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Objective: The goal of this article was to identify potential biomarkers for early diagnosis 
of sepsis in order to improve their survival.
Methods: We analyzed differential gene expression between adult sepsis patients and controls 
in the GSE54514 dataset. Coexpression analysis was used to cluster coexpression modules, and 
enrichment analysis was performed on module genes. We also analyzed differential gene 
expression between neonatal sepsis patients and controls in the GSE25504 dataset, and we 
identified the subset of differentially expressed genes (DEGs) common to neonates and adults. 
All samples in the GSE54514 dataset were randomly divided into training and validation sets, 
and diagnostic signatures were constructed using least absolute shrink and selection operator 
(LASSO) regression. The key gene signature was screened for diagnostic value based on area 
under the receiver operating characteristic curve (AUC). STEM software identified dysregulated 
genes associated with sepsis-associated mortality. The ssGSEA method was used to quantify 
differences in immune cell infiltration between sepsis and control samples.
Results: A total of 6316 DEGs in GSE54514 were obtained spanning 10 modules. Module genes 
were mainly enriched in immune and metabolic responses. Screening 51 genes from among 
common genes based on AUC > 0.7 led to a LASSO model for the training set. We obtained a 25- 
gene signature, which we validated in the validation set and in the GSE25504 dataset. Among the 
signature genes, SLC2A6, C1ORF55, DUSP5 and RHOB were recognized as key genes (AUC > 
0.75) in both the GSE54514 and GSE25504 datasets. SLC2A6 was identified by STEM as 
associated with sepsis-associated mortality and showed the strongest positive correlation with 
infiltration levels of Th1 cells.
Conclusion: In summary, our four key genes may have important implications for the early 
diagnosis of sepsis patients. In particular, SLC2A6 may be a critical biomarker for predicting 
survival in sepsis.
Keywords: sepsis, early diagnosis, LASSO model, SLC2A6, WGCNA, diagnostic 
biomarker

Introduction
Sepsis causes life-threatening organ dysfunction due to dysregulated host response to 
infection.1,2 It is the most important cause of morbidity and mortality in the intensive care 
unit (ICU), and it causes substantial health care costs worldwide.3,4 Recent reports 
revealed that 48.9 million cases of sepsis were recorded worldwide in 2017, with the 
11 million sepsis-related deaths accounting for 19.7% of total global deaths.5 The 
incidence of sepsis varies considerably among different geographical regions.6 

Different aspects of society, economy, politics, health, and even climate affect the 
epidemiology of sepsis.7 Community infections account for approximately 60–70% of 
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all cases; nosocomial infections outside the ICU, 20–30%; and 
primary cases in the ICU, 5–9%.8–10

Pediatric sepsis has a distinct epidemiological profile from 
adult sepsis and is associated with lower rates of mortality and 
progressive organ failure.11 Nevertheless, adult and pediatric 
sepsis have the same bacterial and viral causes.12 Interventions 
applied to adults with sepsis are often translated into clinical 
guidelines for pediatric sepsis patients as well.13

Sepsis survivors often suffer from multiple sequelae that 
significantly compromise their life expectancy and quality of 
life.14 Survivors are at increased risk of long-term cognitive 
impairment, new cardiac events, and new renal failure.15 

Survivors often show progressive atherosclerosis, neurocogni
tive dysfunction and low-grade inflammation.16,17

The acute onset of sepsis is characterized by massive 
release of cytokines and other mediators, which leads to dys
regulated immune responses, resulting in organ damage or 
death.18,19 Chronic inflammation, coupled with chronic cata
bolism of drugs, contributes to a state of immune dysregulation 
that promotes infectious complications and leads to chronic 
exacerbations and death.20 A striking feature of immunosup
pression in sepsis is that apoptosis leads to early and massive 
loss of lymphocytes,21 which if severe or persistent can 
increase risk of mortality.22 Clinical signs of early sepsis are 
often subtle, nonspecific, and easy to miss. Knowledge of early 
sepsis symptoms may help patients and clinicians identify the 
condition and initiate treatment sooner.23,24

The present study analyzed gene expression profiles of 
adult and pediatric sepsis patients from public databases in 
order to understand early molecular changes as well as biolo
gical mechanisms. For the early diagnosis of sepsis patients, 
we established a least absolute shrink and selection operator 
(LASSO) model to develop a gene signature for predicting 
sepsis, which we validated using external data. Analysis of the 
area under receiver operating characteristic curve (AUC) 
allowed us to identify potential biomarkers of sepsis. The 
goal of the present study was to identify early diagnostic 
molecules and improve the survival of sepsis patients.

Materials and Methods
Data Sources
We collected sepsis data from gene expression omnibus (GEO) 
databases (http://www.ncbi.nlm.nih.gov/geo/). The GSE54514 
dataset included gene expression profiling based on arrays of 
whole blood from 26 sepsis survivors (days 1–5), 9 sepsis 
patients who died, and 18 healthy controls. The GSE25504 
dataset included gene expression profiling based on arrays of 

peripheral blood from 37 control neonates and 25 neonates 
with sepsis. Raw data were background-subtracted and nor
malized using a robust spline algorithm with the lumi package 
in Bioconductor.25 Institutional Review Board approval was 
not required for this study since all data had been released into 
the public domain.

Analysis of Differential Gene Expression
First, the expression profiles of genes in each sample of 
sepsis and control groups were constructed. Then, genes 
differentially expressed between the sepsis and control 
groups in the GSE54514 and GSE25504 datasets were 
identified using the Limma R package.26 Differentially 
expressed genes (DEGs) were defined as those whose 
expression differences were associated with P < 0.05.

Coexpression Analysis
Weighted gene coexpression network analysis (WGCNA) was 
used to identify the coexpression network of DEGs in 
GSE54514. The WGCNApackage in R was used to cluster 
genes into different modules.27 Briefly, connections among 
pairs of genes were identified and weighted based on correlated 
expression levels across multiple samples. We further con
verted the adjacency matrix into a topological overlap matrix 
(TOM) to detect gene connectivity in the network. Then, 
hierarchical clustering was used to identify clusters (modules) 
of highly interconnected genes on the basis of their connectiv
ity and covariance coefficients. The minimum size of the gene 
dendrogram was 30. The power value was selected to define 
a high degree of positive correlation among genes in the same 
module. A screening threshold crosstalk greater than 900 was 
set for quantitating crosstalk between modules.

Enrichment Analysis
Module genes were analyzed using Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) in the 
clusterProfiler package in R.28 biological processes (BPs)was 
used to identify enrichment in GO. The clusterProfiler package 
was also used to conduct gene set enrichment analysis 
(GSEA).29 Results associated with P < 0.05 were considered 
statistically significant.

The fgsea package in R was used to display the enrichment 
results of GSEA. Gene set variation analysis (GSVA) was 
carried out using the GSVA package in order to display enrich
ment results.30 For each sample, a score was obtained describ
ing the enrichment of a set of genes based on the gene 
expression profile. Then, the Limma package in R was used 
to compare GSVA scores between sepsis and controls. This 
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approach identified signaling pathways that were up- or down- 
regulated in sepsis patients relative to controls.

LASSO Regression
Receiver operating characteristic curves were drawn and their 
AUCs determined to evaluate the diagnostic value of the key 
genes using the pROC package in R.31 Genes whose AUC > 
0.7 and that were differentially regulated (up- or down- 
regulated) in the same direction in both GSE54514 and 
GSE25504 datasets were used to build a binomial LASSO 
model using the glmnet package in R. As a training set, 75% 
of samples in the GSE54514 dataset were randomly selected. 
As λ increases, LASSO tends to reduce the regression coeffi
cient to zero. As a validation set, 25% of samples in the 
GSE54514 and GSE25504 datasets were selected. Genes 
with AUC > 0.75 in both the GSE54514 and GSE25504 
datasets were defined as key genes.

Short Time-Series Expression Miner 
(STEM) Analysis
We performed STEM analysis32 of the GSE54514 dataset in 
order to cluster gene modules in healthy controls, sepsis survi
vors and sepsis patients who died. Clustering was significant if 

it was associated with P < 0.05. Significantly clustered genes 
showed a trend of greater up- or down-regulation in the order: 
healthy controls < sepsis survivors < sepsis patients who died.

Single-Sample Gene Set Enrichment 
Analysis (ssGSEA)
Marker genes for different types of immune cells were 
obtained from Bindea et al.33 The ssGSEA method was used 
to derive an enrichment score for each immune-related cell 
type. The infiltration level of immune cell was calculated using 
ssGSEA function of the GSVA package in R. We analyzed 
differences in immune cell infiltration between sepsis and 
controls. We also analyzed differences in immune cell infiltra
tion between sepsis survivors and controls, as well as between 
survivors and sepsis patients who died. Correlations between 
different infiltration of immune cells and genes were assessed 
using Pearson’s correlation.

Results
Coexpression Network of 
Sepsis-Associated Genes
The flowchart of this study is shown in Figure 1. To 
identify sepsis-associated genes, we analyzed genes 

Figure 1 Study flowchart. Sequencing data from sepsis patients and controls in GSE54514 and GSE25504 datasets were analyzed by bioinformatics in order to identify early 
potential biomarkers of sepsis. 
Abbreviations: LASSO, least absolute shrink and selection operator; STEM, short time-series expression miner; WGCNA, weighted gene coexpression network analysis.
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differentially expressed between sepsis and control sam
ples. A total of 6316 differentially expressed genes 
(DEGs) in adults were obtained in the GSE54514 dataset 
(Figure 2A, Table S1), and 7832 DEGs in neonates in the 
GSE25504 dataset (Figure 2B, Table S2). A total of 3355 
DEGs were common to adult and pediatric sepsis patients, 
while 4477 genes may be specific to pediatric sepsis and 
2961 genes may be specific to adult sepsis (Figure 2C, 
Table S3).

To identify the coexpression network of DEGs in the 
GSE54514 dataset, we performed WGCNA. The optimal 
soft power threshold for WGCNA was set to 10 to pre
serve scale-free topology and effective connectivity 
(Figure 2D). Ten coexpression modules of DEGs were 
then established (Figure 2E). Moreover, we found signifi
cant crosstalk between coexpression modules (Figure 2F).

Enrichment of Module Genes
Based on analysis of enrichment and GSVA of module 
genes, we found that interferon - γ secretion, adaptive 
immune memory response, and T cell proliferation of 
biological processes were significantly up-regulated in 
sepsis patients compared with controls, whereas neutrophil 
extravasation, pentose metabolic processes, and cytosine 
metabolic processes were significantly down-regulated 
(Figure 3A). Among KEGG pathway results, antigen pro
cessing and presentation, primary immunodeficiency, as 
well as Th1 and Th2 cell differentiation were significantly 
up-regulated in sepsis patients compared with controls. 
Conversely, the VEGF signaling pathway, cell cycle, and 
HIF-1 signaling pathway were significantly down- 
regulated (Figure 3B). Calculation of KEGG pathways in 
GSEA showed that the top 10 pathways were enriched 
mainly in sepsis, while the latter 10 pathways were 
enriched mainly in controls (Figure 3C). This revealed 
that immune response was significantly up-regulated in 
sepsis, while progression of metabolic processes was 
down-regulated.

Identification of Key Genes Associated 
with Sepsis
We randomly split all the samples in the GSE54514 dataset 
into a training set (75%) and validation set (25%). A LASSO 
model was constructed in the training set by screening 51 
genes with AUC > 0.7 from common genes that showed 
concordant up- or down-regulation in both the GSE54514 
and GSE25504 datasets. A λ value of 25 was chosen to 

determine the genes that could predict sepsis most accurately 
(Figure 4A). We then obtained a 25-gene signature with 
a non-zero coefficient (Figure 4B). The AUC for the gene 
signature was 0.983 in the training set (Figure 4C) and 0.964 
in the validation set (Figure 4D). Importantly, we also used 
external datasets to validate the gene signature: it showed 
good diagnostic ability, with an AUC of 0.841 (Figure 4E). 
Genes with AUC > 0.75 in both the GSE54514 and 
GSE25504 datasets were further screened, ie, CDKN1C, 
TMEM169, SLC2A6, DERL2, PSMB7, C1ORF55, 
DYNC1LI2, DUSP5, and RHOB (Figure 4F). Among 
them, SLC2A6, C1ORF55, DUSP5, and RHOB in the 
gene signature were recognized as key genes and may be 
able to diagnose sepsis. These key genes were up-regulated 
in sepsis patients compared to controls (Figure 4G).

Persistently Dysregulated Genes 
Associated with Sepsis Death
STEM software was used to screen module genes for persis
tently dysregulated genes. Among the 293 genes identified, 
SLC2A6 also showed a trend towards up-regulation in the 
order: healthy < sepsis survivors < sepsis patients who died 
(Figure 5A). Immune cell infiltration differed between sepsis 
patients and controls (Figure S1A). Infiltration by most types 
of immune cells was significantly higher in sepsis survivors 
than in controls, and lower in sepsis patients who died than 
in those who survived (Figure S1B). In these immune cells, 
CD8+ T cells are a subtype of cytotoxic T cells.33 Among 
the correlations between immune cells and key genes, 
SLC2A6 showed the strongest positive correlation with 
Th1 cells (Figure 5B).

Cluster analysis revealed that 253 persistently dysregu
lated genes significantly clustered into four modules 
(Figure 5C and D). Subtype GSEA results showed that in 
sepsis patients who died, the Toll-like receptor signaling 
pathway and cholesterol metabolism were up-regulated, 
while asthma and cell adhesion molecules were consis
tently down-regulated (Figure 5E).

Discussion
Sepsis causes life-threatening organ dysfunction and is 
a medical emergency associated with high mortality and 
long-term disability in survivors.34 The present study ana
lyzed differences in gene expression between sepsis 
patients and healthy controls and identified changes in 
immune and metabolic functions associated with these 
genes. Importantly, a combination of the LASSO model 
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Figure 2 Coexpression network of differentially expressed genes. (A) Genes differentially expressed between sepsis patients and controls in the GSE54514 
dataset. Green nodes represent down-regulation in sepsis; red nodes, up-regulation; and grey nodes, no significant difference from controls. The five genes most 
significantly up- or down-regulated, based on log2(fold change), are marked using symbols. (B) Genes differentially expressed between sepsis patients and controls 
in the GSE25504 dataset. Green nodes represent down-regulation in sepsis; red nodes, up-regulation; and grey nodes, no significant difference from controls. The 
five genes most significantly up- or down-regulated, based on log2(fold change), are marked using symbols. (C) Intersection of differentially expressed genes 
(DEGs) in the GSE54514 and GSE25504 datasets. The count on the left refers to DEGs unique to GSE54514; the count in the middle, DEGs common to both 
datasets; and the count on the right, DEGs unique to GSE25504. (D) Correlation between soft threshold power and scale-free topology model. (E) Cluster tree of 
coexpression modules of significantly different gene expression. Different colors represent different modules. (F) Crosstalk between modules. The more crosstalk 
between module genes and other genes, the greater the proportion of the ring is occupied by that module. Different colors represent different modules.
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Figure 3 Biological functions and KEGG pathways enriched for module genes. (A) Significant up- or down-regulated biological processes in module genes of sepsis patients 
relative to controls, as quantified by gene set variation analysis (GSVA). FC, fold change. (B) Significant up- or down-regulated KEGG signaling pathways in module genes of 
sepsis patients relative to controls, as quantified by GSVA. (C) Up- or down-regulated KEGG pathways of gene set enrichment results in sepsis patients relative to controls. 
A P value < 0.05 was considered statistically significant.
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and AUCs identified SLC2A6, C1ORF55, DUSP5, and 
RHOB as having a diagnostic role in sepsis, especially 
SLC2A6, which may be a marker for early diagnosis and 
prognosis.

Identification of disease-associated modules by coex
pression analysis has emerged as a powerful approach to 
gain new insights into disease biology.35 Gene sets show
ing synergistic expression patterns were screened using 

WGCNA. The enrichment results showed that the immune 
response was significantly up-regulated in sepsis, while 
metabolism was significantly down-regulated. Interferon 
- γ (IFN - γ), which is produced by activated T and natural 
killer (NK) cells, is an important immunoregulatory 
factor.36 In a rat model of sepsis, the survival time of 
rats is prolonged by increasing the number of T cells and 
NK cells as well as up-regulating IFN - γ.37 In fact, 

Figure 4 Potential key genes for the diagnosis of sepsis. (A) The gene signature selection of optimal parameter (lambda) in LASSO model. (B) LASSO coefficient profiles of 
the 25 differentially expressed genes selected by the optimal lambda. (C) The receiver operating characteristic (ROC) curves of the gene signature in the training set of 
GSE54514. (D) The ROC curves of the gene signature in the validation set of GSE54514. (E) The ROC curves of the gene signature in GSE25504. (F) The genes in 
GSE54514 and GSE25504 with an area under the ROC curve (AUC) greater than 0.75 are indicated together with their mean AUCs. (G) Differential expression of key 
genes between sepsis patients and controls in GSE54514. ***P < 0.001.
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administering IFN - γ to patients with sepsis to strengthen 
the immune response has emerged as a plausible treatment 
and has been associated with better prognosis.38 

Researchers have suggested that therapeutic interventions 
that suppress excessive inflammation, shift catabolism to 
anabolism, and enhance immune function may be 

Figure 5 Persistently dysregulated gene expression during sepsis development. (A) The expression of SCL2A6 was persistently elevated during sepsis development. (B) 
Pearson correlation of immune infiltrating cells with the key genes. Red nodes indicate positive correlation, and blue nodes indicate negative correlation. *P < 0.05, **P < 
0.01. (C) Heatmap of gene sets showing persistent up- or down-regulation that increased in the trend: healthy controls < sepsis survivors < sepsis patients who died. Gene 
sets were arranged based on cluster assignment to generate simplified expression profiles. We graphically depict only 4 modules with >40 genes. (D) The box plots of STEM 
genes in 4 clusters. Line plots and box plots were used to display, respectively, fold changes (log2FC) or absolute expression levels based on fragments per kilobase 
per million reads (log2 fragments per kilobase million). Representative genes were highlighted using red lines. The key genes were located on the right side of the box map. *P 
< 0.05, **P < 0.01. (E) Signaling pathways persistently up- or down-regulated as sepsis develops. Red nodes in the heatmap represent up-regulated signaling pathways, while 
blue nodes represent down-regulated signaling pathways.
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beneficial once the initial symptoms of sepsis resolve.39,40 

Indeed, persistent immunosuppression can lead to sepsis 
and consequently worse outcomes and higher long-term 
mortality.41 Sepsis dramatically decreases the number of 
pre-existing memory CD4 T cells and impairs their func
tion, such that sepsis survivors are at higher risk of sec
ondary infections.42 The finding that the immune response 
was significantly up-regulated in our analysis may be 
related to the larger proportion of survival patients with 
sepsis and the fact that all survivors were in early stages of 
sepsis.

Restoration of immune system function is extremely 
important for the prognosis of patients with sepsis.43 Th1 
cells release mainly the proinflammatory cytokine IFN - γ, 
which induces cell phagocytosis and intracellular killing of 
microorganisms, and Th1 cells interact with Th2 cells to 
jointly regulate infection clearance.44 The results of this 
study showed that Th1 cells were up-regulated in sepsis, 
while Th2 cells were down-regulated, and that sepsis 
patients with persistently higher ratios of Th2 to Th1 cell 
numbers had the highest mortality.45 During the inflam
matory process, VEGF promotes vascular dilation and 
permeability, disrupting the endothelial barrier.46 VEGF- 
A levels are increased in patients with sepsis in the ICU, 
and VEGF-A levels correlate with the severity of sepsis.47 

HIF-1 α expression is elevated in patients with sepsis, and 
inhibition of HIF-1 α activity may be a novel therapeutic 
target for sepsis.48

We obtained a 25-gene signature and further identified 
SLC2A6, C1ORF55, DUSP5 and RHOB as key genes 
based on the LASSO model and AUCs. The AUCs were 
validated in the GSE54514 and GSE25504 datasets, sug
gesting that they are potential diagnostic markers for sep
sis not only in adults but also in children. Studies have 
shown that SLC2A6 is associated with lipopolysaccharide 
(LPS)-induced inflammatory responses.49 SLC2A6 expres
sion is up-regulated in cells infected with Gram-positive 
bacteria.50 A common up-regulated gene after infection, 
SLC2A6, which is regulated by nuclear factor - κ B (NF - 
κ B), encodes a protein transporter involved in metabolic 
responses.51,52 Expression of C1ORF55 has been asso
ciated with prognosis of breast cancer patients.53 

Although we are unaware of studies suggesting a link 
between C1ORF55 and sepsis, the results of our analysis 
suggest that it may be beneficial for the early diagnosis of 
sepsis. Dual specificity phosphatase 5 (DUSP5) is induced 
during LPS-mediated inflammation and inhibits the activ
ity of NF-κ B.54 In addition, DUSP5 specifically targets 

the inactivation of the ERK 1/2 signaling pathway.55 

DUSP5 can be significantly induced after LPS stimulation 
and mycobacterial infection, which is beneficial for gran
ulocyte development.56,57 Knocking DUSP5 out in mice 
promotes T cell proliferation and cell death.58 

RhoGTPases are important for maintaining the endothelial 
barrier, and during inflammation, RHOB negatively regu
lates Rac-1 membrane translocation and prevents Rac- 
1-mediated restoration of the integrity of injured 
endothelium.59,60 It is clear that inflammatory and anti- 
inflammatory responses, as well as innate and adaptive 
immune systems, are equally important and are likely to 
be targets for future immunotherapy to improve long-term 
sepsis outcomes.61,62

The potential limitations of this study need to be taken 
into account when interpreting the findings. First, the 
GSE54514 and GSE25504 datasets contain different popu
lations of sepsis patients and controls, which may affect 
interpretation of the results. In addition, we were able to 
compare immune cell infiltration between sepsis patients 
who survived or died in the GSE54514 dataset, but further 
studies should analyze the two groups for additional dif
ferences. Second, because the data we analyzed were 
obtained from public databases, further experimental stu
dies are necessary to validate the findings of this study.

Conclusion
In summary, our four key genes may have important 
implications for the early diagnosis of patients with sepsis. 
The analysis suggests that in the early stage of sepsis, the 
immune response is enhanced, while the metabolic 
response is weakened. Further analysis is needed to inves
tigate the molecular mechanisms by which the four key 
genes affect the prognosis of patients with sepsis.

Acknowledgments
This study was supported by the Project of Qingxiu 
District of Nanning Scientific Research and Technology 
Development Plan (2020059), the High-Level Medical 
Expert Training Program of Guangxi “139” Plan Funding 
(G201903049) and Guangxi Medical and Health Key 
Discipline Construction Project (Department of 
Emergency Medicine and Clinical Laboratory).

Disclosure
The authors report no conflicts of interest with this work.

Journal of Inflammation Research 2021:14                                                                                 submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
629

Dovepress                                                                                                                                                                 Li et al

http://www.dovepress.com
http://www.dovepress.com


References
1. Singer M, Deutschman CS, Seymour CW, et al. The third interna

tional consensus definitions for sepsis and septic shock (Sepsis-3). 
JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287

2. Zheng X, Luo Y, Li Q, et al. Two gene set variation index as 
biomarker of bacterial and fungal sepsis. Biomed Res Int. 
2020;2020:8182358. doi:10.1155/2020/8182358

3. Fleischmann-Struzek C, Mikolajetz A, Schwarzkopf D, et al. 
Challenges in assessing the burden of sepsis and understanding the 
inequalities of sepsis outcomes between National Health Systems: 
secular trends in sepsis and infection incidence and mortality in 
Germany. Intensive Care Med. 2018;44(11):1826–1835. 
doi:10.1007/s00134-018-5377-4

4. Zhang J, Luo Y, Wang X, et al. Global transcriptional regulation of 
STAT3- and MYC-mediated sepsis-induced ARDS. Ther Adv Respir 
Dis. 2019;13:1753466619879840. doi:10.1177/1753466619879840

5. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and 
national sepsis incidence and mortality, 1990–2017: analysis for the 
Global Burden of Disease Study. Lancet. 2020;395(10219):200–211. 
doi:10.1016/S0140-6736(19)32989-7

6. Markwart R, Saito H, Harder T, et al. Epidemiology and burden of 
sepsis acquired in hospitals and intensive care units: a systematic 
review and meta-analysis. Intensive Care Med. 2020;46 
(8):1536–1551. doi:10.1007/s00134-020-06106-2

7. Candel FJ, Borges SM, Belda S, et al. Current aspects in sepsis 
approach. Turning things around. Rev Esp Quimioter. 2018;31 
(4):298–315.

8. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl 
J Med. 2013;369(21):2063. doi:10.1056/NEJMc1312359

9. Fleischmann C, Thomas-Rueddel DO, Hartmann M, et al. Hospital 
incidence and mortality rates of sepsis. Dtsch Arztebl Int. 2016;113 
(10):159–166. doi:10.3238/arztebl.2016.0159

10. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global 
incidence and mortality of hospital-treated sepsis. Current estimates 
and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272. 
doi:10.1164/rccm.201504-0781OC

11. Lindell RB, Nishisaki A, Weiss SL, et al. Comparison of methods for 
identification of pediatric severe sepsis and septic shock in the virtual 
pediatric systems database. Crit Care Med. 2019;47(2):e129–e135. 
doi:10.1097/CCM.0000000000003541

12. Yealy DM, Huang DT, Delaney A, et al. Recognizing and managing 
sepsis: what needs to be done? BMC Med. 2015;13(1):98. 
doi:10.1186/s12916-015-0335-2

13. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: 
international guidelines for management of severe sepsis and septic 
shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/ 
s00134-012-2769-8

14. Myhren H, Ekeberg O, Toien K, Karlsson S, Stokland O. 
Posttraumatic stress, anxiety and depression symptoms in patients 
during the first year post intensive care unit discharge. Crit Care. 
2010;14(1):R14. doi:10.1186/cc8870

15. Denstaedt SJ, Singer BH, Standiford TJ. Sepsis and nosocomial 
infection: patient characteristics, mechanisms, and modulation. 
Front Immunol. 2018;9:2446. doi:10.3389/fimmu.2018.02446

16. Kaynar AM, Yende S, Zhu L, et al. Effects of intra-abdominal sepsis 
on atherosclerosis in mice. Crit Care. 2014;18(5):469. doi:10.1186/ 
s13054-014-0469-1

17. Denstaedt SJ, Spencer-Segal JL, Newstead MW, et al. S100A8/A9 
drives neuroinflammatory priming and protects against anxiety-like 
behavior after sepsis. J Immunol. 2018;200(9):3188–3200. 
doi:10.4049/jimmunol.1700834

18. Zingarelli B, Coopersmith CM, Drechsler S, et al. Part I: minimum 
quality threshold in preclinical sepsis studies (MQTiPSS) for study 
design and humane modeling endpoints. Shock. 2019;51(1):10–22. 
doi:10.1097/SHK.0000000000001243

19. Markwart R, Condotta SA, Requardt RP, et al. Immunosuppression after 
sepsis: systemic inflammation and sepsis induce a loss of naive T-cells 
but no enduring cell-autonomous defects in T-cell function. PLoS One. 
2014;9(12):e115094. doi:10.1371/journal.pone.0115094

20. Annane D. What is the evidence for harm of neuromuscular blockade 
and corticosteroid use in the intensive care unit? Semin Respir Crit 
Care Med. 2016;37(1):51–56. doi:10.1055/s-0035-1570355

21. Ammer-Herrmenau C, Kulkarni U, Andreas N, et al. Sepsis induces 
long-lasting impairments in CD4+ T-cell responses despite rapid 
numerical recovery of T-lymphocyte populations. PLoS One. 
2019;14(2):e0211716. doi:10.1371/journal.pone.0211716

22. Adrie C, Lugosi M, Sonneville R, et al. Persistent lymphopenia is 
a risk factor for ICU-acquired infections and for death in ICU 
patients with sustained hypotension at admission. Ann Intensive 
Care. 2017;7(1):30. doi:10.1186/s13613-017-0242-0

23. Eitze S, Fleischmann-Struzek C, Betsch C, Reinhart K. 
Vaccination60+ study g. Determinants of sepsis knowledge: 
a representative survey of the elderly population in Germany. Crit 
Care. 2018;22(1):273. doi:10.1186/s13054-018-2208-5

24. Lu J, Li Q, Wu Z, et al. Two gene set variation indexes as potential 
diagnostic tool for sepsis. Am J Transl Res. 2020;12(6):2749–2759.

25. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina 
microarray. Bioinformatics. 2008;24(13):1547–1548. doi:10.1093/ 
bioinformatics/btn224

26. Ritchie ME, Phipson B, Wu D, et al. limma powers differential 
expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007

27. Langfelder P, Horvath S. WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinform. 2008;9(1):559. 
doi:10.1186/1471-2105-9-559

28. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for 
comparing biological themes among gene clusters. OMICS. 2012;16 
(5):284–287. doi:10.1089/omi.2011.0118

29. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment 
analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci U S A. 2005;102 
(43):15545–15550. doi:10.1073/pnas.0506580102

30. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation 
analysis for microarray and RNA-seq data. BMC Bioinform. 
2013;14(1):7. doi:10.1186/1471-2105-14-7

31. Robin X, Turck N, Hainard A, et al. pROC: an open-source package 
for R and S+ to analyze and compare ROC curves. BMC Bioinform. 
2011;12:77. doi:10.1186/1471-2105-12-77

32. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time 
series gene expression data. BMC Bioinform. 2006;7(1):191. 
doi:10.1186/1471-2105-7-191

33. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of 
intratumoral immune cells reveal the immune landscape in human 
cancer. Immunity. 2013;39(4):782–795. doi:10.1016/j.immuni.2 
013.10.003

34. Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and 
mortality of hospital- and ICU-treated sepsis: results from an updated 
and expanded systematic review and meta-analysis. Intensive Care 
Med. 2020;46(8):1552–1562. doi:10.1007/s00134-020-06151-x

35. Grobner SN, Worst BC, Weischenfeldt J, et al. The landscape of 
genomic alterations across childhood cancers. Nature. 2018;555 
(7696):321–327. doi:10.1038/nature25480

36. Ivin M, Dumigan A, de Vasconcelos FN, et al. Natural killer 
cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae 
growth during lung infection. PLoS Pathog. 2017;13(11):e1006696. 
doi:10.1371/journal.ppat.1006696

37. Zhao X, Qi H, Zhou J, Xu S, Gao Y. Treatment with recombinant 
Interleukin-15 (IL-15) increases the number of T cells and natural 
killer (NK) cells and levels of interferon-gamma (IFN-gamma) in 
a rat model of sepsis. Med Sci Monit. 2019;25:4450–4456. 
doi:10.12659/MSM.914026

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                

Journal of Inflammation Research 2021:14 630

Li et al                                                                                                                                                                 Dovepress

https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1155/2020/8182358
https://doi.org/10.1007/s00134-018-5377-4
https://doi.org/10.1177/1753466619879840
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1007/s00134-020-06106-2
https://doi.org/10.1056/NEJMc1312359
https://doi.org/10.3238/arztebl.2016.0159
https://doi.org/10.1164/rccm.201504-0781OC
https://doi.org/10.1097/CCM.0000000000003541
https://doi.org/10.1186/s12916-015-0335-2
https://doi.org/10.1007/s00134-012-2769-8
https://doi.org/10.1007/s00134-012-2769-8
https://doi.org/10.1186/cc8870
https://doi.org/10.3389/fimmu.2018.02446
https://doi.org/10.1186/s13054-014-0469-1
https://doi.org/10.1186/s13054-014-0469-1
https://doi.org/10.4049/jimmunol.1700834
https://doi.org/10.1097/SHK.0000000000001243
https://doi.org/10.1371/journal.pone.0115094
https://doi.org/10.1055/s-0035-1570355
https://doi.org/10.1371/journal.pone.0211716
https://doi.org/10.1186/s13613-017-0242-0
https://doi.org/10.1186/s13054-018-2208-5
https://doi.org/10.1093/bioinformatics/btn224
https://doi.org/10.1093/bioinformatics/btn224
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-7-191
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1038/nature25480
https://doi.org/10.1371/journal.ppat.1006696
https://doi.org/10.12659/MSM.914026
http://www.dovepress.com
http://www.dovepress.com


38. Tissieres P, Ochoda A, Dunn-Siegrist I, et al. Innate immune defi
ciency of extremely premature neonates can be reversed by 
interferon-gamma. PLoS One. 2012;7(3):e32863. doi:10.1371/jour
nal.pone.0032863

39. Gauglitz GG, Williams FN, Herndon DN, Jeschke MG. Burns: where 
are we standing with propranolol, oxandrolone, recombinant human 
growth hormone, and the new incretin analogs? Curr Opin Clin Nutr 
Metab Care. 2011;14(2):176–181. doi:10.1097/ 
MCO.0b013e3283428df1

40. Norbury WB, Jeschke MG, Herndon DN. Metabolism modulators in 
sepsis: propranolol. Crit Care Med. 2007;35(9 Suppl):S616–20. 
doi:10.1097/01.CCM.0000278599.30298.80

41. Delano MJ, Ward PA. The immune system’s role in sepsis progres
sion, resolution, and long-term outcome. Immunol Rev. 2016;274 
(1):330–353. doi:10.1111/imr.12499

42. Sjaastad FV, Kucaba TA, Dileepan T, et al. Polymicrobial sepsis 
impairs antigen-specific memory CD4 T cell-mediated immunity. 
Front Immunol. 2020;11:1786. doi:10.3389/fimmu.2020.01786

43. Martin AN, Alexander-Miller M, Yoza BK, Vachharajani V, 
McCall CE. Sirtuin1 targeting reverses innate and adaptive immune 
tolerance in septic mice. J Immunol Res. 2018;2018:2402593. 
doi:10.1155/2018/2402593

44. Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory dis
eases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28 
(4):163–171. doi:10.1093/intimm/dxw006

45. Xue M, Xie J, Liu L, et al. Early and dynamic alterations of Th2/Th1 
in previously immunocompetent patients with community-acquired 
severe sepsis: a prospective observational study. J Transl Med. 
2019;17(1):57. doi:10.1186/s12967-019-1811-9

46. Konig M, Nentwig A, Marti E, Mirkovitch J, Adamik KN, 
Schuller S. Evaluation of plasma angiopoietin-2 and vascular 
endothelial growth factor in healthy dogs and dogs with systemic 
inflammatory response syndrome or sepsis. J Vet Intern Med. 2019;33 
(2):569–577. doi:10.1111/jvim.15369

47. Alves BE, Montalvao SA, Aranha FJ, et al. Time-course of sFlt-1 and 
VEGF-A release in neutropenic patients with sepsis and septic shock: 
a prospective study. J Transl Med. 2011;9(1):23. doi:10.1186/1479- 
5876-9-23

48. Hirota K. Involvement of hypoxia-inducible factors in the dysregula
tion of oxygen homeostasis in sepsis. Cardiovasc Hematol Disord 
Drug Targets. 2015;15(1):29–40. doi:10.2174/1871529x15 
666150108115553

49. Das A, Chai JC, Kim SH, et al. Dual RNA sequencing reveals the 
expression of unique transcriptomic signatures in 
lipopolysaccharide-induced BV-2 microglial cells. PLoS One. 
2015;10(3):e0121117. doi:10.1371/journal.pone.0121117

50. Tchatalbachev S, Ghai R, Hossain H, Chakraborty T. Gram-positive 
pathogenic bacteria induce a common early response in human 
monocytes. BMC Microbiol. 2010;10(1):275. doi:10.1186/1471- 
2180-10-275

51. Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host 
responses to infection by intracellular bacterial pathogens. Front 
Cell Infect Microbiol. 2013;3:24. doi:10.3389/fcimb.2013.00024

52. Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ. Plasmodium 
falciparum-infected erythrocytes induce NF-kappaB regulated 
inflammatory pathways in human cerebral endothelium. Blood. 
2009;114(19):4243–4252. doi:10.1182/blood-2009-06-226415

53. Relator RT, Terada A, Sese J. Identifying statistically significant 
combinatorial markers for survival analysis. BMC Med Genomics. 
2018;11(Suppl 2):31. doi:10.1186/s12920-018-0346-x

54. Seo H, Cho YC, Ju A, et al. Dual-specificity phosphatase 5 acts as an 
anti-inflammatory regulator by inhibiting the ERK and NF-kappaB 
signaling pathways. Sci Rep. 2017;7(1):17348. doi:10.1038/s41598- 
017-17591-9

55. Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase 
phosphatases in health and disease. Biochim Biophys Acta Mol Cell 
Res. 2019;1866(1):124–143. doi:10.1016/j.bbamcr.2018.09.002

56. Hansen M, Peltier J, Killy B, et al. Macrophage phosphoproteome 
analysis reveals MINCLE-dependent and -independent mycobacterial 
cord factor signaling. Mol Cell Proteomics. 2019;18(4):669–685. 
doi:10.1074/mcp.RA118.000929

57. Lang R, Raffi FAM. Dual-specificity phosphatases in immunity and 
infection: an update. Int J Mol Sci. 2019;20(11):11. doi:10.3390/ 
ijms20112710

58. Kutty RG, Xin G, Schauder DM, et al. Dual specificity phosphatase 5 
is essential for T cell survival. PLoS One. 2016;11(12):e0167246. 
doi:10.1371/journal.pone.0167246

59. Pronk MCA, van Bezu JSM, van Nieuw Amerongen GP, van 
Hinsbergh VWM, Hordijk PL. RhoA, RhoB and RhoC differentially 
regulate endothelial barrier function. Small GTPases. 2019;10 
(6):466–484. doi:10.1080/21541248.2017.1339767

60. Marcos-Ramiro B, Garcia-Weber D, Barroso S, et al. RhoB controls 
endothelial barrier recovery by inhibiting Rac1 trafficking to the cell 
border. J Cell Biol. 2016;213(3):385–402. doi:10.1083/ 
jcb.201504038

61. Bosmann M, Ward PA. The inflammatory response in sepsis. Trends 
Immunol. 2013;34(3):129–136. doi:10.1016/j.it.2012.09.004

62. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosup
pression: from cellular dysfunctions to immunotherapy. Nat Rev 
Immunol. 2013;13(12):862–874. doi:10.1038/nri3552

Journal of Inflammation Research                                                                                                     Dovepress 

Publish your work in this journal 
The Journal of Inflammation Research is an international, peer- 
reviewed open-access journal that welcomes laboratory and clinical 
findings on the molecular basis, cell biology and pharmacology of 
inflammation including original research, reviews, symposium 
reports, hypothesis formation and commentaries on: acute/chronic 
inflammation; mediators of inflammation; cellular processes; molecular 

mechanisms; pharmacology and novel anti-inflammatory drugs; clin
ical conditions involving inflammation. The manuscript management 
system is completely online and includes a very quick and fair peer- 
review system. Visit http://www.dovepress.com/testimonials.php to 
read real quotes from published authors.   

Submit your manuscript here: https://www.dovepress.com/journal-of-inflammation-research-journal

Journal of Inflammation Research 2021:14                                                                                 submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
631

Dovepress                                                                                                                                                                 Li et al

https://doi.org/10.1371/journal.pone.0032863
https://doi.org/10.1371/journal.pone.0032863
https://doi.org/10.1097/MCO.0b013e3283428df1
https://doi.org/10.1097/MCO.0b013e3283428df1
https://doi.org/10.1097/01.CCM.0000278599.30298.80
https://doi.org/10.1111/imr.12499
https://doi.org/10.3389/fimmu.2020.01786
https://doi.org/10.1155/2018/2402593
https://doi.org/10.1093/intimm/dxw006
https://doi.org/10.1186/s12967-019-1811-9
https://doi.org/10.1111/jvim.15369
https://doi.org/10.1186/1479-5876-9-23
https://doi.org/10.1186/1479-5876-9-23
https://doi.org/10.2174/1871529x15666150108115553
https://doi.org/10.2174/1871529x15666150108115553
https://doi.org/10.1371/journal.pone.0121117
https://doi.org/10.1186/1471-2180-10-275
https://doi.org/10.1186/1471-2180-10-275
https://doi.org/10.3389/fcimb.2013.00024
https://doi.org/10.1182/blood-2009-06-226415
https://doi.org/10.1186/s12920-018-0346-x
https://doi.org/10.1038/s41598-017-17591-9
https://doi.org/10.1038/s41598-017-17591-9
https://doi.org/10.1016/j.bbamcr.2018.09.002
https://doi.org/10.1074/mcp.RA118.000929
https://doi.org/10.3390/ijms20112710
https://doi.org/10.3390/ijms20112710
https://doi.org/10.1371/journal.pone.0167246
https://doi.org/10.1080/21541248.2017.1339767
https://doi.org/10.1083/jcb.201504038
https://doi.org/10.1083/jcb.201504038
https://doi.org/10.1016/j.it.2012.09.004
https://doi.org/10.1038/nri3552
http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

	Introduction
	Materials and Methods
	Data Sources
	Analysis of Differential Gene Expression
	Coexpression Analysis
	Enrichment Analysis
	LASSO Regression
	Short Time-Series Expression Miner (STEM) Analysis
	Single-Sample Gene Set Enrichment Analysis (ssGSEA)

	Results
	Coexpression Network of Sepsis-Associated Genes
	Enrichment of Module Genes
	Identification of Key Genes Associated with Sepsis
	Persistently Dysregulated Genes Associated with Sepsis Death

	Discussion
	Conclusion
	Acknowledgments
	Disclosure
	References

