60 70
1.584893192 60 70 70 90
1.77827941 80 80 100 100

1.995262315 100 100 100 100
2.238721139 100 100 100 100

2.3. Preparation of Tissue Sections and Data Processing

The gills and livers of poisoned and normal (control) fishes were removed from the bodies, fixed
in Bouin’s fluid for 3 h, washed and dehydrated to transparency, and then embedded in paraffin.
Flakes of 7 µm thickness were generated by way of using a slicer and placed onto patches before
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staining them with the H·E method. After dehydration to transparency, the sections were sealed with a
neutral gum and sliced. A Samsung SCB-1000 (Tianjin Samsung Opto-Electronics Co., Ltd., Tianjing,
China) was used for observations and photography. The results of the acute toxicity experiment of
divalent mercury ion to A. japonica specimens were processed with the probability unit–logarithmic
plot method. Next, the median lethal mass concentration LC50 of the heavy metal ion to the fishes after
24, 48, 72, and 96 h of exposure was obtained. The following formula was used to calculate the safety
mass concentrations [30]:

Safety concentration (SCI) = LC50 (96 h) × 0.01

3. Results and Analysis

3.1. Acute Toxicity of Divalent Mercury Ion to Anguilla japonica

In the test aquarium, various reactions of the fishes to poisoning were observed at different Hg2+

concentrations. However, the reactions of A. japonica to mercury in the two types of aquaculture were
basically similar under the same conditions. The motility of the fishes in the low mass concentration
groups was similar to that in the control groups. Motility within 48 h was almost unchanged, with
most fishes swimming slowly in the water or at the bottom of the test aquarium.

The toxic reaction in the high mass concentration groups was rapid, with some test fishes dying
within 24 h. The fishes appeared agitated initially, swimming around rapidly in the aquarium or
darting up and down. Some individuals turned sideways or rolled around. Such behaviors persisted
for several hours, after which some became more lethargic when swimming. The fish gradually
lost their ability to move and became less responsive to external stimuli. Eventually, they stopped
swimming and laid down at the bottom of the aquarium. The poisoned individuals had additional
mucus on the surface and either laid flat or with the abdomen facing upwards after dying. The bodies
became white in color and hardened. In contrast, there was zero death in the control groups.

The toxicity of mercury ion to A. japonica and the mortality rates rose with increasing concentrations
and longer experimental durations. The median lethal and safe concentrations of divalent mercury
ion to A. japonica in seawater and freshwater at 24, 48, 72, and 96 h were obtained from statistical
analysis of the data (Table 2). Hg clearly affected A. japonica differently in seawater versus freshwater.
Specifically, divalent mercury ion had slightly stronger toxicity on eels in seawater, while eels in
freshwater exhibited higher tolerance.

Table 2. Median lethal and safety concentrations of divalent mercury ion to Anguilla japonica.

Hg2+
Experiment Duration Regression Equation for Probability

Unit—Concentration Logarithm
LC50 Safety Concentration

(h) (mg/L)

Seawater

24 y = 10.228 × −2.190 1.637

0.01442
48 y = 9.640 × −1.867 1.562
72 y = 9.557 × −1.765 1.530
96 y = 9.213 × −1.464 1.442

Freshwater

24 y = 11.523 × −1.782 1.428

0.01228
48 y = 10.112 × −1.404 1.377
72 y = 10.733 × −1.165 1.284
96 y = 12.231 × −1.091 1.228

3.2. Histological Changes to the Gills and Liver of Anguilla japonica

The gills of fishes are not just respiratory organs, but also contribute to other physiological
activities, such as the excretion of metabolites, osmotic balancing of body fluids, and regulation of
acid–base balance. The gills are in direct contact with the aquatic environment, and are the main target
organ exposed to the toxins of chemical pollutants. The structural and physiological changes of the
gills effectively indicate the level of contamination in the water body, and directly reflect the toxicity
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of chemicals to fishes [10,31–33]. Damage to gill tissue cells after exposure to toxic substances has
been classified into two types: (1) damage caused by defensive reactions, and (2) direct damage. The
former includes hypertrophy and hyperplasia of the epithelial cells in the gill filaments and edema of
the respiratory epithelium in the gill lamellae. The latter includes necrosis and shedding of epithelial
cells [34,35].

The gill filaments and lamellae of fishes in the control group were structurally intact and arranged
in a dense and orderly manner. The gills of fishes in the experimental groups were in direct contact
with the poisonous solution and were susceptible to damage. After being poisoned, the following
changes were observed to the gill tissues: the gill lamellae became thinner and there was cellular
necrosis and shedding (Figure 4a–d). After mercury ion exposure, the gill tissues of fishes in seawater
underwent the following changes: curling of the gill filaments, adhesion between the gill lamellae, and
massive cellular disintegration and necrotic shedding (Figure 4c). In contrast, the gill tissues of fishes
in freshwater underwent cell proliferation and apical enlargement, had non-tissue cavities in the gill
filaments, and hyperemia in localized areas (Figure 4d).

The liver is an important organ in the body of organisms and plays multiple important roles. These
roles include detoxification, metabolic function, bile secretion, and immune defense. Normal liver
tissue structures were observed in fishes from the control group. Specifically, the livers were glandular,
with extremely high numbers of cell cords densely packed in netlike formations. The hepatic cell
cords were polygonal, with varying sizes, but did not have any morphological mutations. Sinusoids
were observed between the cell cords, some of which were filled with blood cells (Figure 4e,f). After
mercury exposure, the liver tissues underwent hyperemia and swelling, and blood spots appeared.
The mitochondria in hepatocytes also swelled, the rough endoplasmic reticulum became dilated, and
intercellular inflation occurred. Eventually, liver necrosis led to the death of the fishes (Figure 4g,h).
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among liver tissues after divalent mercury ion treatment (freshwater).

4. Discussion

4.1. Toxicity and Median Lethal and Safety Concentrations of Divalent Mercury Ion to Anguilla japonica

The experiment showed that, for the same duration of exposure, the mortality rate of A. japonica
rose with increasing Hg2+ concentrations in water. Thus, within a specific concentration range, divalent
mercury ion has acute toxicity on this species. At the same concentration, the mortality rate increased
with prolonged exposure to mercury poisoning, indicating that it accumulates within the body.

There was a noticeable difference in the toxicity of divalent mercury ion to A. japonica in seawater
versus freshwater. The safety concentrations of mercury to seawater and freshwater were 0.01442
and 0.01228 mg/L, respectively. Many previous studies showed that mercury is toxic to fishes and
shrimps. However, the safety concentration of divalent mercury ion to A. japonica measured in this
experiment (0.01442 mg/L) was much higher than that recorded for the postlarvae of Litopenaeus
vannamei (0.0021 mg/L) [36] and the postlarvae of Marsupenaeus japonicus (0.0012 mg/L) [37]. However,
the safety concentrations of the current study were much lower than that recorded for Carassius auratus
auratus (0.023 mg/L) [38], and the postlarvae of Misgurnus anguillicaudatus (0.071 mg/L) [39]. The current
study also found that the toxicity of mercury to A. japonica in seawater was higher than that in freshwater.
Thus, the toxicity of mercury to A. japonica varies depended on the living environment. This is because
the toxicity of mercury ion is influenced by physicochemical factors, such as salinity, dissolved oxygen,
and pH, which then affects the LC50 value. Therefore, the effects of mutual interactions between
the various physicochemical factors in the living environment of fishes should be considered during
practical applications. In the natural environment, organisms living in chronically polluted sites are
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exposed to low concentrations of metals for long periods. In other cases, organisms might be abruptly
exposed to high levels of metals upon the outfall of a pollutant in coastal waters.

4.2. Effects of Divalent Mercury Ion on the Structure of the Gill and Liver Tissue of Anguilla japonica

The gills are the main respiratory organ of fishes. Their unique structure allows ions to pass
through from the water. As a result, the gills are the main part of the fish body that absorb heavy
metals directly from the water. The gills of A. japonica individuals are an important organ for gaseous
exchange and the regulation of ion balance in the water. With increasing mercury concentration in the
gill tissues and longer experimental durations, the tissues underwent various degrees of damage. The
large amount of mucus that was secreted by the fish damaged the functioning of the gills, resulting in
respiratory difficulties. For the control group, the gills included the visceral arch and gill filament, with
many gill lamellae on each filament. The lamellae were arranged neatly and consisted of epithelial
tissues, connective tissues, capillaries, and nerve tissues. Longitudinal sections of the lamellae revealed
the capillaries within, which were filled with blood cells.

The experimental results showed that varying mercury concentrations caused different degrees of
damage to the gill tissues. When the mercury concentration in the waterbody was low, the gill tissues
did not undergo pathological changes. When the mercury concentration was ≥10 µg/L, the mucus
secreted by the gill tissues gradually increased, particularly over longer experimental durations. The
gill lamellae curled and the epithelium swelled. The lamellae also had apical enlargement, due to
hyperemia, and became spherical or rod-shaped. Cells were shed from some lamellae, to the extent of
tissue disintegration. This damage seriously affected the normal functioning of gaseous exchange by
the gills. Guan et al. [40] showed that mercury in the bodies of fish was converted to methylmercury
through the process of methylation. This organic compound invaded the nervous system of A. japonica,
and severely damaged the gill tissues. There are adhesions between the gill lamellae, as well as massive
cellular disintegration and necrotic shedding [40].

This study demonstrated that the heavy metal mercury ion increased vacuole formation in
hepatocytes, with hepatic disintegration occurring in severe cases. The degree of damage increased
with prolonged exposures to mercury, indicating that it accumulates within the body. This finding
supports that of Kuang et al. [28], who identified the residual roles of heavy metals ion inside A. japonica.

Various research results in different regions of a number of countries have shown that mercury
concentrations in the blood and hair of humans are related to eating fish [41]. In particular,
Urieta et al. [42] showed that a population of adult Spaniards absorb an average of 18 pg of mercury
per day in their dietary intake, of which 80–90% come from fish. Sanzo et al. [43] showed that about
95% of mercury in the diet of people comes from the consumption of fish and shellfish. Therefore,
eating fish is the main source of mercury intake in the diet of the general population.

Toxicity data are fundamental for evaluating the potential impact of pollution on marine ecosystems.
Environmental conditions are also important, impacting metal bioavailability and bioaccumulation
levels. Toxicological bioassays involving a series of acute toxicity tests at different concentrations
were used to evaluate the effects of heavy metals on A. japonica after 48 and 96 h in the current study.
Standard biotoxicity tests usually determine cell growth and viability in relation to the pollutants of
concern. Such tests are especially important for regulation purposes, which aim to prevent possible
damage to biota and humans by establishing maximum tolerable levels of toxicants.

Heavy metals are also a threat to aquatic environments because they can be converted
from inorganic to organic forms through biological action. Metallo-organic compounds, such as
methylmercury, are highly toxic, and easily penetrate biological membranes to be fixed in the tissues
of organisms [41]. In fact, membrane injury is one important effect of metal ions that may lead to
the disruption of cellular functions. The data collected in the current study reinforce the observation
that, to assess potentially dangerous compounds in a satisfactory manner, many ecologically different
species must classified.
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5. Conclusions

In this paper, the biological test of mercury sulfate solution was carried out, which provided some
valuable conclusion for establishing the maximum tolerance level of mercury ion in eel:

• The design method, process and results used in this experiment will provide some reference for
the follow-up eel experiment.

• This paper has a certain reference significance for the staff engaged in aquaculture, scientific
research and other fields in the treatment of aquaculture wastewater.

• This paper has a certain reference value for researchers engaged in the field of environment and
food safety and managers of relevant government functional departments when they study, deal
with unexpected environmental disasters and make emergency decision-making deployment.

Moreover, from the point of view of watershed environmental protection, the process and results
of this experiment will be helpful for the accurate determination of mercury concentration in aquatic
environments and biological samples by chemical analysis methods in the future, and provide valuable
theoretical support and data reference for government departments to formulate mercury control as
one of the priority pollutants in aquatic environment.
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