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Abstract Understanding the distribution patterns of antibiotics at the site of infection is

paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB)

lung lesions are made of various immune cell types, some of which harbor persistent forms of the

pathogen, Mycobacterium tuberculosis. By combining high resolution MALDI MSI with histology

staining and quantitative image analysis in rabbits with active TB, we have mapped the distribution

of a fluoroquinolone at high resolution, and identified the immune-pathological factors driving its

heterogeneous penetration within TB lesions, in relation to where bacteria reside. We find that

macrophage content, distance from lesion border and extent of necrosis drive the uneven

fluoroquinolone penetration. Preferential uptake in macrophages and foamy macrophages, where

persistent bacilli reside, compared to other immune cells present in TB granulomas, was

recapitulated in vitro using primary human cells. A nonlinear modeling approach was developed to

help predict the observed drug behavior in TB lesions. This work constitutes a methodological

advance for the co-localization of drugs and infectious agents at high spatial resolution in diseased

tissues, which can be applied to other diseases with complex immunopathology.

DOI: https://doi.org/10.7554/eLife.41115.001

Introduction
In human tuberculosis (TB), necrotic granulomas and cavities are the most prominent and treatment

recalcitrant lesion types (Canetti, 1955). The major histopathological features of these lesions are a

caseous or necrotic core surrounded by a cuff of immune cells including lymphocytes, epithelioid

macrophages, foam cells or lipid-laden macrophages, and interspersed neutrophils and epithelial

cells (Leong et al., 2011; Dannenberg, 2006). In these lesions, Mycobacterium tuberculosis (Mtb),

the etiologic agent of TB, is found intracellularly in macrophages and foamy macrophages

(Peyron et al., 2008), neutrophils (Dallenga and Schaible, 2016; Berry et al., 2010), epithelial cells

(Scordo et al., 2016) and dendritic cells (Tailleux et al., 2003). Mtb can establish a durable infection

in foamy macrophages leading to replication and/or long term survival in a dormant state

(Peyron et al., 2008; Russell, 2007). TB granulomas present with increasingly abnormal vasculature
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from the periphery inward (Datta et al., 2015). Most vessels are compressed along the lesion

periphery and collapsed within the interior of the cellular rim. This leads to impaired vascular func-

tion and a gradual decrease of small molecule penetration as the distance from the granuloma outer

edge increases (Datta et al., 2015). Vascular dysfunction culminates in a complete lack of blood ves-

sels in the necrotic core. Mtb-infected foam cells or foamy macrophages largely concentrate along

the interface between the cellular and caseous regions of the lesion (Peyron et al., 2008).

Efficacy and drug distribution studies in animal models of TB disease have shown that reaching

adequate drug concentrations at the sites of infection is critical in achieving sterilization and clinical

utility (Irwin et al., 2014; Irwin et al., 2016; Prideaux et al., 2015a; Tanner et al., 2018;

Zimmerman et al., 2017). Using analytical approaches and MALDI mass spectrometry imaging

(MSI), we previously showed that most TB drugs exhibit differential partitioning between the cellular

and necrotic regions of pulmonary lesions (Irwin et al., 2016; Prideaux et al., 2015a;

Zimmerman et al., 2017; Prideaux et al., 2011; Prideaux et al., 2015b). In these studies, TB drugs

were imaged at low spatial resolution and quantified in cellular regions treated in aggregate, without

taking immune cell type into consideration. Given the heterogeneous cellular composition of the cel-

lular rim, we posit that the spatial distribution of TB drugs within the cellular compartment of lesions

is a function of immune cell type, and likely reflects differential uptake in each cell type. In addition,

decreased vascular function may affect drug penetration. To quantify antibiotic distribution at high

spatial resolution and link the distribution patterns to immune cell types, we selected the fluoroqui-

nolones (FQ), which constitute the mainstay of multidrug resistant (MDR) TB treatment. In MDR-TB

patients, treatment success is associated with the use of FQs (Ahuja et al., 2012) and, not surpris-

ingly, it follows that FQ resistance is associated with poor clinical outcome (Bastos et al., 2014;

Falzon et al., 2013). Moxifloxacin (MXF), levofloxacin (LVX) and gatifloxacin (GTX), three later gener-

ation FQs, are used to treat MDR-TB, although GTX production for systemic administration was

recently terminated due to its side effect profile. In addition, MXF is included in many ‘universal’ reg-

imens under clinical evaluation to treat both drug susceptible and MDR-TB ((Gillespie, 2016;

Diacon et al., 2012); http://www.endtb.org/clinical-trial; ClinicalTrials.gov), and thus has the poten-

tial to become a pivotal TB drug. We have recently shown that MXF kills non-replicating Mtb persist-

ers in ex vivo caseum (Sarathy et al., 2018) at concentrations that are achieved clinically in caseous

foci (Prideaux et al., 2015a; Heinrichs et al., 2018). Understanding the complex partitioning of

MXF and other FQs in the cellular compartments of these lesions where intracellular pathogens

reside constitutes one of the major remaining knowledge gaps to fully elucidate the lesion-centric

pharmacokinetics and pharmacodynamics of this drug class.

Here we combine high resolution MALDI MSI with histology staining, and quantitative image anal-

ysis, to study the spatial distribution of small molecule drugs in distinct cellular clusters of TB lesions

and understand spatial drug partitioning in relation to where the pathogen resides. We then recapit-

ulate the observed distribution patterns using new drug uptake assays in human primary macro-

phages, foamy macrophages, lymphocytes, neutrophils, and an epithelial cell line, with the objective

of developing in vitro tools to rapidly predict relative drug partitioning at the cellular level in vivo.

The findings provide interesting clues on how partitioning into lung lesions can contribute to clinical

efficacy, and validate immune cell uptake assays as a suitable tool to study drug distribution patterns

in complex diseased tissues. The methods are not only applicable to antibiotics and host-directed

therapy used in the treatment of TB and other infectious diseases, but could also be adapted to can-

cer and other diseases with complex immunopathology.

Results

FQs exhibit heterogeneous distribution in the cellular cuff of TB lesions
In previous studies, we have shown that FQs preferentially partition into the cellular layers of necrotic

granulomas and cavities, compared to caseous foci, both in rabbit and human lungs (Prideaux et al.,

2015a; Prideaux et al., 2011; Prideaux et al., 2015b). To refine the spatial distribution of this drug

class in the cellular margins of granulomas, we first applied high resolution MALDI MSI. In two-

dimensional MALDI MSI ion maps, MXF, LVX and GTX each formed a narrow rim of high signal

intensity directly adjacent to the caseous center of the granuloma, as well as additional rings or

pockets of higher intensity further outward from the necrotic center (Figure 1A–F). Although MALDI
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Figure 1. Spatial distribution of fluoroquinolones in infected rabbit lung and lesions. (a–b–c) Hematoxylin and

Eosin (H and E) histology staining of lesions and surrounding lung tissue resected from rabbits that received a

single dose of moxifloxacin (MXF) (a), levofloxacin (LVX) (b) or gatifloxacin (GTX) (c). N: necrotic core; white arrows:

early caseating foci; yellow double arrows: cellular rim encompassing mostly lymphocytes, macrophages, foamy

macrophages, interspersed epithelial cells and neutrophils. Panels d-e-f show the corresponding MALDI-MS ion

maps of each drug in a tissue section adjacent to the one stained by H and E. Red arrows highlight the inner drug

accumulation ring subtending the caseous core; yellow arrows highlight outer rings or pockets of higher drug

abundance further outward from the core.

DOI: https://doi.org/10.7554/eLife.41115.002

The following figure supplements are available for figure 1:

Figure supplement 1. Schematic of the workflow for the relative quantitation of drug ions in specific areas

delineated on MALDI ion maps.

Figure 1 continued on next page
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MSI does not deliver absolute drug quantitation, relative drug abundance can be compared by mea-

suring signal intensity (drug ion counts/internal standard ion counts) in defined regions of a MALDI

MSI ion map (Figure 1—figure supplement 1). To further characterize the visual partitioning

observed for each FQ, signal intensity was measured in uninvolved lung, cellular lesion rims and

necrotic foci of several lesions isolated from rabbits treated with each FQ. In this analysis, cellular

and necrotic regions were treated in aggregate, and signal intensity ratios between lung, cellular

and necrotic areas were calculated. We found approximately 1.5 to 2-fold higher signal in cellular

lesions than in uninvolved lung and caseum for all three FQs (Figure 1—figure supplement 2A,B).

Since this approach only delivers relative quantitation data, we next turned to laser capture microdis-

section coupled with standard mass spectrometry to measure the concentration of each FQ in case-

ous foci, cellular rims and uninvolved lung areas at various time points following an oral drug dose.

Overall, MXF and GTX concentrations were higher in cellular areas than in caseum and uninvolved

lung, although only marginally so. LVX exhibited irregular patterns of distribution between the cellu-

lar and caseous regions (Figure 1—figure supplement 2C). Thus, although MALDI images clearly

reveal higher FQ abundance in distinct rings and pockets within the cellular layers of TB lesions,

when the cellular rim is analyzed as a whole, the heterogeneous FQ distribution masks the favorable

penetration of this drug class in the cellular cuff of mature lesions. These images and quantitative

results uncovered the need for high resolution drug mapping in the cellular envelope of TB lesions.

To understand the drivers of heterogeneous FQ distribution in cellular granuloma regions, we

generated high resolution H and E images of mature necrotic granulomas (Figure 2A–F), revealing

the following concentric layers from the caseum outward: a ring of foamy macrophages with high

lipid droplet contents directly subtending the caseous core, a layer mostly composed of lympho-

cytes, and a thick layer rich in clusters of less foamy macrophages in a background of lymphocytes

(Figure 2A–C). Small clusters or ribbons of epithelial or stromal cells as well as interspersed neutro-

phils and were found in most layers (Figure 2D–F and Figure 2—figure supplement 1A–F). Mtb

bacilli were mostly found in foamy macrophages and in association with karyorrhectic neutrophils

(dying cells containing mostly fragmented chromatin irregularly distributed throughout the cyto-

plasm) in the caseous foci of necrotic granulomas and cavities (Figure 2—figure supplement 1G,H).

When compared to the MALDI images, this organization suggested that FQs preferentially partition

in histiocytes, either foamy macrophages close to the caseum or non- and less-foamy macrophages

in the outer granuloma layers.

Macrophage content and distance from lesion margin drive the
penetration of MXF
Histology staining (such as H and E) of sections adjacent to those used to generate drug ion maps

provide limited information as to the underlying cellular content and architecture because the two

images cannot be perfectly superimposed. To overcome this limitation and correlate relative drug

abundance with immune cell type, we adapted a method recently optimized by our group

(Blanc et al., 2018), allowing MALDI MSI and H and E staining of the same tissue section. First we

generated an MXF ion map and H and E stained histology image of a single section obtained from a

large rabbit necrotic granuloma following treatment with a single MXF dose (Figure 3A,B and Fig-

ure 3—figure supplement 1). Using the MXF ion map, we delineated 35 regions of interest (ROI)

within which drug distribution appeared relatively homogeneous (Figure 3B and Figure 3—figure

supplement 2A). The MXF [M + K]+ ion map was co-registered with the H and E image and the 35

ROI contour lines were redrawn onto the H and E image (Figure 3—figure supplement 2B). Using

this image, a blinded veterinary pathologist scored the fraction of histiocytes (foamy and non-foamy

macrophages), neutrophils, lymphocytes, epithelial or stromal cells, and necrosis in each ROI (Fig-

ure 3—source data 1). We also measured the absolute and relative distance of each ROI from the

outer edge of the lesion, where the relative distance was calculated as the ratio of the distance from

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.41115.003

Figure supplement 2. Relative quantitation of the fluoroquinolones in infected rabbit lung and lesion

compartments.

DOI: https://doi.org/10.7554/eLife.41115.004
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ROI to edge by the total distance from caseum to edge (Figure 3—figure supplement 3). Lastly, in

the MALDI MSI ion map, we measured the relative abundance (drug/internal standard ion counts) of

MXF in each ROI, expressed as the mean pixel intensity per ROI (each ROI containing 48 to 429 pix-

els, Figure 3C). We found that average MXF contents were significantly different across the majority

of ROIs (Figure 3—figure supplement 4A) with a between-ROI variability of 43.4%. These data

were compiled to search for correlations between MXF abundance, measured as mean pixel inten-

sity, and each of the recorded parameters (i.e. fraction of histiocytes, lymphocytes, neutrophils, epi-

thelial cells and necrotic area, and distance from lesion outer edge, Figure 3—source data 1), with

the objective of identifying the major drivers of MXF distribution in TB lesions.

Figure 2. Architecture and cellular composition of typical necrotic rabbit granuloma. (A) H and E histology staining of a large cavitating necrotic

granuloma and surrounding lung tissue, obtained from a rabbit infected with M. tuberculosis HN878 for 12 weeks. (B) Magnification of the region

highlighted in a, showing the areas magnified in panels c through f. (C) Typical concentric cellular layers found in mature necrotic granulomas. (D)

Magnification of the outer cellular layer showing epithelial cells that form ribbons or rings inside areas of immune cell infiltration (white arrows). (E)

Magnification of the inner cellular layer showing residual epithelial lining of airway remnants (white arrows), fibrous connective tissue (red asterisks) and

interspersed neutrophils (yellow arrows). (F) Magnification of the macrophage rich layer showing individual macrophage cell death (blue arrows) and

isolated neutrophils (yellow arrows), surrounded by residual airway epithelium.

DOI: https://doi.org/10.7554/eLife.41115.005

The following figure supplement is available for figure 2:

Figure supplement 1. Architecture and cellular composition of typical necrotic rabbit granulomas.

DOI: https://doi.org/10.7554/eLife.41115.006
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Figure 3. Heterogeneous distribution of MXF in the cellular cuff of a necrotic lesion. (A) H and E staining of a cavitating necrotic granuloma. (B) Ion

map of moxifloxacin (MXF) [M + H]+obtained by MALDI mass spectrometry imaging of the same section, according to the workflow and procedure

described in Figure 3—figure supplement 4; (C) relative MXF abundance in 35 sub-areas delineated in the cellular rim of the MXF ion map shown in b

(Contours of the 35 sub-areas are shown in Figure 3—figure supplement 2). Each dot represents the signal intensity of individual pixels in the ion map

shown in (B). Pixel intensity mean and standard deviation are shown for each area. The number of pixel per sub-area ranged from 48 to 429 (48 < n <

429). Raw data can be found in Figure 3—source data 1).

DOI: https://doi.org/10.7554/eLife.41115.007

The following source data and figure supplements are available for figure 3:

Source data 1. Histology and drug abundance (Figure 3) parameters in the 35 regions of interest, used in the covariate search and nonlinear correla-

tion analysis (Figure 4).

DOI: https://doi.org/10.7554/eLife.41115.012

Source data 2. Spearman rank correlation, showing positive association between MXF abundance and the fraction of macrophages, and inverse corre-

lation with relative distance from lesion border and necrosis fraction.

DOI: https://doi.org/10.7554/eLife.41115.013

Figure supplement 1. Workflow for overlaying MALDI-MSI and histology images.

DOI: https://doi.org/10.7554/eLife.41115.008

Figure supplement 2. Regions of interest in MALDI-MSI MXF ion map (A) and histology staining (B) of the same section.

DOI: https://doi.org/10.7554/eLife.41115.009

Figure supplement 3. Correlations between MXF abundance, distance to edge of granuloma and cell types.

DOI: https://doi.org/10.7554/eLife.41115.010

Figure supplement 4. Identification of the drivers of moxifloxacin distribution in cellular lesion compartments.

DOI: https://doi.org/10.7554/eLife.41115.011
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Using Spearman rank correlation, we found a positive association between MXF abundance and

the fraction of macrophages, and an inverse correlation with the relative distance from lesion border

and the necrosis fraction (Figure 3—source data 2 and Figure 3—figure supplement 4B). There

was no significant association between MXF intensity signal and the percentage of other immune

cell types in ROIs (Figure 3—figure supplement 4C). These observations prompted us to use a non-

linear modeling approach to broadly interrogate the dataset and build a model of MXF partitioning

in lesions. Using nonlinear mixed effect modeling (nonMEM) with the full dataset, we found that

accounting for histiocyte fraction reduced the between-ROI MXF variability from 44.0% to 28.3%,

which further decreased to 20.0% when relative distance of ROI to lesion edge was integrated in the

model. This was consistent with vascular function and small molecule penetration decreasing as the

distance from the granuloma outer edge increases (Datta et al., 2015). Factoring the fraction of the

ROI occupied by necrotic tissue further reduced the variability from 20.0% to 18.9% (Table 1), signif-

icantly improving the correlation. Integrating the fraction of other immune cell types further

decreased the residual unexplained variability but not significantly so (Table 1). This suggested that

immune cells other than macrophages do not significantly influence the partitioning of MXF. The

absolute distance between ROIs and lesion periphery did not correlate with MXF signal intensity,

which is not surprising given the highly variable thickness of the cellular rim (Figure 3B and Fig-

ure 3—figure supplement 3). Summary plots of the covariate analysis, visual predictive checks and

model parameters are shown in Figure 4A and Supplementary file 1. The outcome was consistent

with the results of the Spearman rank correlation analysis (Figure 3—figure supplement 3B,C). The

model was internally validated by randomly splitting the dataset into training and validation sets,

resulting in similar model parameters (Supplementary file 1). The validation dataset was then used

to confirm the predictive value of the model equation. We found that the model could predict ROI-

specific MXF abundance using histiocyte fraction, relative distance from lesion margin and necrosis

content (Figure 4B and Figure 3—figure supplement 4D,E). This suggested that MXF, and poten-

tially other FQs, are preferentially taken up by macrophages over other immune cell types.

In vitro uptake of FQs in immune cells is consistent with in vivo
observations
In order to test this hypothesis and recapitulate these in vivo observations in vitro, we developed

drug uptake assays in primary human lymphocytes, macrophages, neutrophils and in A549 human

alveolar basal epithelial cells. Drug uptake in each cell type revealed that MXF, LVX and GTX all

accumulated in macrophages at higher levels than in lymphocytes, neutrophils and epithelial cells in

vitro (Figure 5A). These in vitro results were consistent with the finding that MXF relative abundance

in cellular granuloma regions best correlates with the macrophage fraction. Since foamy macro-

phages are a privileged reservoir for Mtb bacilli in TB lung lesions (Peyron et al., 2008), we specifi-

cally measured FQ uptake in foamy macrophages to determine whether foamy macrophages are as

FQ-avid as their non-foamy counterparts. Foamy macrophages were derived from differentiated pri-

mary macrophages via infection with g-irradiated M. tuberculosis, upon which more than 80% of the

macrophages appeared Nile Red positive, that is with a high lipid droplet content. In contrast, less

Table 1. Summary of multivariate search and model development

Unexplained between
ROI variability in MXF
abundance P value

Base model – no predictors 44.0%

With relative distance from
lesion border

28.2% 3.0*10�6 (****)

With fraction histiocytes (%) 20.0% 5.2*10�4 (****)

With fraction necrosis (%)
(df = 3)

18.9% 0.05 (*)

With fraction lymphocytes,
neutrophils, epithelial cells

14% ns

df: degree of freedom; ns: not significant

DOI: https://doi.org/10.7554/eLife.41115.016
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Figure 4. Modeling of MXF abundance as a function of histology parameters (raw data can be found in

Figure 4—source data 1). (A) Diagnostic plots of Empirical Bayes Estimates (EBEs) supporting the covariate

search and showing MXF abundance differences to the median (Y axes) as a function of each of the six candidate

predictors, as indicated. The blue line indicates the correlation trend: positive for % histiocytes, negative for %

Figure 4 continued on next page
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than 30% on the non-stimulated macrophages were Nile Red positive (Figure 5B). Fluoroquinolone

uptake was significantly higher in foamy than in non-foamy macrophages (Figure 5C). Given the

high inter-donor variability in absolute uptake, we also plotted the macrophage versus foamy macro-

phage uptake ratio for each individual donor, showing a mean ratio around 2 (Figure 5—figure sup-

plement 1 and Figure 5—source data 1). Thus FQ uptake is higher in foamy macrophages, where

Mtb bacilli largely reside in vivo, than in regular macrophages in vitro.

Discussion
In diseases with complex pathology, the distribution of drugs at the site of action is critical but chal-

lenging to study. Cellular content, vascular function and multidimensional tissue architecture all

affect drug penetration in a drug class-specific manner (Gerstner et al., 2009; Saggar et al., 2013;

Rippley and Stokes, 1995; Dartois, 2014; Liu et al., 2013). There is a need for in vivo, in vitro and

in silico methods to study drug partitioning at diseased sites. In previous studies of antibiotic pene-

tration in TB lesions, we showed higher accumulation of MXF in the cellular layers than in necrotic

foci (caseum). MALDI MSI and traditional mass spectrometry analysis of human lesions revealed a

correlation between diffusion into caseum and caseum cellularity (Prideaux et al., 2015a). Here we

have combined high resolution MALDI MSI, qualification of cell types in H and E stained sections,

quantitative image analysis and nonlinear modeling to show that (i) the distribution of FQs within the

cellular cuff of mature TB lesions is uneven and (ii) the heterogeneous distribution of MXF in TB

lesions is driven by the macrophage content, the distance from lesion border and the extent of

necrosis. In vitro uptake assays in human blood cells were developed to confirm that the FQs are

preferentially taken up by macrophages relative to other immune cell types typically found in TB

lesions, and even more strongly so in foamy macrophages where Mtb establishes long term infection

and dormancy. Our results are consistent with published data on the accumulation of FQs in macro-

phage cell lines (Carlier et al., 1990; Michot et al., 2006), constitute an advance over assays relying

on immortal cell lines in which expression of transporters and efflux pumps can be significantly

altered, and demonstrate that uptake is significantly lower in human neutrophils and lymphocytes.

High-resolution co-localization of drug and immune cell type was achieved by MALDI imaging

and H and E staining of the same tissue section. While ‘same-section’ drug imaging and histology

staining has been used to map the distribution of PIK-3 inhibitors in brain tumors (Salphati et al.,

2014), the precise superimposition of drug and cell types hasn’t been reported to date. In the can-

cer field, several studies have focused on drug mapping with reference to next-section H and E stain-

ing to achieve relative quantitation of drugs in ROIs but without qualification of cell populations

(Hinsenkamp et al., 2016; Marko-Varga et al., 2011; Giordano et al., 2016).

The clear correlation between MXF abundance and relative distance from the outer lesion border

is in keeping with previous studies showing that functionally abnormal vasculature increases as the

distance from granuloma border increases, leading to correspondingly impaired small molecule dis-

tribution (Datta et al., 2015). In these studies, the authors showed that therapies thought to achieve

vessel normalization, and thus improve vascular function, appear to improve small molecule delivery

to TB lesions (Datta et al., 2015) or potentiate TB therapy (Xu et al., 2018). These observations are

reminiscent of oncology drug penetration concepts, where excessive angiogenesis generates a

Figure 4 continued

necrosis and relative distance to lesion border, and neutral for the other predictors, thus illustrating the biological

relationship between drug abundance and % histocyte as well as distance from the border; (B) Visual Predictive

Checks (VPC) showing model-predicted MXF abundance versus observed abundance, indicating that drug

abundance can reliably be predicted based on macrophage content, relative distance from granuloma border,

and necrosis content, according the model equation:

MXF abundance ¼ �1 � e�2� Histiocytes %ð Þ�0:35ð Þ � e�3� Distance Ratio�0:65ð Þ � 1þ �Necrosisð Þ.

DOI: https://doi.org/10.7554/eLife.41115.014

The following source data is available for figure 4:

Source data 1. nonMEM model codes of base and final models.

DOI: https://doi.org/10.7554/eLife.41115.015
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Figure 5. Comparative uptake of fluoroquinolones into human blood derived lymphocytes, neutrophils, macrophages and foamy macrophages, and

into A549 epithelial cells. (A) Intracellular to extracellular concentration ratios of MXF, LVX and GTX in the major cell types present in the cellular rim of

necrotic lesions. Data were analyzed using the Friedman test (all means are significantly different from each other): *p<0.05, **p<0.01; (B) FACS analysis

of Nile Red stained human bone marrow derived macrophages showing higher frequency of stained cells in macrophage populations stimulated with

heat-inactivated M. tuberculosis (iMtb) compared to unstimulated macrophages. The percentage of Nile Red high cells is indicated. (C) Intracellular/

extracellular drug concentration ratio of MXF, LVX, and GTX in unstimulated bone marrow derived macrophages (black bars, (M), and in iMTB

stimulated foamy macrophages (green bars, FM), derived from seven individual donors (raw data in Figure 5—source data 1). Data were analyzed

using the Wilcoxon matched-pairs signed rank test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.41115.017

The following source data and figure supplements are available for figure 5:

Figure 5 continued on next page
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disorganized and leaky blood vessel network leading to poor drug delivery to the tumor core

(Azzi et al., 2013; Di Paolo and Bocci, 2007).

Interestingly, FQ uptake was higher in foamy than non-foamy macrophages. This may be due to

differential regulation of transporters and efflux pumps since FQs are actively transported in and out

of eukaryotic cells (Maeda et al., 2007; Weiner et al., 2018; Mulgaonkar et al., 2013; Rudin et al.,

1992; Michot et al., 2005), and foamy macrophages are known to differentially express selected

transporters such as ABCG1 and ABCA1 (cholesterol efflux transporters) compared to non-foamy

phagocytes (Lorkowski et al., 2001; Canfrán-Duque et al., 2017). Alternatively, processes such as

pinocytosis have been implicated in foam cell biogenesis and could be upregulated in these cells

(Michael et al., 2013). Lastly, many FQs carry a basic amine and could undergo enhanced trapping

in the acidic organelles of foamy macrophages if the pH is more acidic than in non-foamy macro-

phages, which remains to be determined. Regardless of the underlying mechanism, the finding that

FQs are preferentially taken up by all phagocytes has positive clinical implications since drug tolerant

M. tuberculosis persisters are present in the foam cells of human lung lesions (Peyron et al., 2008).

On the other hand, M. tuberculosis bacilli are also found in viable and necrotic neutrophils, which

constitute a privileged site of bacterial replication (Mishra et al., 2017; Kimmey et al., 2015;

Diedrich et al., 2016) and where MXF uptake was significantly lower than in macrophages.

There are a few limitations to this study. If MXF uptake is higher in foamy than in non-foamy mac-

rophages in vivo, one should detect a ring of higher signal intensity in MALDI ion maps, correspond-

ing to the ring of foam cells that directly subtend the caseum, visible in superimposed H and E

images. However, because foam cells are mostly concentrated at the caseum border where vascular-

ization is least effective, this confounding factor prevents the visualization of higher MXF signal at

the cellular-caseum interface in MXF ion maps. Second, a single lesion was used to establish the cor-

relation between MXF abundance and histological parameters, and cell types were identified and

quantified based on H and E staining which is less accurate than immunohistochemistry or flow

cytometry. In addition, the method is resource intensive and not amenable to serial analyses of H

and E images. This however creates an opportunity as much as it is a limitation. Our objective is to

demonstrate proof-of-concept in order to harness the power of emerging technologies that rely on

multiplexed ion beam imaging (MIBI-TOF) for revealing immune environment structure and composi-

tion (Keren et al., 2018) coupled to artificial intelligence and convolutional neural networks

(Wainberg et al., 2018) for image recognition applied to H and E and MALDI MS images. Future

efforts will focus on exploring these approaches to automate interpretation of overlaid MALDI MS,

MIBI-TOF and H and E images. While the model needs to be tested with additional lesions and other

FQs, the successful train-and-test approach validates the modeling strategy as a starting point to ini-

tiate similar types of investigations with other drug classes and disease indications.

The methodology is broadly applicable to the high-resolution mapping of any drug in diseased

tissue, particularly when multiple cell types are present in complex lesions, tumors, atherosclerotic

plaques, to name a few. The co-localization of drugs and immune cell populations supported by in

vitro uptake data is a powerful new tool to guide in silico modeling and simulations of drug distribu-

tion in TB lesions (Pienaar et al., 2017) or any complex structure where drug penetration is

paramount.

Figure 5 continued

Source data 1. Raw data of fluoroquinolone accumulation in macrophages and foamy macrophages obtained from the blood of 7 individual human

donors.

DOI: https://doi.org/10.7554/eLife.41115.020

Figure supplement 1. Ratio of fluoroquinolone uptake in foamy macrophages relative to non-foamy macrophages isolated from seven individual blood

donors.

DOI: https://doi.org/10.7554/eLife.41115.018

Figure supplement 2. Workflow for isolation and purification of lymphocytes and monocytes from donated packed leukocytes.

DOI: https://doi.org/10.7554/eLife.41115.019
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Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Cell line (Human) A549 Sigma Aldrich Catalog #
86012804-1VL

Commercial assay
or kit

EasySep Human
CD14 Positive
Selection kit

Public: StemCell
Technologies

Catalog #
17858

Ethics Statement
All animal studies were performed in Biosafety Level three facilities and approved by the Institutional

Animal Care and Use Committee (IACUC protocol number 16016) of the New Jersey Medical

School, Rutgers University, Newark, NJ, under the guidelines and regulations of the National Insti-

tutes of Health.

Immune cells were separated and purified from fresh packed leukocytes purchased from the New

York Blood Center. All samples were anonymized.

Rabbit infection and drug administration
Female New Zealand White (NZW) rabbits (Millbrook Farm, Concord, MA), weighing 2.2 to 2.6 kg,

were maintained under specific pathogen-free conditions and fed water and chow ad libitum. The

rabbits were infected with M. tuberculosis HN878, using a nose-only aerosol exposure system as

described (Subbian et al., 2011). Three hours post-infection, one rabbit from each round of infec-

tion was sacrificed to determine the bacterial load implanted in the lungs. At defined time points

from 16 to 20 weeks post-infection, rabbits received a single dose of 100 mg/kg moxifloxacin

(Chemieliva Pharmaceuticals, China), 75 mg/kg levofloxacin or 100 mg/kg gatifloxacin (Chem-Impex

Intl, IL), formulated in 40% sucrose and PEG400 (90:10) by oral gavage. The time points post infec-

tion were selected to ensure that mature necrotic granulomas had formed and reached a size suffi-

cient to allow dissection and imaging of individual lesions. Blood was collected from the central ear

artery of each rabbit pre-dose, and at several time points between drug administration and nec-

ropsy. Rabbits were euthanized at 2 to 12 hr post-dose, or between the time of peak plasma con-

centration and the end of the tissue distribution phase.

Tissue sectioning and processing for MALDI-MSI and laser-capture
microdissection (LCM)
Tissue sections of appropriate thickness were cut from g-irradiated rabbit lung biopsies using a

Microm HN505 N (Walldorf, Germany) and thaw-mounted onto either stainless steel slides for

MALDI-MSI (12 mm thick), PET-Membrane FrameSlides (Leica) for LCM analyses shown in Figure 1—

figure supplement 2C (25 mm thick as described in Zimmerman et al., 2018), or standard glass

microscope slides for H and E staining of adjacent slides (6 mm thick) shown in Figure 1. For same-

section MALDI-MSI and H and E staining, 12 mm thick sections were cut and processed as described

in Blanc et al., 2018 and Figure 3—figure supplement 1. Tissue sections were immediately trans-

ferred to sealed containers and stored at �80˚C.
Plates containing tissue sections for MALDI-MSI were allowed to reach room temperature for 15

min prior to opening of the containers. 2,5-Dihydroxybenzoic acid matrix (25 mg/mL in 50% Metha-

nol/0.1% TFA) (Sigma-Aldrich, St Louis, MO) was applied to the tissues via the TM-Sprayer auto-

mated MALDI tissue prep device using the following optimized conditions: 0.04 mL/min flow rate;

60˚C nozzle temperature; 1.3 mm/second raster speed; 25 passes over the tissue. Linezolid-d3 (TRC,

Toronto, Ontario), Gatifloxacin-d4 (TRC, Toronto, Ontario) or Moxifloxacin-d4 (Clearsynth, Ontario)

was added to the matrix at 5 pmol/mL as an internal standard for LZD, GTX and MXF respectively.

MALDI-MSI analysis
MALDI-MSI acquisition was performed MALDI LTQ Orbitrap XL mass spectrometer (Thermo Fisher

Scientific, Bremen, Germany) with a resolution of 60,000 at m/z 400, full width at half maximum.

Imaging data was acquired in full scan mode to maximize sensitivity and drug peak identities were
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confirmed by acquiring several MS/MS spectra directly from the dosed tissues. Instrument parame-

ters were tuned and optimized using spiked fluoroquinolone drug standards on stainless steel plates

and control mouse lung tissue. Limits of detection (LOD) were assessed as described previously

(Prideaux et al., 2015a). The lower limits of detection were 100 fmol or 750 ng/g for LVX, GTX and

MXF.

For LVX, GTX and MXF analysis, spectra were acquired in positive mode across the mass range

m/z 300–500. A laser energy of 7.5 mJ was applied and five laser shots were fired at each position

(total of 1 microscan per position). The laser step size was set at 50 mm which enabled small necrotic

areas within lesions to be resolved without overlapping of the laser spot on adjacent acquisitions.

Thermo ImageQuest software (v1.01) was used to reconstruct 2D ion images. Normalized ion images

of LVX were generated by dividing LVX [M + H]+ signal (m/z 362.151 ± 0.003) by LVX-d4 [M + H]+

signal (m/z 365.168 ± 0.003). Normalized ion images of GTX were generated by dividing GTX

[M + H]+ signal (m/z 376.167 ± 0.003) by GTX-d4 [M + H]+ signal (m/z 380.194 ± 0.003). Normalized

ion images of MXF were generated by dividing MXF [M + H]+ signal (m/z 402.182 ± 0.003) by MXF-

d4 [M + H]+ signal (m/z 406.208 ± 0.003).

Relative quantitation of fluoroquinolones within granuloma
compartments
Relative quantitation of MXF, LVX and GFX within caseum and cellular granuloma areas was per-

formed using ImaBiotech Software Quantinetix (v 1.7, Loos, France), following the workflow shown

in Figure 1—figure supplement 1. Areas of interest for each tissue type (lung, cellular rim, caseum)

were delineated by first aligning and superimposing the MS image over the optical scan of the tissue

(acquired prior to MALDI matrix deposition). The MS image layer was made transparent and the

areas were drawn based upon the optical scan (Figure 1—figure supplement 1D) and by referral to

an adjacent H and E-stained tissue section (Figure 1—figure supplement 1C) as a guide rather than

the MALDI ion map to avoid bias in region selection.

High-resolution relative quantitation of MXF ions in 35 regions of
interest (ROI)
Thermo ImageQuest software (v1.01) was used to export MXF pixel intensity datasets into ‘.imzML’

format. The dataset was loaded in SCiLS Lab MVS (version 2018a Core, Bruker) and normalized to

MXF-d4 [M + K]+ signal (m/z 444.1638 ± 0.003). A map of normalized MXF [M + K]+ signal (m/z

440.1380 ± 0.002) was generated and 35 regions of interest (ROIs) were drawn with ‘polygonal

region’ tool, with the objective of covering the full range of relative signal intensity (Figure 3—figure

supplement 2A). The normalized MXF signal intensities of every pixel within each ROI were

exported from SCiLS. Signal intensities of these different pixels are represented in Figure 3C. SCiLS’

MXF image with area of interest was saved and loaded into Photoshop and aligned with H and E as

described below, using the ion map of m/z 362.217 as the reference for alignment. After alignment,

ROIs were re-drawn on the H and E image in Photoshop (Figure 3—figure supplement 1B). The cel-

lular composition of each delineated ROI was assessed by a board certified pathologist, by reference

to the H and E image only.

Co-registration of MALDI MS images and H and E histology images
Co-registration of MALDI MS images and histology was essentially carried out as previously

described (Blanc et al., 2018). Following acquisition of the MALDI MS image, the DHB (2,5-Dihy-

droxybenzoic acid) matrix was washed from the tissue surface by immersing the slide for 10 s in

methanol/water 1:1. The tissue was then fixed by immersing for 1 hr in 4% of paraformaldehyde (in

phosphate buffer saline) prior to H and E staining. The stained tissue section was scanned using a

Panoramic Desk slide scanner (3D Histech) and the full resolution image (Figure 3—figure supple-

ment 1A) was loaded into Adobe Photoshop CS6 (Adobe Systems). To align the H and E and MALDI

images, the ion map of m/z 362.217, a matrix related peak, was used. This matrix-related ion is

highly abundant outside of the tissue and reveals contours of the tissue border and hollow bron-

chioles within (Figure 3—figure supplement 1B). This image was loaded into Adobe Photoshop

CS6. The green square in Figure 3—figure supplement 1A was used as an anchor to scale and

overlay the MSI and H and E images. This imprint image was rescaled and aligned using tissue
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contours (Figure 3—figure supplement 1C). Next, the green scale map of normalized MXF [M + K]+

at m/z 440.138 (normalized to MXF-d4 [M + K]+ signal m/z 444.1638 ± 0.003) was generated in

Thermo ImageQuest and loaded into Adobe Photoshop CS6 (Figure 3—figure supplement 1D).

The normalized MXF image was aligned with the matrix marker image (m/z 362.217) using the

Thermo ImageQuest image ruler (Figure 3—figure supplement 1E). At this point, the MXF intensity

map is aligned and overlaid with the H and E image of the same section (Figure 3—figure supple-

ment 1F).

Immune cell acquisition and purification
Fresh packed leukocytes were obtained from the New York Blood Center. The separation, purifica-

tion and differentiation of major white blood cell types is depicted in Figure 5—figure supplement

2. Human monocytes were isolated from the blood of three independent donors by Ficoll separation

and isolation of peripheral blood monocytic cells (PBMCs) followed by purification of the PBMCs

with CD14+ MicroBeads (StemCellTechnologies catalog #18058). Approximately 5 � 105 cells were

plated in 0.5 mL of media (RPMI supplemented with 10% FBS; 1% penicillin/streptomycin; 10 ng/mL

M-CSF) on 24-well plates. Cells were incubated at 37˚C with 5% CO2 for 2 days, after which the cul-

ture media was replaced with fresh media. After 4 more days of incubation, the culture media was

replaced with either media containing either 200 mM oleic acid or a 1:5000 dilution of g-irradiated

M. tuberculosis (BEI Resources cat. NR-14819) or fresh media in the control wells, followed by 24 hr

incubation at 37˚C with 5% CO2. The stock of g-irradiated M. tuberculosis was vortexed with 3 mm

diameter glass beads to disrupt the bacterial aggregates; the remaining large aggregates were let

to sediment for 30–40 min and the supernatant was frozen at �80˚C in aliquots. Since induction of

foam cells by oleic acid or g-irradiated Mtb delivered the same results in a pilot drug uptake experi-

ment, induction with g-irradiated was selected as more physiologically relevant.

Lymphocytes were obtained by negative selection using the CD14+ MicroBeads. Cells were

counted and immediately used for drug uptake.

Neutrophils were obtained using Ficoll separation on the same fresh packed leukocytes from the

New York Blood Center. The fraction below the Ficoll was removed, and water lysis performed to

remove the RBCs. Water lysis was performed by adding 45 mL of diH2O to the cells, solution was

mixed up and down with pipette once, and very quickly 5 ml of 10x PBS were added and mixed in.

Cells were pelleted at 350 G for 10 min and the process repeated up to 3 times until the pellet

formed was clear (not red). Cells were counted, assessed for viability using trypan blue, and immedi-

ately used for drug uptake.

The A549 human cell line was obtained from Sigma Aldrich (86012804) and grown using Dulbec-

co’s modified Eagles medium (DMEM) with 2% glutamine and 10% FBS in 37˚C and 5% CO2. Cul-

tures were passaged every 7 days and media replaced every 3–4 days. Cultures were maintained at

a density between 2 � 103 and 1 � 104 cells per cm2.

Flow cytometry
Lipid droplets in macrophages were stained with Nile Red (100 ng/ml in PBS, 1 hr incubation) and

fixed in 4% PFA for 20 min on ice to prepare cells for flow cytometry. Data was acquired on a BD

FACS Celesta with red blue violet laser base configuration, and analysis of data was performed using

BD FACS Diva.

Drug uptake assays in immune cells
Monocytes, lymphocytes and neutrophils were separated and purified from freshly packed human

leucocytes, as described below and in Figure 5—figure supplement 2. Lung alveolar epithelial cells

A549 were obtained from Sigma Aldrich. All cell types were cultured and differentiated when

required using standard published methods.

Macrophages and foamy macrophages
Macrophages plated on 24-well plates (50,000 cells per well) were incubated in RPMI +drug (MXF 4

mM, LVX 16 mM, GTX 4 mM or approximately 10-fold the MIC) for 30 min at 37˚C, 5% CO2. Macro-

phages were washed three times with PBS and lysed with 0.25 mL Milli-Q deionized water. Cell

lysates were stored at �20˚C until analyzed by LC/MS for drug quantification. To quantify the total
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number of cells/well, 50 mL of each cell lysate was removed from each well and added to a clear bot-

tom black-sided 96-well plate. 50 mL of deionized water and 100 mL of PicoGreen (Life Technologies)

were added, and the plates were incubated for 2–5 min, protected from light. Fluorescence was

measured at 520 nm (excitation wavelength 480 nm). Samples were blank subtracted, and cell num-

ber interpolations were made from a standard curve.

Lymphocytes and neutrophils
Five to 20 million cells were suspended in 5 mL of RPMI cell media containing drug (MXF 4 mM, LVX

16 mM, GTX 4 mM or approximately 10-fold the MIC) in conical tubes. Cells were incubated with

drug for 30 min at 37˚C, 5% CO2. Following incubation, cells were pelleted at 350 g for 5 min.

Supernatant was poured off carefully and the pellet resuspended in 1 mL of PBS. Cell suspensions

were then transferred to 1.5 mL Eppendorf tubes and pelleted at 350 g for 1 min. Supernatant was

poured off carefully and pellet resuspended in 1 mL of PBS. One microliter of cell suspension was

removed at this point and viable cells counted using Trypan Blue. Cells were pelleted at 350 g for 1

min, resuspended in 500 mL sterile Milli-Q deionized water for cell lysis and stored at �20˚C until

processed for LC/MS analysis.

Lung alveolar epithelial cells
A549 cells obtained from Sigma Aldrich (cat # 86012804) and cultured as described above were

plated on small petri dishes and incubated for 2 days at 37˚C and 5%CO2 to allow cells to become

well attached and become confluent. Drug was then added to the culture media to achieve desired

final extracellular drug concentration (MXF 4 mM, LVX 16 mM, GTX 4 mM), and cells incubated for 30

min. Drug containing media was poured off, and cells were washed three times with PBS (PBS was

added, swirled, and immediately poured off). 100 mL of 0.25% Trypsin/EDTA solution was added for

5 min to detach cells. 400 mL diH2O was added, cells were scraped off, and collected in a 1.5 mL

Eppendorf tube. 10 mL was immediately removed for cell counting. Cells were allowed to lyse for 1

hr in incubation, the supernatant was removed and stored at �20˚C until used for LC-MS/MS

analysis.

Calculation of intracellular drug concentration
All intracellular drug uptake data are expressed as a ratio of intracellular to extracellular drug con-

centration (IC/EC). The starting concentration of drug added to the macrophages was used as extra-

cellular concentration. The intracellular concentration was calculated using the drug concentration of

the cell lysate determined by LC-MS/MS analysis (described below) and adjusting for the number of

cells and cell volume of each particular cell type. Macrophage and foamy macrophage volume was

estimated at 755.5 mm3 per cell as measured in a previous study (Chen et al., 2018); neutrophils vol-

ume was estimated at 363 mm3 per cell (Niemiec et al., 2015); lymphocyte volume was estimated at

173 mm3 per cell (Chapman et al., 1981) and epithelial cell volume was estimated at 1670 mm3

(Jiang et al., 2010). Drugs were extracted from cell lysate solutions by adding 100 mL cell lysate to

35 mL of extraction solution (32% Methanol, 68% Acetonitrile, 1 mg/ml diclofenac as internal stan-

dard) and 15 mL of 50/50 methanol/water. Extracts were stored at �80˚C or analyzed immediately

by LC-MS/MS

LC-MS/MS analysis
The following analytical methods were used to quantify fluoroquinolones in plasma, tissue homoge-

nates and laser-capture microdissected thin section areas. Neat 1 mg/mL DMSO stocks of all com-

pounds were serially diluted in 50/50 methanol/water to create standard curves and quality control

spiking solutions. Fifteen microliters of neat spiking solutions were added to 100 mL of Milli-Q deion-

ized water, and extraction was performed by adding 35 mL of extraction solution as described

above. LC/MS-MS analysis was performed on a Sciex Applied Biosystems 4000 triple-quadrupole

mass spectrometer coupled to an Agilent 1260 HPLC system to quantify LVX, GTX and MXF levels in

the samples. Chromatography was performed with an Agilent Zorbax SB-C8 column (2.1 � 30 mm;

particle size, 3.5 mm) using a reverse phase gradient elution. All gradients used 0.1% formic acid in

Milli-Q deionized water for the aqueous mobile phase and 0.1% formic acid in acetonitrile for the

organic mobile phase. Multiple-reaction monitoring of parent/daughter transitions in electrospray
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positive-ionization mode was used to quantify the analytes. The compounds were ionized using ESI

positive mode ionization and monitored using masses MXF (402.2/358.1), LVX (362/318.5), GFX

(376/261.2), and Diclofenac (296/215). Sample analysis was accepted if the concentrations of the

standard and quality control samples were within 20% of the nominal concentration. Data processing

was performed using Analyst software (version 1.6.2; Applied Biosystems Sciex). NZW control

plasma treated with K2EDTA was obtained from Bioreclammation and used to build standard curves.

LC-MS/MS analysis was performed on a Sciex Applied Biosystems 4000 triple-quadrupole mass

spectrometer coupled to an Agilent 1260 HPLC system to quantify LVX, GTX and MXF levels in the

samples.

Statistical and correlation analyses
Spearman rank correlation was used to test the association between MXF abundance and each of

the parameters recorded for the 35 ROIs (Figure 3—source data 2).

Nonlinear Mixed Effect Modeling (nonMEM) correlation analysis
The entire dataset included 5053 observations (pixel intensities) from 35 ROIs. Each ROI contained

between 48 and 429 pixels. Data points below the limit of quantitation (BLOQ) were set to ‘zero’.

Non-linear mixed effect modeling was applied, where two levels of random effects were imple-

mented: a first level describing within-ROI variability and a second level of mixed effects describing

between-ROI variability. All variability terms were assumed to be log normally distributed, where the

median and variance terms were estimated. First, a constant baseline model was developed (the

‘base’ model) where the typical value of drug abundance is the median value of pixel intensity across

all ROIs, and the between-ROI variability term represents the deviation of each individual ROI com-

pared to the typical value. The covariate model was built using a step-wise model building proce-

dure where all continuous predictors were tested using linear and non-linear functions (exponential,

power, hockey stick). The predictors included into the covariate search were: % histiocytes, % lym-

phocytes, % necrotic cells, % neutrophils, % epithelial or stromal cells, relative distance to lesion bor-

der (or distance ratio), absolute distance to lesion border in pixels or in mm. The % necrotic cell

values were categorized into four groups – no necrosis, low necrosis (<5%), medium necrosis (>5%

and<90%) and high necrosis (�90%) and treated as categorical covariates. The predictors were

retained in the model if they met two criteria: (i) significance level of p<0.05 in the likelihood ratio

test used to compare the goodness of fit of the model with and without the corresponding predic-

tor, and (ii) ability to decrease unexplained between-ROI variability. To visualize the contribution of

each potential predictor, we built empirical Bayes estimate (EBE) plots (Savic and Karlsson, 2009),

based on up to 150 repeated observations in each ROI, thus representing the true measured value.

The estimate of EBE shrinkage was <1%, confirming the biological relationship between drug abun-

dance in ROIs and each of the predictors selected in the final model. Once finalized, the covariate

model was validated using residual diagnostic plots and visual predictive checks. We employed

model diagnostics which included plots of typical predictions and individual predictions versus

observed values, as well as plots of conditional weighted residuals versus typical prediction and

visual predictive checks. The base and final model codes are provided in Figure 4—source data 1.

The final model equation describing the typical drug abundance within each ROI is shown below:

MXF abundance¼ �1� e�2� Histiocytes %ð Þ�0:35ð Þ� e�3� Distance Ratio�0:65ð Þ� 1þ �Necrosisð Þ

where �1�3 and �necrosis are model estimated constants and are reported in supplementary file 1.

Internal validation of the covariate model
To validate the approach, we also randomly split the dataset into a training and validation set. The

data points were categorized into low, medium or high MXF abundance, to ensure that low, medium

and high ranges of abundance were well represented in both sets. Within each category, data points

were randomly split (2/3 and 1/3) and assigned to either the training or validation set. The training

data set included 3277 measurements from 24 ROIs and the validation data set included 1776 meas-

urements from 11 ROIs. The model was internally validated by predicting MXF abundance (both

median value and within ROI variability) using ROI-specific measurements of histiocytes, distance
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ratio and % necrotic cells in the final model equation (Figure 3—figure supplement 4D,E and Fig-

ure 3—source data 1)

Statistical tests
To detect statistically significant differences in drug uptake between cell types, groups were com-

pared using the Wilcoxon matched-pairs signed rank test (non-parametric) for single comparisons

and the Friedman test (non-parametric) for multiple comparisons (GraphPad Prism). p values less

than 0.05 were considered statistically significant. *p<0. 05, **p<0.01, ***p<0.001. The statistical

analysis summarized in Figure 1—figure supplement 2 was carried out using the Wilcoxon

matched-pairs signed rank test. Data shown in Figure 3—figure supplement 3A were analyzed

using a one-way analysis of variance (ANOVA) comparing the mean moxifloxacin abundance of each

area and a Tukey post-hoc test for multiple comparisons. All data are presented as mean ±standard

deviation.
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