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Abstract

Rho signaling is increasingly recognized to contribute to invasion and metastasis. In this study, we 

discovered that metastasis-associated protein S100A4 interacts with the Rho binding domain 

(RBD) of Rhotekin, thus connecting S100A4 to the Rho pathway. GST pull-down and 

immunoprecipitation assays demonstrated that S100A4 specifically and directly binds to Rhotekin 

RBD, but not other Rho effector RBDs. S100A4 binding to Rhotekin is calcium-dependent and 

uses residues distinct from those bound by active Rho. Interestingly, we found that S100A4 and 

Rhotekin can form a complex with active RhoA. Using RNAi, we determined that suppression of 

both S100A4 and Rhotekin leads to loss of Rho-dependent membrane ruffling in response to EGF, 

an increase in contractile F-actin “stress” fibers, and blocked invasive growth in three-dimensional 

culture. Accordingly, our data suggest that interaction of S100A4 and Rhotekin permits S100A4 to 

complex with RhoA and switch Rho function from stress fiber formation to membrane ruffling to 

confer an invasive phenotype.
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INTRODUCTION

While metastasis remains the major contributing factor to cancer-related deaths, there are 

few genes that specifically associate with the metastatic process. Of these genes, the calcium 

binding protein S100A4 is well recognized for its metastasis-associated properties. S100A4, 

also known as fibroblast specific protein (FSP), is upregulated during the epithelial to 

mesenchymal transition and is known to contribute to increased migration, invasion and 
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metastasis (1). Growing evidence demonstrates that S100A4 is associated with the 

progression of a variety of cancers, including breast and colon (2, 3). S100A4 is released 

from cells such as stromal and tumor cells where it has been suggested to serve as a 

paracrine and/or autocrine secretion factor that can participate in multiple aspects of tumor 

progression (4). Intracellularly, the migratory-promoting effects are potentiated by the 

interaction of S100A4 with cytoskeletal proteins such as non-muscle myosin IIA. S100A4 

colocalizes with myosin IIA at the leading edge of migrating cells (5) and affects myosin 

IIA assembly which, in turn, promotes directional cell migration (6, 7). These observations 

imply that S100A4 can serve as a regulator of actin cytoskeleton reorganization.

During the initial stages of tumor metastasis when cells migrate away from the primary 

tumor and invade the surrounding tissue, the actin cytoskeleton must be continuously and 

coordinately reorganized. Membrane protrusions (including lamellipodia, membrane ruffles, 

lamellae and filopodia), and stress fibers are important dynamic structures that are formed 

during actin cytoskeletal reorganization through the actions of the three best-characterized 

Rho GTPases including Rho, Rac and Cdc42. Among them, Rho is responsible for stress 

fiber formation in most cell types where it is suggested to function in the rear of the cell (8). 

Despite the prevailing view that RhoA functions in the rear of the cell while Rac and Cdc42 

function at the leading edge, there are substantial data to support that RhoA is active at the 

leading edge of migrating cells and its activation actually precedes that of Rac (9). 

Furthermore, several studies have shown that RhoA can specifically promote membrane 

ruffling and facilitate cell motility, particularly in cells of epithelial origin (10–13). RhoA 

mediates actin stress fiber formation, as well as membrane ruffling, through ROCK and 

mDia pathways (14, 15). Therefore, how RhoA regulates these different aspects of actin 

reorganization, to switch between stress fibers and membrane ruffles, remains an important 

and unanswered question. In our current study, we provide evidence that the answer to this 

question may reside with one of Rho’s poorly understood effectors, Rhotekin.

Rhotekin is a scaffold protein that interacts with RhoA and RhoC equally well (16). The 

search for Rhotekin interacting proteins focused on the C-terminal domain, which contains a 

consensus-binding motif for class I PDZ proteins. These studies showed that Rhotekin 

interacts with vinexin, Lin7B, PIST and septin which function in cell polarity, focal 

adhesion and septin organization (17–19). Notably, Rhotekin is overexpressed in metastatic 

colon cancer cells (20) and gastric adenocarcinoma cells, where it confers resistance to 

apoptosis through activation of NF-κB (21). Despite these findings, the role of Rhotekin in 

Rho-mediated downstream signal transduction and actin cytoskeleton reorganization 

remains largely unknown.

We find that S100A4 can bind the RBD of Rhotekin. Here, we characterize the interaction 

of the RBD of Rhotekin with S100A4, the relationship of this complex with Rho, and dissect 

the biological function of this interaction on actin cytoskeletal organization and three-

dimensional (3D) invasive growth of breast cancer cells. Through these studies, we provide 

evidence that the S100A4-Rhotekin interaction guides the switch between RhoA mediated 

stress fibers and membrane ruffling to facilitate a more invasive phenotype.
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RESULTS

S100A4 specifically and directly interacts with Rho effector Rhotekin in a calcium-
dependent manner

Rho effectors were originally classified into three groups depending on the regions of Rho to 

which they bind. Class I includes Rhotekin, PKN/PRK and Rhophilin; class II includes 

ROCKI and ROCKII; and class III contains citron (22). Based on similarities in their 

domain structure, Rho effectors were recategorized recently into three groups in which 

citron was listed as the member with ROCKI and ROCKII, while mDia was considered as a 

separate group (23). Rhotekin is a class I Rho effector and a scaffold protein (24) that is 

overexpressed in several cancers (20, 25). How Rhotekin contributes to cancer progression, 

however, is still uncertain. We initially observed that S100A4 precipitated with the RBD of 

Rhotekin while probing cell lysates for RhoA activity (data not shown). To investigate this 

interaction further, we chose representative effectors from each class plus mDia1 and Pak 

Rac/Cdc42 binding domains (PBD) and tested the ability of S100A4 to bind the GTPase 

binding domain of each effector. As shown in Figure 1A, S100A4 specifically interacted 

with RBD of Rhotekin, a class I Rho effector, but not other Rho effectors, GST or PBD.

Calcium binding to S100A4 induces a conformational rearrangement that allows the 

interaction of S100A4 with its target proteins (25, 26). To determine whether the interaction 

between S100A4 and the RBD of Rhotekin is direct and calcium regulated, bacterially-

expressed Rhotekin RBD was incubated with 10 ng-1 μg of purified S100A4 in the presence 

of calcium or EGTA. As presented in Figure 1B, the binding of purified S100A4 to GST-

Rhotekin RBD beads was abolished by EGTA. These data demonstrate that the interaction 

between S100A4 and Rhotekin RBD is direct and requires calcium.

The RBD of Rhotekin is located at the N-terminus. The amino acid sequence of the 

Rhotekin RBD shares approximately 30% identity with the RBDs of class I Rho effectors 

Rhophilin and the serine/threonine kinase PKN (16). To determine if S100A4 binds to other 

class I Rho effectors, GST-fusion proteins containing the RBD of PKN1 or Rhophilin2 were 

incubated with purified S100A4 protein. As shown in Figure 1C, S100A4 bound only the 

RBD from Rhotekin.

To confirm that the interaction of Rhotekin and S100A4 occurs in vivo, MDA-MB-231 cells, 

which express high levels of endogenous S100A4, were transfected with myc-tagged 

Rhotekin constructs including full-length (FL), ΔRBD, RBD, central domain (Cent) and C-

terminus domain proteins as depicted in Figure 1D. Fusion proteins were 

immunoprecipitated with anti-myc IgG agarose beads and analyzed for S100A4 association 

by immunoblot analysis. We find that endogenous S100A4 immunoprecipitated with full-

length or RBD-only Rhotekin fusion proteins (Fig. 1E, top panel; lane 3 and 5) but not with 

the C-terminus, ΔRBD, or central domains (Fig. 1E top panel; lanes 4, 6, and 7). Similarly, 

in MDA-MB-231 cells transfected with Flag-tagged full-length Rhotekin, C-terminus and 

ΔRBD proteins, S100A4 immunoprecipitated with only the Flag-tagged full-length 

Rhotekin. The C-terminus and ΔRBD mutants did not exhibit any interaction with S100A4 

(Fig. 1F, top panel). Collectively, these data show that S100A4 directly and specifically 

interacts with Rhotekin through its RBD and this interaction is calcium-dependent.
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S100A4 and Rhotekin co-localize in membrane ruffles at the edge of the migrating cells

In migrating cells, S100A4 is present at the leading edge (5). To evaluate whether Rhotekin 

and S100A4 colocalize in cells, a HA-tagged full-length Rhotekin construct (HA-RTKN-

FL) was transfected into HeLa cells and the localization of S100A4 and Rhotekin was 

examined by confocal microscopy. As shown in Figure 2, unstimulated cells displayed a 

flattened morphology with large lamellar protrusions. S100A4 and Rhotekin colocalized 

throughout the cell and concentrated modestly at the edge of lamellipodia. In contrast, EGF-

stimulated cells exhibited dramatic lamellipodial membrane ruffles. Interestingly, S100A4 

and Rhotekin concentrated and colocalized in the edge of these ruffles (Fig. 2). The 

colocalization of these two proteins was also observed in the basal surface of the cells.

S100A4, active Rho, and Rhotekin form a complex

The ability of S100A4 to bind directly to the RBD of Rhotekin raises the question as to 

whether active Rho and S100A4 bind the RBD using the same residues. To test this idea, we 

utilized a Rhotekin RBD triple A mutant, which contains alanine substitutions at Arg37, 

Arg39 and Asp40, respectively, and has been demonstrated to bind GTP-bound Rho with 

reduced affinity (27). Comparing this mutant to the wild-type Rhotekin RBD, we found that 

S100A4 exhibited comparable binding to the RBD triple A mutant as to the wild-type RBD 

(Fig. 3A). To confirm that GTP-bound Rho exhibits reduced binding to the RBD triple A 

mutant, LPA-treated MDA-MB-231 cells were assayed for active RhoA. Figure 3C shows 

that GTP-bound RhoA exhibited reduced binding for Rhotekin RBD triple A mutant 

compared to the wild-type RBD. These data suggest that S100A4 and Rho use different 

residues to bind the Rhotekin RBD.

To determine whether S100A4, active Rho, and Rhotekin can form a complex, we used a 

constitutively active L63RhoA to determine if active Rho could co-precipitate Flag RTKN-

FL and S100A4. Here, we found that in the presence of calcium GST-L63RhoA precipitates 

both Flag-RTKN and S100A4 (Fig. 4A lane 6); furthermore, this association of S100A4 

with the RhoA-RTKN complex was disrupted by the addition of 5 mM EGTA (lane 8). As 

expected, however, EGTA did not affect the binding of active Rho to Rhotekin. To confirm 

the composition of this complex, the L63RhoA pull down assay was performed with control 

MDA-MB-231 cells or those in which RTKN expression was reduced with RNAi. Here, we 

found that endogenous S100A4 and Rhotekin precipitated with the constitutively active 

Rho. Additionally, there was a reduction in the amount of endogenous S100A4 pulled down 

with GST-L63RhoA in RTKN knockdown cells; and this interaction was calcium-dependent 

(Fig 4C). In contrast, GST-N19RhoA, a dominant negative Rho, did not pull down either 

Rhotekin or S100A4 (Fig 4D). Collectively, these data support the formation of a complex 

comprised of active Rho, Rhotekin, and S100A4.

S100A4 cooperates with Rhotekin to suppress Rho-mediated actin stress fiber formation 
and promote lamellipodial ruffles in response to EGF

The formation of a RhoA-Rhotekin-S100A4 complex suggests a potential role for this 

complex in the functional output of Rho signaling. RhoA signaling promotes both actin 

stress fiber and membrane ruffle formation (10–13) and we find that RhoA is required for 

MDA-MB-231 cells migration and invasion toward EGF (unpublished data). To confirm 
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that Rho signaling mediates the formation of membrane ruffles in EGF-stimulated MDA-

MB-231 cells, C3 transferase, which inactivates RhoA, B and C by ADP ribosylation, was 

electroporated into cells prior to treatment with EGF. We found that inhibition of Rho 

GTPase signaling by C3 impaired membrane ruffling and cortical F-actin bundles in EGF-

stimulated MDA-MB-231 cells (supplemental Figure S1). Similar morphological changes 

were seen with the ROCK inhibitor Y27632 in terms of loss of membrane ruffles, lamellae 

and contractile actin filaments; however, with the ROCK inhibitor, cells were more 

elongated (data not shown).

To determine the contribution of the S100A4 and Rhotekin interaction to the organization of 

the actin cytoskeleton, we created stable transfectants of MDA-MB-231 cells that express 

either a non-targeting shRNA (shNT) or one targeting S100A4 (shS100A4). These cells 

were treated with either siRNA targeting Rhotekin (siRtkn) or a non-targeting siRNA (siNT) 

and changes in F-actin organization were assessed following EGF-stimulation. As shown in 

Figure 5A, EGF-stimulated MDA-MB-231 cells formed large lamellae with prominent 

actin-rich lamellipodial ruffles, which were often contiguous over a large portion of the cell 

periphery (quantified in panels 5E as “many”). Within the body of the cell, thick F-actin 

fibers, which might be loosely referred to as stress fibers, are seen in low abundance (< 10 

per cell) if noted at all. However, when Rhotekin expression is reduced by siRNA, the 

presence of these F-actin bundles increases in number (> 20 per cell; quantified as “many”) 

and thickness, but there is little effect on lamellipodial ruffles (Fig. 5B). In contrast, when 

S100A4 expression is repressed, lamellipodial ruffles become less prominent (referred to as 

“few” or none when completely absent) and F-actin in the lamellipodium is generally 

reduced to focal points of polymerization (Fig. 5C, black arrowheads). Furthermore, as seen 

with Rhotekin knockdown, reduction of S100A4 expression led to an increase in the number 

of F-actin fibers in the cell body, although these fibers are generally much thinner and more 

numerous than those seen in the cells with Rhotekin knockdown only (Fig. 5C). These 

characteristics, quantified in panels 5E and 5F, were more dramatic when both S100A4 and 

Rhotekin expression were reduced (Fig. 5D) in which, F-actin fibers become much thicker 

and abundant while lamellipodial ruffles are lost. These data demonstrate cooperation 

between S100A4 and Rhotekin signaling.

S100A4 and Rhotekin converge on the spatial regulation of myosin light chain 
phosphorylation

One of the intracellular functions of S100A4 is to prevent the oligomerization of myosin IIA 

heavy chain (6). Rho acting through ROCK contributes to the activation of myosins through 

the enhanced phosphorylation of myosin light chain (MLC) through the inhibition of myosin 

light chain phosphatase. To determine if myosin and MLC might be a convergence point for 

the S100A4-Rhotekin-Rho complex, we investigated MLC phosphorylation as a readout of 

this potential cross talk. Using the control and RNAi-mediated S100A4/Rhotekin double 

knockdown cells, we observed no difference in total MLC phosphorylation determined by 

immunoblot analysis of whole cell lysates with or without growth factor stimulation (see 

Supplemental Figure S2). Similarly, we found that the reduction of S100A4 and/or Rhotekin 

expression did not affect the amount of active RhoA in EGF-stimulated MDA-MB-231 cells 
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(data not shown). These observations indicate that S100A4 and Rhotekin affect Rho 

signaling by altering Rho function spatially.

To determine if MLC phosphorylation is altered in a spatial fashion, EGF-stimulated cells 

were stained for phospho-MLC (pMLC) and F-actin, and then imaged by TIRF microscopy. 

As shown in Figure 6A, control cells display broad lamellae rich with punctate pMLC 

staining. At the very leading edge of the lamellipodium of these cells, beneath the membrane 

ruffles, the pMLC staining present is no longer punctate, but predominantly diffuse in nature 

(Fig. 6A, inset of middle panel). In cells depleted for Rhotekin, diffuse pMLC staining is 

also seen where lamellipodial ruffles exist and punctate pMLC associates with thicker actin 

filaments. In cells depleted for S100A4, this diffuse pMLC staining present in the control 

cells is notably absent (Fig. 6C and D, insets in middle panels). When either Rhotekin or 

S100A4 is reduced by RNAi (Fig. 6B–D, middle panels), pMLC puncta become more 

prominent within the cell body and line up along stress fibers. These data suggest that the 

interaction of S100A4 and Rhotekin spatially regulates Rho and, therefore, affects the 

functional output of Rho signaling.

S100A4 cooperates with Rhotekin to promote invasive growth of MDA-MB-231 cells in 
three-dimensional culture

While RhoA contributes to lamellae and lamellipodia formation and migration in two-

dimensions, the contribution of RhoA to tumor invasion is manifested more fully in 3D 

invasion, as seen specifically with the MDA-MB-231 cells (28, 29). For these experiments, 

Rhotekin and S100A4 in MDA-MB-231 cells were reduced by RNAi and invasive growth 

was assessed after four days in Matrigel. As shown in Figure 7A, control cells displayed 

aggressive invasive growth with “spider-like” protrusions extending into the Matrigel. 

Reduction of Rhotekin expression did not show a significant effect on the percentage of 

colonies exhibiting invasive growth, but compared to control cells, the protrusions were 

much shorter. In cells with reduced S100A4, there was a dramatic decrease in the percentage 

of colonies showing invasive growth. Interestingly, depletion of both proteins resulted in a 

more dramatic phenotype; most colonies were smaller with no invasive growth. As shown in 

Figure 7B, F-actin staining verified that control cells displayed actin-rich projections, and 

that the F-actin was distributed in the cell periphery. In contrast, knockdown of S100A4 

and/or Rhotekin resulted in rounded colonies with minimal projections and F-actin localized 

at cell-cell junctions. These effects were quantified as shown in Figure 7C. These studies 

demonstrate that S100A4 and Rhotekin function cooperatively to elicit an invasive 

morphological phenotype in breast tumor cells.

DISCUSSION

While RhoA is best recognized for its ability to promote stress fiber formation (8), several 

studies also show that RhoA can specifically promote membrane ruffling and facilitate cell 

motility, especially in cells of epithelial origin (10–13). To support its role in membrane 

ruffling, there are substantial data indicating that RhoA is active at the leading edge of 

migrating cells (9). Definitive evidence was finally presented with the advent of FRET-

based reporter of RhoA activity which showed that RhoA activity localizes to sites of active 
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protrusion and precedes the activation of Rac and cdc42 (30). This occurs not only in 

fibroblasts (31), but also in cells of epithelial origin where RhoA activation promotes the 

formation of membrane ruffles (13).

However, a major question has remained: how does RhoA promote lamellae and 

lamellipodia formation? It is tempting to speculate simply that the choice of one effector 

controls the switch between Rho’s ability to promote membrane ruffles and lamellae in lieu 

of stress fibers. However, both membrane ruffle and stress fiber formation are mediated 

through the same Rho effectors, ROCK and mDia (23). The Rho-ROCK pathway inhibits 

myosin light chain phosphatase, resulting in increased myosin light chain phosphorylation. 

Phosphorylation of myosin light chain enhances myosin II contractility, which is inhibitory 

to membrane protrusive activities (32). Therefore, if Rho contributes to lamellipodial 

protrusions, it is necessary to temper the contractile functions of Rho to facilitate the actin 

polymerization and membrane protrusion activities of effectors such as mDia (23) and 

ROCK substrates such as Adducin (10). Here, we provide evidence that the interaction of 

Rhotekin and S100A4 provide the mechanism for Rho to switch from stress fiber formation 

to lamellipodial ruffles.

Rhotekin was initially identified as a putative target for Rho (16) and has since been shown 

to bind multiple proteins involved in cell polarity, focal adhesion, and septin organization 

(17–19). One recent study showed that Rhotekin is a substrate of protein kinase D and that 

Rhotekin phosphorylation regulates Rho activity in fibroblasts (33). However, the role of 

Rhotekin in signaling downstream of Rho remains largely unknown. In our study, we find 

that Rhotekin interacts with S100A4 and this interaction is mediated through direct, 

calcium-dependent binding of S100A4 to the RBD of Rhotekin. We also demonstrate that 

the cooperative signaling between S100A4 and Rhotekin promotes membrane ruffling in 

EGF-stimulated MDA-MB-231 cells while suppressing stress fiber formation. In addition, 

we discovered that Rhotekin, S100A4 and active Rho form a complex, thus suggesting that 

the interaction of Rhotekin and S100A4 facilitates the recruitment of S100A4 to active 

RhoA. These interesting findings put S100A4 in a position to influence Rho signaling and 

potentially alter the signaling output of Rho.

S100A4 functions intracellularly by binding to cytoskeletal proteins such as tropomyosin 

and non-muscle myosin IIA. Notably, myosin II is critical for the migratory process and is a 

convergence point for small GTPase signaling (32). Myosin IIA, specifically, functions 

predominantly at the leading edge where myosin light chains are preferentially 

phosphorylated downstream of RhoA signaling (34). S100A4 binding inhibits myosin-IIA 

oligomerization and thereby limits the contractile functions of this molecule (35). If S100A4 

restricts myosin-IIA contractility, coupling Rho signaling to S100A4 through Rhotekin at 

the leading edge of cells would limit contractility in a spatial and temporal manner, and thus 

permit the protrusive effects of Rho signaling to dominate. Notably, one of the reported 

roles of S100A4 in cell motility is to control the localization and stability of cellular 

protrusions (7). Therefore, the coupling of S100A4 to RhoA would increase the efficiency of 

generating forward protrusions and enhancing directed cell motility.
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These observations and concepts led us to the molecular model depicted in Figure 8, which 

helps to explain how the interaction of S100A4 and Rhotekin lead to a functional switch in 

Rho function. When both Rhotekin and S100A4 are expressed, growth factor stimulation of 

Rho activity leads to the coupling of Rho to S100A4. Under these conditions, myosin II 

oligomerization is restricted in close proximity to active Rho, thus limiting stress fiber 

formation. The inhibition of myosin-mediated actin contractility then permits membrane 

ruffling and lamellae formation to predominate downstream of Rho effectors such as ROCK 

(Fig. 8A). When Rhotekin is absent, S100A4 and Rho are uncoupled. Under this condition, 

Rho activation is not restricted to the leading edge, which allows for the formation of 

membrane ruffles at the leading edge and stress fibers in the cell body (Fig. 8B). This 

concept is supported by the presence of both membrane ruffles and stress fibers with RNAi-

mediated reduction in Rhotekin (Fig. 5B) and the altered distribution of pMLC (Fig. 6). 

Without S100A4, membrane ruffles are unable to form (Fig. 5C) due to the increase in 

oligomeric myosin and absence of monomeric myosin at the leading edge (Fig. 6). Notably, 

the loss of both S100A4 and Rhotekin exacerbates the thickness and number of stress fibers.

Lastly, we find that S100A4 cooperates with Rhotekin to promote invasive growth in 3D 

culture. Tumor invasive growth is defined as a complex, multistep program involved in the 

interplay of tumor cells and the microenvironment, and in turn tumor cells acquire the 

propensity for migration, invasion, and proliferation (36). Interestingly, a recent study 

suggested that both intracellular and extracellular S100A4 affect TGFα-mediated branching 

phenotype of normal mammary gland (37). We cannot discount that signal relay from 

secreted S100A4 contributes to promoting invasive growth considering the duration (four 

days) of these assays. However, our short-term studies demonstrate that S100A4 and 

Rhotekin function cooperatively to elicit the same morphological phenotypes in breast tumor 

cells, consistent with an intracellular role for S100A4 as a major contributor to this 

phenotype.

Mechanisms governing carcinoma cells in 3D and in vivo can differ substantially from those 

in two-dimensional (2D) culture systems (38). However, in both 2D and 3D systems, 

polarization through the formation of lamellae or pseudopodia is important for migration 

and invasion. Previous work in breast cancer highlights the importance of lamellae 

formation and directed migration in promoting carcinoma metastasis where cells that can 

polarize toward blood vessels through lamellae formation are more metastatic and those that 

cannot (39, 40). Not only does RhoA have the potential to contribute to lamellae formation, 

it has been demonstrated that RhoA activity can be spatially regulated during cell invasion 

in live animals, as shown in pancreatic cancer (41). Considering the mounting evidence that 

RhoA plays a critical role in the migration, invasion and metastasis of various types of 

carcinomas (23, 42, 43), better insight into how RhoA contributes to these processes and 

whether the cooperative signaling between Rhotekin and S100A4 affects Rho spatially in a 

3D culture system will be an important avenue of investigation for future studies.

In summary, we identified a novel interaction between the pro-metastatic protein S100A4 

and the Rho effector Rhotekin. This coupling of S100A4 to Rhotekin permits S100A4 to 

complex with RhoA and switch Rho function from stress fiber formation to membrane 

ruffling. We propose that the S100A4/Rhotekin interaction changes Rho signaling outcome 
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by affecting how Rho assembles and modifies the actin cytoskeleton spatially. Moreover, 

S100A4 and Rhotekin cooperate to confer an invasive tumor phenotype in breast cancer 

cells through its ability to promote membrane protrusions and invasive growth.

MATERIALS AND METHODS

Cell lines and plasmids

MDA-MB-231 and HeLa cells were cultured and transfected with select cDNAs or siRNAs 

(Dharmacon/Fisher) as described previously (44, 45). Flag- and myc-tagged Rhotekin 

constructs (46) were obtained from Dr. Kohichi Nagata (Institute for Developmental 

Research, Alchi Human Service Center, Alchi, Japan). Plasmids pGEX-4T-1-mouse mDia 

RBD, pGEX-4T-3-mouse ROCK-II RBD and pGEX-mouse citron RBD were obtained from 

Dr. Shuh Narumiya (Kyoto University Faculty of Medicine, Japan). GST-RBD-AAA (27) 

was obtained from Dr. G. Steven Martin (University of California, Berkeley). pGEX-

L63RhoA was obtained from Dr. Keith Burridge (University of North Carolina-Chapel Hill)

For construction of the HA-RTKN-FL plasmid, mouse cDNA was used as the template to 

amplify the full-length RTKN using specific primers (forward, 5′ GCG-ATA-TCA-CAG-

ATT-GCG-CAT-CCT-GGA 3′; reverse, 5′ GCT-CTA-GAT-GAC-TTC-ATC-ACA-ACA-

GTG-CCT 3′) and inserted into EcoR V and Xba I sites of pcDNA3.1-HA vector. For 

construction of GST-Rhophilin2-RBD and GST-PKN1-RBD, cDNA from MDA-MB-435 

cells was used as the template to amplify RBDs using isoform specific primers for PKN1 

(forward, 5′ CGG-GAT-CCC-AGA-GTG-AGC-CTC-GCA-GCT-GGT-CC 3′; reverse, 5′ 

CCG-CTC-GAG-GGG-AAG-CAC-CAC-GTG-GGC-GT 3′) and Rhophilin 2, (forward, 5′ 

CGG-GAT-CCC-AGC-CGC-TGG-AGA-AGG-AGA-A 3′ and reverse, 5′ CGG-CTC-GAG-

GCA-TCT-GCA-GGT-CTG-AGT-TGA-CG 3′). PCR products were inserted into the BamH 

I and Xho I sites of pGEX-6P-3 vector. GST-N19RhoA was generated by sub-cloning from 

myc-N19RhoA construct as described previously (47) and inserting into the Xho I and EcoR 

I sites of pGEX-6P-3 vector. All plasmids were confirmed by sequencing.

Lentivirus-mediated shRNA constructs (targeting sequence: 5′ CGC-CAT-GAT-GTG-TAA-

CGA-ATT 3′; Sigma) were used to generate stable reduction of S100A4 expression in 

MDA-MB-231 cells.

RhoA activity, GST-fusion protein binding, and immunoprecipitation assays

RhoA activity was assessed with the Rhotekin binding assay as described previously (12, 44, 

47). The expression of the GST-RBDs from different Rho effectors, GST, GST-L63RhoA 

and GST-N19RhoA were induced by 1mM IPTG in BL21 bacteria and coupled to 

Glutathione Sepharose 4B beads (GE healthcare). Then GST-fusion protein binding and 

immunoprecipitation assays were carried out in lysis buffer (50 mM Tris, pH 7.2, 500 mM 

NaCl, 1% Triton X-100, 0.25% sodium deoxycholate, 0.1% SDS, 10 mM MgCl2, 2 mM 

CaCl2, 10 μg/ml protease inhibitor cocktail (48), and 1 mM PMSF). GST-fusion protein 

coupled beads (35μl) were incubated with cell lysates or purified S100A4 for 30 mins at 

4°C. For immunoprecipitation of tagged proteins, 10 μl of anti-c-myc coupled agarose beads 

(clone 9E10, Santa Cruz Biotechnology) and 1 μg monoclonal anti-Flag (clone M2, Sigma) 
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were incubated with precleared cell lysates at 4°C overnight. Beads were then rinsed 3 times 

with wash buffer (50 mM Tris, pH 7.2, 150 mM NaCl, 1% Triton X-100, 10 mM MgCl2, 

plus protease inhibitors). The GST-beads coupled proteins and immunoprecipitated proteins 

complexes were resuspended in 2X Laemmli sample buffer, separated by SDS-PAGE and 

immunoblotted as indicated. Human S100A4 was expressed and purified as described 

previously (7, 49).

Immunocytochemistry staining and imaging

Cells (2.5 × 104)from noted treatments were seeded on glass coverslips coated with 50 

μg/ml collagen I (BD Bioscience) for 2 hrs, and then treated with 5 ng/ml EGF (Pepro Tech) 

for 5 mins. Cells were fixed, permeabilized, and immunostained as described previously (12, 

50) using the following antibodies: anti-S100A4 (1:400, Dako), anti-pMLC (S19, 1:100, 

Cell Signaling), HA-probe (F-7, 1:100, Santa Cruz), Alexa Fluor 488 goat anti-rabbit IgG 

(Molecular Probes) or Cy3-conjugated donkey anti-mouse IgG (Jackson Immune Research). 

TRITC-Phalloidin (Sigma) was used to stain F-actin. Coverslips were mounted in 

VECTASHIELD mounting medium for fluorescence (Vector Laboratories, Inc). Confocal 

images were captured on an Olympus FV1000 confocal microscope using an Olympus 60X 

UPlanS Apo NA 1.35 oil objective and Olympus FV10-ASW2 software. TIRF microscopy 

was performed using a Nikon Eclipse Ti-E TIRF microscope equipped with a 60X, 1.45 NA 

objective, CoolSNAP HQ2 CCD camera (Roper Scientific). These images were acquired at 

room temperature and analyzed by using NIS-Elements (Nikon). Image quality in terms of 

subtracted background and input intensity range was optimized in NIS-Elements using the 

automated look-up tables under linear settings (1.0 gamma setting). Images were cropped in 

Adobe Photoshop and assembled in Adobe Illustrator CS5.

Three-dimensional culture

MDA-MB-231 cells were grown in three-dimensional culture as described previously to 

assess invasive growth (51). Briefly, cells (5 × 103) in 200 μl DMEM/F12 plus 1% FBS 

were seeded onto solidified growth factor reduced Matrigel (BD Biosciences; 100 μl per 

well of 8-well chamber slide) and then covered with 10% Matrigel containing medium. 

After 3 days, 8 representative fields for each condition were assessed for the percentage of 

colonies demonstrating invasive growth. Then 20 μl of Matrigel containing colonies were 

smeared onto a slide, fixed with 4% paraformaldehyde, permeabilized and immunostained 

as described above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

shNT non-targeting shRNA

siNT non-targeting siRNA

PBD Pak Rac/Cdc42 binding domains

RBD Rho binding domain
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Figure 1. S100A4 binds to Rhotekin but not the other Rho effectors in a calcium-dependent 
manner
(A) GST-fusion proteins of different Rho effector RBDs were purified, coupled to 

glutathione beads and incubated with cell lysates from MDA-MB-231 cells, as noted. Beads 

were then washed and S100A4 content assessed by immunoblot analysis using 10% of the 

cell lysate as input control (top panel). Equal quantities of each fusion protein were 

separated by 10% SDS-PAGE followed by Coomassie blue staining (bottom panel). (B) 

Varying amounts of purified S100A4 were incubated with Rhotekin RBD-glutathione beads 

in the presence calcium or 5 mM EGTA, washed and immunoblotted for S100A4. Input = 

10 ng S100A4. MDA-MB-231 lysate input and Rhotekin RBD precipitates (Ppt) represent 

positive controls. (C) GST fusion proteins of RBDs from class I Rho effectors, as indicated, 

or GST alone were purified, coupled to glutathione beads and incubated with 100 ng 

purified S100A4. Beads were then washed and associated proteins immunoblotted for 

S100A4 (top panel). Fusion protein content on beads was assessed as in (A) (bottom panel). 

10 ng purified S100A4 was used as the input. (D) Domain structure of Rhotekin constructs 

used in (E) and (F). (E) MDA-MB-231 cells were transfected with myc-RTKN-FL, -ΔRBD, 

-RBD, -Cent, and C-terminus constructs or empty vector (Control). After 48 hrs, cells were 
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lysed and immunoprecipitation assays were performed followed by immunoblotting for 

S100A4 (E, top panel for IP and middle panel for input) and anti-myc (bottom panel). (F) 

MDA-MB-231 cells were transfected with Flag-RTKN-FL, C-terminus, and -ΔRBD 

constructs or empty vector (Control). After 48 hrs, cells were lysed and immunoprecipitation 

assays were performed followed by immunoblotting for S100A4 (top panel) and Flag 

(bottom panel).
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Figure 2. S100A4 and Rhotekin colocalize at the leading edge of migrating cells
HeLa cells, which express endogenous S100A4, were transfected with HA-RTKN-FL. After 

48 hrs, suspended cells (2.5 × 104) were seeded on glass coverslips coated with 50 μg/ml 

collagen I in serum-free medium for 2 hrs before treatment with BSA (A) or EGF (5 ng/ml; 

B) for 5 mins. Cells were fixed and immunostained for S100A4 (green) and HA (red). 

Images were taken every 0.5 μm starting from the basal surface. The representative images 

from one of three separate experiments are shown. For each condition, images from both 

basal surface and 1.5 μm up to the basal level (cell body) are depicted, as noted.
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Figure 3. S100A4 and RhoA bind different residues within the Rhotekin RBD
(A) GST or GST fusion proteins of TRBD and TRBD triple A mutants were purified, 

coupled to glutathione beads and incubated with 100 ng purified S100A4. Beads were 

washed and immunoblotted for S100A4. 10 ng purified S100A4 was used as the input 

control. (B) The same amount of protein coupled beads as used in (A) were separated by 

10% SDS-PAGE followed by Coomassie blue staining. (C) RhoA activity assay was 

performed by using GST or GST-fusion protein coupled beads with cell lysates from MDA-

MB-231 cells seeded on collagen I-coated dishes and treated with 100 nM LPA for 5 mins.
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Figure 4. S100A4, Rhotekin, and active Rho form a complex. (A) Flag-RTKN full length was 
transfected into HeLa cells
After 48 hrs, bacterially-expressed GST or GST-L63RhoA coupled glutathione beads were 

incubated with cell lysates in the presence of calcium or 5 mM EGTA, as noted, followed by 

immunoblotting with Flag (top panel) and S100A4 (bottom panel) antibodies. (B) 

Representative samples of GST and GST-L63RhoA fusion proteins used in the pull down 

assays analyzed by SDS-PAGE and Coomassie blue staining. (C) MDA-MB-231 cells were 

electroporated with siRNA targeting Rhotekin (RTKN) or a non-targeting siRNA (NT). 

After 72 hrs, cells were lysed and incubated with bacterially expressed GST-L63RhoA 

coupled glutathione beads for 30 mins in the presence of calcium or 5 mM EGTA followed 

by immunoblotting with Rhotekin or S100A4 antibodies, as indicated. (D) MDA-MB-231 

cell lysate was incubated with beads coupled to L63RhoA or N19RhoA. Protein pulled 

down with beads and lysate input controls (5%) were then immunoblotted for Rhotekin (top 
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panel) or S100A4 (bottom panel). (E) Coomassie blue staining of representative samples of 

GST-L63RhoA and GST-N19RhoA fusion proteins used in (D).
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Figure 5. S100A4 and Rhotekin cooperate to suppress actin stress fiber formation and promote 
membrane ruffle formation in response to EGF
MDA-MB-231 cells were stably transfected with either a non-targeting shRNA (shNT) or 

one targeting S100A4 (shS100A4). Cells were transiently transfected with siRNA targeting 

Rhotekin (siRTKN) or a non-targeting siRNA (siNT). After 48 hrs, cells were plated onto 

collagen-coated coverslips in serum-free medium for 3 hrs before treating with 5 ng/ml EGF 

for 5 mins. Cells were stained with TRITC-phalloidin and immunostained for S100A4. Cells 

were imaged using widefield epifluorescence (Epi) and total interference reflection 

fluorescence (TIRF) microscopy and quantified for the presence of membrane ruffles at the 

lamellipodium and contractile fibers within the cell body. Representative data are shown for 

cells transfected with (A) with shNT and siNT (Control); (B) shNT and siRTKN; (C) 

shS100A4 and siNT; and (D) shS100A4 and siRTKN. Left two panels in (A–D) are 

representative TIRF images; scale bar in (A) depicts 20 μm for these images. The right two 

images are higher magnifications of the region highlighted by the rectangular box in the 

image to the left that were imaged either by TIRF or widefield epifluorescence (Epi), as 

noted. Arrows (A–C) represent lamellipodial ruffles; stars (A) denote regions devoid of 

stress fiber-like actin filaments; and black open arrowheads (B, C) show regions of focal 

actin polymerization which do not result in productive ruffles. (E, F) Quantification of 

lamellipodial ruffles (E) and notable F-actin fibers (F) present in 100 cells from each 

condition. (G) Immunoblot analysis of S100A4, Rhotekin and actin expression for cells 

under each experimental condition.
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Figure 6. Rhotekin and S100A4 cooperation regulate the spatial distribution of pMLC
MDA-MB-231 cells with RNAi-mediated reduction of S100A4 and/or Rhotekin were plated 

on collagen-coated coverslips and treated with EGF for 5 mins, as described in Figure 5. 

Cells were fixed, stained for F-actin (left panels) and pMLC (middle panels), and imaged 

using TIRF microscopy as described in the Methods section. Representative data are shown 

for cells transfected with (A) with shNT and siNT (Control); (B) shNT and siRTKN; (C) 

shS100A4 and siNT; and (D) shS100A4 and siRTKN. Insets represent 4X magnification of 

area noted by the dashed box in the main middle and right panels, which have been 

brightened to highlight diffuse pMLC staining of the leading edge in panels A and B and the 

absence of this staining in panels C and D. Arrows in A and B highlight select spots of 

diffuse pMLC staining that colocalizes with lamellipodial actin polymerization. The green 

line in the insets of the middle panels denotes the cell boundaries determined by Region of 

Interest (ROI) delineation from F-actin images. Scale bars in merged images indicate 10 μm.
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Figure 7. S100A4 and Rhotekin cooperate to promote invasive growth of 3D cultures of MDA-
MB-231 cells
(A) Representative phase-contrast images of MDA-MB-231 cells in 3D culture after 

reduction of S100A4 and/or RTKN expression by RNAi. Scale bars represent a distance of 

100 μm. (B) Matrigel containing colonies from cells in (A) were smeared onto slides, fixed, 

permeabilized, and stained for F-actin (TRITC-phalloidin; red), S100A4 (anti-S100A4; 

green) and nuclei (DAPI; blue). The arrows indicate invasive cell protrusion into the 

Matrigel. Scale bars = 20 μm. (C) Quantification of the percentage of colonies with invasive 

growth from one of at least three representative experiments. Values represent the means ± 

s.d. from eight fields of 18–40 colonies in each condition (* p<0.01 by t-test).
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Figure 8. Proposed model of S100A4-Rhotekin cooperation in Rho signaling
(A) We suggest that the coupling of Rho to S100A4 is mediated by Rhotekin. Under this 

model, we propose that S100A4-mediated inhibition of myosin IIA heavy chain 

oligomerization limits the contractility of pMLC-myosin IIA complex. Under this condition, 

the actin polymerization functions of ROCK (shown here) and other effectors such as mDia 

(not shown) predominate, thus permitting the formation of lamellae. (B) The loss of 

Rhotekin, uncouples the functions of S100A4 and Rho. At the the leading edge where 

S100A4 is active, Rho promotes membrane ruffling; in the cell body where S100A4 is not 

active, Rho stimulates stress fiber formation. (C) In the absence of S100A4, Rho-mediated 

MLC phosphorylation and mDia activation permit myosin-IIA oligomerization and the 

contractility required for stress fiber formation; whereas membrane ruffles downstream of 

RhoA are unable to form. The loss of both S100A4 and Rhotekin augments this phenotype. 

Components in grey represent inactive pathways.
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