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Abstract: Shared metabolomic patterns at delivery have been suggested to underlie the mother-to-child
transmission of adverse metabolic health. This study aimed to investigate whether mothers with
gestational diabetes mellitus (GDM) and their offspring show similar metabolomic patterns several
years postpartum. Targeted metabolomics (including 137 metabolites) was performed in plasma
samples obtained during an oral glucose tolerance test from 48 mothers with GDM and their offspring
at a cross-sectional study visit 8 years after delivery. Partial Pearson’s correlations between the area
under the curve (AUC) of maternal and offspring metabolites were calculated, yielding so-called
Gaussian graphical models. Spearman’s correlations were applied to investigate correlations of
body mass index (BMI), Matsuda insulin sensitivity index (ISI-M), dietary intake, and physical
activity between generations, and correlations of metabolite AUCs with lifestyle variables. This study
revealed that BMI, ISI-M, and the AUC of six metabolites (carnitine, taurine, proline, SM(-OH) C14:1,
creatinine, and PC ae C34:3) were significantly correlated between mothers and offspring several years
postpartum. Intergenerational metabolite correlations were independent of shared BMI, ISI-M, age,
sex, and all other metabolites. Furthermore, creatinine was correlated with physical activity in mothers.
This study suggests that there is long-term metabolic programming in the offspring of mothers with
GDM and informs us about targets that could be addressed by future intervention studies.
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1. Introduction

The prevalence of overweight and obesity is increasing worldwide, and rates of increase have been
reported to be the highest in early adulthood, including women entering pregnancy [1]. In parallel,
a rise of pregnancies complicated by gestational diabetes mellitus (GDM) has been observed [2].
There is compelling evidence that exposure to a maternal obese and, in particular, diabetic environment
in utero influences the offspring’s risk for metabolic disorders over the life course. It has been suggested
that genetic susceptibility and an adverse intrauterine environment contribute independently to the
early programming of childhood overweight and adverse metabolic outcomes [3,4], although the
underlying mechanisms are not yet fully understood. Another hypothesis is that the transmission
of overweight risk is attributable to lifestyle behaviors shared between mothers and their offspring.
However, only a few studies have investigated whether mothers and children share similar lifestyle
behaviors. While one Chinese study reported similarities in some dietary and activity behaviors
between children and their parents [5], fewer associations were observed in a Swedish study [6].

Plasma metabolite levels provide an objective read-out of the individual biological status arising
from genetic and environmental interactions and have been widely used in studies with the aim to
identify either biomarkers or pathways underlying chronic diseases, including obesity and diabetes [7,8].
Previous reports suggested a correlation of maternal metabolites during the peripartum period and
cord blood metabolites, which led to the hypothesis that metabolomic patterns are shared between
mothers and their offspring during this early stage of life, and that these may be disease relevant [9,10].
However, it remained unclear from these studies whether shared metabolomic patterns could still be
observed several years postpartum. The results from a population-based cohort reported only weak
correlations between plasma metabolites of healthy pregnant women and their offspring at the age
of 10 years [11]. This study was limited to metabolomics analysis in randomly collected non-fasting
samples. The assessment of plasma metabolites in response to standardized glucose challenge has
been shown to improve the detection of metabolic alterations [12,13], therefore, this method may be
better suited to detect intergenerational metabolomic correlations in the context of obesity and diabetes.
Furthermore, in line with the hypothesis that transmission of the risk of disturbed metabolism from
one generation to the next is related to the transmission of metabolic pathways, it would be reasonable
that similarities in metabolic pathways are more likely to occur in the high-risk group of mothers with
GDM and their children than in a population-based cohort.

We therefore used a targeted metabolomics approach in a cohort of mothers with GDM and their
offspring who participated in a clinical study visit 8 years after delivery with the aim to investigate:
(1) whether plasma metabolite levels in response to glucose challenge are correlated between mothers
and offspring several years postpartum independent of postpartum BMI and insulin sensitivity,
which may also be shared between mothers and their offspring, and (2) whether intergenerational
metabolomics may be affected by dietary glycemic load or physical activity behavior.

2. Results

2.1. Characteristics of the Cohort

Targeted metabolomics analysis was performed in 288 plasma samples collected from 48 mothers
with GDM and their offspring during an oral glucose tolerance test (OGTT) at a postpartum study visit
at a median of 8 years after delivery (interquartile range (IQR) 5.6; 8.8 years; Table 1).

At the postpartum study visit, mothers had a median body mass index (BMI) of 26.4 kg/m2

(IQR 22.6; 32 kg/m2), including 28 (58%) mothers with overweight, and their offspring had a median
BMI-standard deviation score (SDS) of 0.1 (IQR −0.6; 0.8), including 7 (15%) offspring with overweight.
At the same visit, mothers had a median Matsuda insulin sensitivity index (ISI-M) of 6.1 (IQR 3.7; 8.8)
and their offspring had a median ISI-M of 10.3 (IQR 6.6; 13.7). BMI was inversely correlated with ISI-M
in mothers (r = −0.69, p < 0.0001; Table 2) and in offspring (r = −0.32, p < 0.05). At the postpartum
clinical study visit, 17 of 48 mothers had either impaired fasting glucose or impaired glucose tolerance.
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Information on dietary glycemic load was available for 47 mothers and 31 offspring and information
on physical activity behavior (metabolic equivalent of task hours (MET-h)/week) was available for
37 mothers and 20 offspring (Table 1). Within generations, dietary glycemic load was correlated with
physical activity (MET-h/week) in offspring of mothers with GDM (r = 0.51, p < 0.05). No significant
correlations were observed between dietary glycemic load or physical activity and BMI/BMI-SDS and
ISI-M within generations (Table 2).

Table 1. Characteristics of the study cohort.

Mothers Offspring

N N

Female
n (%) 48 48 (100) 48 23 (48)

Age at postpartum follow-up (years),
median (IQR) 48 42.1 (38.0; 44.2) 48 8.0 (5.4; 8.8)

BMI (kg/m2, mothers),
BMI-SDS (offspring), median (IQR)

48 26.4 (22.6; 32.0) 48 0.1 (−0.6; 0.8)

Overweight *
n (%) 48 28 (58) 48 7 (15)

Glycemic load,
median (IQR) 47 145.1 (114.8;

179.3) 31 100.3 (84.4; 131.1)

Physical activity (MET-h/week),
median (IQR) 37 29.0 (18.0; 43.4) 20 71.0 (45.1; 103.6)

ISI-Matsuda
median (IQR) 48 5.9 (3.6; 9.0) 43 10.3 (6.5; 13.8)

IQR, interquartile range; BMI, body mass index; SDS, standard deviation score; ISI, insulin sensitivity index; MET-h,
metabolic equivalent of task hours. * Overweight: defined as BMI ≥ 25 kg/m2 in mothers and BMI-SDS > 1
in offspring.

Table 2. Intragenerational correlation of BMI/BMI-SDS, ISI-M, dietary glycemic load, and physical
activity (MET-h/week) in mothers with gestational diabetes mellitus (GDM) and their offspring assessed
at a median of 8 years after delivery. Results are presented as Spearman’s correlation coefficients (r).
* Significant at p < 0.05.

Mothers Offspring

Variable BMI ISI-M Glycemic Load MET-h/Week BMI-SDS ISI-M Glycemic Load MET-h/Week

BMI/BMI-SDS 1 −0.69 * 0.16 −0.10 1 −0.32* 0.21 −0.05
ISI-M −0.69 * 1 −0.22 0.05 −0.32 * 1 −0.03 −0.07

Glycemic load 0.16 −0.22 1 0.2 0.21 −0.03 1 0.51 *
MET-h/week −0.10 0.05 0.2 1 −0.05 −0.07 0.51 * 1

Compared to the offspring included in this study, offspring who were excluded due to missing
OGTT samples were younger at the clinical study visit (median age 5.1 years (IQR 4.1; 7.4) vs. 8 years
(5.6; 8.8), p < 0.0001). Included mother–offspring pairs did not significantly differ from excluded pairs
with respect to country of origin, offspring sex, maternal and offspring BMI/BMI-SDS, and fasting
glucose (Appendix A).

2.2. Intergenerational Correlations of BMI, Insulin Sensitivity, and Lifestyle

Between generations, significant correlations were observed between maternal BMI and offspring
BMI-SDS (r = 0.39, p < 0.01; Figure 1A) and between maternal and offspring ISI-M (r = 0.32, p < 0.05;
Figure 1B). No significant correlations were observed between maternal and offspring dietary glycemic
load or physical activity behavior (Figure 1C,D).
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Figure 1. Correlation plots of (A) maternal BMI and offspring BMI-SDS, (B) ISI-Matsuda, (C) dietary glycemic
load, and (D) physical activity (MET-h/week) between mothers with GDM and their offspring assessed
at a median of 8 years after delivery. Correlations were assessed by Spearman’s correlation test.

Similarly, no significant correlations were observed between maternal and offspring intake of
energy, protein, carbohydrates, fiber, total fat, and poly- and mono-unsaturated and saturated fatty acids
and maternal and offspring Dietary Approaches to Stop Hypertension (DASH) score (Appendix B).

2.3. Intergenerational Correlations of AUC of Metabolites

Gaussian graphical model (GGM) analysis including 137 maternal and 137 offspring plasma
metabolites revealed that the AUC of 6 metabolites in response to glucose challenge was significantly
correlated between mothers and offspring several years after delivery, after adjusting for maternal and
offspring BMI/BMI-SDS, ISI-M, age, offspring sex, and all other metabolites and after correction for
multiple testing (Figure 2, Appendix C). These included intergenerational correlations of the AUC of free
carnitine (C0, rpartial = 0.07, false discovery rate (FDR) p < 0.01), one glycerophospholipid (PC ae C34:3
rpartial = 0.06, FDR p < 0.05), two biogenic amines (taurine, rpartial = 0.07, FDR p < 0.05; creatinine,
rpartial = 0.06, FDR p = 0.01), one amino acid (proline, rpartial = 0.07, FDR p < 0.01), and one sphingolipid
(SM -(OH) C14:1, rpartial = 0.06, FDR p < 0.01). Note that, in general, correlation estimates resulting from
GGM are notably lower than those resulting from regular Pearson’s or Spearman’s correlations [14].
To visualize this, maternal and offspring AUC values of the intergenerationally correlated metabolites
and Pearson’s correlation coefficients compared to partial correlation coefficient are shown in Figure 3.
In the mothers, the AUC values of the intergenerationally correlated metabolites were not associated
with a diagnosis of either impaired fasting glucose or impaired glucose tolerance (Appendix D).
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GGM analysis further showed a clear separation into maternal and offspring metabolite clusters.
Notably, within these two clusters, the network showed modular structures with respect to the
metabolite classes in our panel, such as lyso-phosphatidylcholines (Lyso-PCs), branched chain amino
acids (BCAAs), and acylcarnitines, with similar modules in both generations, capturing known
biochemical pathways. Metabolites, fasting levels of which had been strongly correlated in previously
published GGM-derived networks and which are known to be in close proximity in the metabolic
network [14], were significantly correlated within generations in response to glucose challenge in this
study, such as Lyso-PC a C16:0 with Lyso-PC a C18:0 (rpartial = 0.118, Pearson correlation r = 0.922,
FDR p < 0.0001) and leucine with valine (rpartial = 0.115, Pearson correlation r = 0.88, FDR p < 0.0001)
in the offspring, and methionine and threonine (rpartial = 0.11, Pearson correlation 0.7, FDR p < 0.0001)
in the mothers (Figure 2, Appendix C).

Figure 2. Intra- and intergenerational correlations of area under the curve (AUC) of plasma metabolite
levels assessed at 0, 30, and 120 min during a 75 g oral glucose tolerance test (OGTT) between mothers
with gestational diabetes mellitus (GDM) (open ovals) and their offspring (filled ovals) at a median of
8 years after delivery. Each node represents the AUC of a plasma metabolite and edges between two
nodes represent significant partial correlation of two metabolites at a false discovery rate (FDR) corrected
p-value < 0.05, adjusted for age, sex, BMI/BMI-SDS, and ISI-M, and for the remaining metabolites.
Intergenerationally correlated metabolites are highlighted in light green for maternal and dark green
for offspring. Network figure is restricted to intragenerational correlations at r > 0.06 (the smallest
correlation coefficient of intergenerational correlations at FDR p < 0.05).
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Figure 3. Correlation plots of AUC of carnitine, taurine, proline, SM –(OH) C14:1, creatinine, and PC
ae C34:3 between mothers with GDM and their offspring assessed at a median of 8 years after delivery.
Metabolites were identified to be significantly correlated between mothers and offspring based on
partial Pearson’s correlations (GGM), at FDR corrected p-value < 0.05. Correlation estimates are shown
for both Pearson’s and partial Pearson’s correlations derived from GGM.

When performing separate GGM analysis on maternal and offspring metabolite levels at 30 and
120 min after glucose challenge, we observed significant intergenerational correlations of taurine
(rpartial = 0.08, FDR p < 0.01) and C0 (rpartial = 0.07, FDR p < 0.05) at 30 min, and significant
intergenerational correlations of proline (rpartial = 0.07, FDR p < 0.01) at 120 min.

2.4. Effect of Lifestyle on Intergenerationally Correlated Metabolites

In the next step, we investigated within generations whether postpartum dietary glycemic load or
physical activity was correlated with the AUC of intergenerationally correlated plasma metabolites.
In mothers, physical activity was correlated with the AUC of creatinine levels, (r = 0.50, p < 0.01; Table 3).
No correlations between maternal dietary glycemic load and the AUC of metabolites were observed.

In offspring, intergenerationally correlated metabolites were not significantly correlated with
physical activity or dietary glycemic load (Table 3).

Table 3. Intragenerational correlations of AUC of metabolites with dietary glycemic load and physical
activity (MET-h/week) in mothers with GDM and their offspring at a median of 8 years after delivery.
* Results are presented as Spearman’s correlation coefficients.

Metabolite (AUC)

Dietary Glycemic Load Physical Activity (MET-h/Week)

Mothers Offspring Mothers Offspring

r * p-Value r * p-Value r * p-Value r * p-Value

Carnitine (C0) −0.02 0.9 0.28 0.12 0.06 0.72 0.20 0.40
Taurine 0.01 0.93 −0.21 0.25 0.07 0.81 0.30 0.20
Proline −0.06 0.69 0.07 0.72 0.04 0.81 0.30 0.20

SM –(OH) C14:1 0.26 0.08 −0.15 0.42 0.32 0.06 −0.27 0.26
Creatinine 0.19 0.20 0.05 0.77 0.50 <0.01 0.10 0.84

PC ae C34:3 −0.01 0.51 0.001 1.0 0.16 0.35 0.15 0.52
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3. Discussion

This explorative study indicates that several years after delivery, a number of plasma metabolite
levels, assessed as AUC in response to glucose challenge, were correlated between mothers with
GDM and their offspring. The intergenerationally correlated metabolites included carnitine (C0),
one glycerophospholipid (PC ae C34:3), two biogenic amines (taurine, creatinine), one amino acid
(proline), and one sphingolipid (SM –(OH) C14:1).

Our study further identified that BMI (BMI-SDS in the offspring) and ISI-M were correlated
between mothers and offspring several years postpartum. In numerous studies, BMI and insulin
sensitivity have been linked to alterations in plasma levels of several metabolites [7,15]. The metabolites
identified in our study correlated between mothers and offspring after adjusting for maternal and
offspring BMI/BMI-SDS and ISI-M, indicating that they were independent of shared postpartum BMI
or insulin sensitivity.

Of interest, all intergenerationally correlated metabolites have been linked to the pathogenesis of
obesity and/or diabetes in prior studies and may therefore be indicators of shared metabolic health in
mother–offspring pairs [16–21]. Due to the cross-sectional design of our study, we were not able to assess
whether the intergenerational metabolite correlations may persist from birth. However, few existing
studies have shown a correlation between maternal levels during pregnancy and cord blood levels of
carnitine [9,11] and proline [10,11] or between maternal levels during pregnancy and childhood levels
of PC ae C34:3 [11]. It remained unclear from these studies whether the intergenerational correlations
result from transplacental transfer of these metabolites or rather reflect shared metabolic pathways.
Our study suggests that the intergenerational correlations of carnitine, proline, and PC ae C34:3
persist from the prenatal period to childhood, supporting the hypothesis of shared metabolic patterns.
Moreover, based on our data, there is no indication that these intergenerational correlations result from
shared lifestyle behavior, as dietary glycemic load, energy and macronutrient intake, modified DASH
score, and physical activity were not correlated between mothers and offspring. Moreover, plasma
AUCs of carnitine, proline, and PC ae C34:3 were not correlated with physical activity or dietary
glycemic load within generations. This is consistent with results from a lifestyle intervention study
in obese children, where proline and PC ae C34:3 plasma levels were not affected by weight loss
due to changes in diet or physical activity [22]. Since all three metabolites were reported to correlate
between mothers and offspring already at the time of delivery, their intergenerational correlations
may be caused by factors related to pregnancy or even the time before pregnancy. In this context,
the impact of shared genetic or epigenetic factors on intergenerational metabolite correlations needs to
be further investigated.

While we found no associations of carnitine, proline, and PC ae C34:3 with lifestyle behavior,
our study indicated that the AUC of creatinine in response to glucose challenge may be affected by
physical activity, consistent with a report on increased plasma creatinine levels with increased muscle
cell mass [23]. Unlike the mothers, we could not observe any correlation between physical activity and
creatinine in the offspring. This could be due to the small sample size, but also to age and gender effects
or differences in the type of physical activity between mothers and their children. Further studies
are warranted to investigate the metabolomic response to physical activity in women and children at
increased risk for obesity and type 2 diabetes.

To our knowledge, this is the first study to quantify a broad spectrum of metabolites in a cohort of
mothers diagnosed with GDM using a standardized OGTT and their offspring several years postpartum.
The primary strength of our study was the analysis of metabolomics in mother–offspring pairs in
response to OGTT, as previous studies highlighted that the detection of inter-individual differences
and disease-predictive metabolic trajectories is improved when assessing metabolomics in response
to food challenges [13,24]. This is supported by findings from our study, in which the AUC of
metabolites combined the dynamic changes in response to glucose challenge that were observed at
separate time-points and identified additional intergenerationally correlated metabolites. Furthermore,
by calculating the AUC of metabolites, we have minimized the risk of bias that may be caused by the
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inclusion of metabolites with concentrations below the detection limit when analyzing individual time
points. In contrast to previous studies, we used GGM to study intergenerational metabolite correlations.
While standard correlation-based methods lack the ability to discriminate between direct and indirect
associations, GGM identifies the independence between two metabolites conditional on all others and
has been suggested as an effective tool in metabolomics analysis [14]. In this data-driven network,
we observed a clear separation of maternal and offspring metabolites into two separate clusters,
and within these two clusters, the network showed modular structures of metabolites belonging to the
same class (glycerophospholipids, with substructures of Lyso-PCs, PCaa, and PCae; sphingolipids;
amino acids; acylcarnitines; biogenic amines; and hexoses).

We further observed within generations that metabolites that are known to be one reaction step
apart were often strongly correlated, and thus were neighbors in the maternal–offspring network
clusters. For example, the amino acids leucine and valine in the children and methionine and threonine
in the mothers were among the strongest intragenerational correlations in the data-driven network and
are known to share similar biosynthesis and degradation pathways. Thus, consistent with the results
of previous studies on fasting metabolite concentrations [25], our GGM delivers plausible biochemical
networks. In addition to intragenerational metabolite clusters, the network analysis further identified
significant correlations of six metabolite AUCs between mothers and children, after regressing out
correlations of these metabolites with other within- and across-generation metabolites. As the GGM
resembles known biology regarding the physiological differences between generations and metabolites
sharing the same metabolic pathways, we believe that the identified intergenerational correlations may
indicate similarities in some of the metabolomic pathways in mothers and their offspring. Furthermore,
the assessment of detailed postpartum lifestyle data enabled an explorative investigation of their
potential impact on intergenerational metabolomics.

There are some limitations in our study. First, we were not able to investigate the persistence of
intergenerational metabolite correlations in a longitudinally followed cohort. Therefore, the interpretation
of our results with respect to persistency is based on results from previous studies that included
different cohorts and needs to be confirmed by longitudinal studies. Our study was further limited
by the overall small sample size, and specifically the availability of lifestyle data. It is thus possible
that weaker intergenerational metabolite correlations or correlations between lifestyle variables and
metabolite levels were missed.

In conclusion, our study suggests that several metabolic patterns, which may be disease relevant,
are shared between mothers with GDM and their offspring several years postpartum, independent of
shared BMI or insulin sensitivity. Of those, some seem to persist from the time of delivery and are not
affected by lifestyle behavior, suggesting long-term programming of metabolic health in the children
of mothers with gestational diabetes. These findings inform us about metabolite targets that could be
addressed by future intervention studies to promote long-term metabolic health in these children.

4. Materials and Methods

4.1. Postpartum Outcomes in Women with Gestational Diabetes and Their Offspring (POGO) Study

Intergenerational metabolomic profiles were assessed in mothers diagnosed with GDM
(according to the guidelines of the German Diabetes Association from 2001) during their most
recent pregnancy and in their offspring, from plasma samples obtained during an oral glucose tolerance
test (OGTT) performed at a postpartum visit within the observational Postpartum Outcomes in Women
with Gestational Diabetes and Their Offspring (POGO) study. The POGO study was conducted
between March 2011 and November 2013 in Munich, Germany. Details of the study are described
elsewhere [26]. Briefly, the study recruited women who were referred for screening of GDM to an
outpatient clinic during at least one pregnancy between 1998 and 2009 to participate in a clinical
examination once within 3–12 years after delivery. Because screening of GDM was not a regular part
of the pregnancy check-ups in Germany before 2012, women were usually screened if they were at



Int. J. Mol. Sci. 2020, 21, 9647 9 of 21

increased risk for GDM (e.g., family history of diabetes, GDM in a previous pregnancy, previous birth
of a large-for-gestational-age infant, habitual abortion, fetal macrosomia), or because glucosuria
and/or hyperglycemia were detected. All the women and their children participated in a postpartum
clinical examination on the same day at the clinical study center of the Institute of Diabetes Research,
Helmholtz Zentrum München, Germany. During the examination, the participants, who had fasted
for at least 8 h, underwent a 75 g OGTT (Dextro O.G.T.; Roche Diagnostics, Mannheim, Germany),
and plasma samples for glucose and insulin assessment and metabolomics profiling were collected at 0,
30, and 120 min. The time from blood collection to centrifugation was <40 min, and for metabolomics
analysis, the plasma was transferred to precooled collection tubes placed on ice and immediately
stored at −80 ◦C. Additionally, detailed information on body weight and height was collected during
the clinical visit by trained staff using standardized protocols to calculate BMI (kg/m2). Offspring BMI
was transformed to age- and sex-specific standard deviation scores (BMI-SDS) according to German
reference data [27].

The present analysis was restricted to one mother–offspring pair per family. Of 129 eligible
mother–offspring pairs, 11 were excluded, because mothers were diagnosed with type 2 diabetes before
or at the clinical study visit and type 2 diabetes has been associated with changes in the metabolomic
profile, including sugars, branched-chain amino acids (BCAAs), intermediates of BCAA metabolism,
and free fatty acids [28]. None of the offspring were diagnosed with type 2 diabetes at the time of the
visit. From the remaining 118 mother–offspring pairs, 70 pairs had to be excluded due to incomplete or
missing oral glucose tolerance tests for the offspring. The final sample consisted of 288 plasma samples
from 48 mother–offspring pairs with complete metabolomics data (Appendix E).

All participants provided written informed consent to participate in the study. The study was
approved by the Ethical Committee of the Technische Universität München, Munich, Germany (no. 2937).

4.2. Measurement of Insulin and Plasma Glucose

Plasma insulin was analyzed by immunoassay using the AIA-360 Analyzer (Tosoh Bioscience,
Tokyo, Japan). Plasma glucose was measured routinely (Medizet, Munich, Germany) using a
photometer (ARCHITECT c16000, Abbott, Abbott Park, IL, USA). Matsuda insulin sensitivity index
(ISI-M) was applied to estimate insulin sensitivity, as it has been reported to be strongly correlated with
the gold standard method using the hyperinsulinemic–euglycemic insulin clamp technique in children
and adolescents [29,30]. ISI-M was calculated as follows: ISI-M = 10,000/square root of [(mean plasma
glucose ×mean plasma insulin during OGTT) × (fasting plasma glucose × fasting plasma insulin)] [31].

4.3. Dietary Behavior

Dietary information of the mothers was assessed during the clinical study visit several years
postpartum with a validated food frequency questionnaire (FFQ) reflecting their dietary habits with
regard to 85 food items during the preceding 4 weeks [32]. Dietary information of the children
was collected by 3-day dietary food records, as described previously [26]. The diet records were
reviewed by trained study personnel for plausibility and entered into a food database (PRODI® 5 basis,
Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany) to calculate daily intake of energy, nutrients,
and food groups. For this study, intake of macronutrients was expressed as % of total energy intake.
A glycemic index (GI) value was assigned to each carbohydrate-containing food in the FFQ or 3-day
dietary records using the Diogenes reference database for Germany [33]. Foods with a carbohydrate
(CHO) content below 1 g/100 g were not included in the calculation. The glycemic load of each
individual diet was calculated by the sum of the CHO content (g) of each food item multiplied by the
daily consumed amount of this item and the food’s GI (%), divided by 100. Additionally, a modified
Dietary Approach to Stop Hypertension (DASH) score was calculated based on daily consumption
of the following food groups: whole grains, fruits, vegetables, nuts/legumes, low-fat dairy products
(≤1.5% fat content), red or processed meat, sweet snacks, salty snacks, sweetened beverages, and sodium.
Because the daily energy intake differed across age groups, we calculated the energy-specific intake of
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each food group (intake per 1000 kcal). The modified DASH score was calculated according to [34].
Briefly, for each food group, mothers and offspring were separately classified into quintiles according to
their daily intake/1000 kcal. For “healthy” food groups (fruits, vegetables, nuts/legumes, low-fat dairy
products, and whole grains), quintile 1 (lowest daily intake) was assigned 1 point and quintile 5 was
assigned 5 points. For “unhealthy” food groups (red or processed meat, sweet snacks, salty snacks,
sweetened beverages, sodium), quintile 1 was assigned 5 points and quintile 5 was assigned 1 point.
The DASH score was calculated as the sum of scores for each individual food group.

4.4. Physical Activity

Measures of overall physical activity (metabolic equivalent of task (MET) hours per week) were
assessed with validated questionnaires. Maternal physical activity was assessed by the Freiburger
Fragebogen zur körperlichen Aktivität [35], and offspring physical activity by the Motorik-Modul
Aktivitätsfragebogen (MoMo-AFB) [36]. The overall activity index was determined by summing
the MET-h per week for everyday basic and sporting activities [37]. For mothers, basic activities
(walking, bicycling, gardening, and stair climbing), leisure activities (bike tours, swimming, dancing,
and bowling), and other sports were included in the overall activity index. For the children, activities
included supervised activities in preschool or school (sports lessons and extracurricular activities),
club sports, leisure sports, and everyday activities such as walking, bicycling, and playing outside.

4.5. Metabolomics Analysis

Metabolomic measurements were performed at the Genome Analysis Centre of the Helmholtz
Zentrum München, Germany. Plasma metabolites were measured with electrospray ionization–flow
injection–tandem mass spectrometry (ESI-FIA-MS/MS) and electrospray ionization–liquid
chromatography–tandem mass spectrometry (ESI-LC-MS/MS) with the AbsoluteIDQ™ p180 Kit
(Biocrates Life Sciences AG, Innsbruck, Austria). This assay allows the simultaneous quantification
of 188 metabolites in 10 µL of plasma. The assay procedures of the AbsoluteIDQTM p180 Kit and the
metabolite nomenclature have been described in detail previously [38]. Briefly, 10 µL of plasma was
pipetted onto a filter that was incorporated in a 96-well sandwich plate that already contained stable
isotope-labeled internal standards. Amino acids were derivatized with 5% phenyl isothiocyanate
reagent. The metabolites and internal standards were extracted with 5 mM ammonium acetate in
methanol and the solution was centrifuged through a filter membrane. One part of the solution was
diluted with running solvent for the FIA-MS/MS measurements, and another part was diluted with
water for LC-MS/MS.

Quantification of metabolite concentrations and quality assessment were performed with Analyst
1.5 and 1.6 and MetIDQ™ software, which is an integral part of the AbsoluteIDQ™ p180 Kit.
The concentration of each metabolite was calculated with reference to the appropriate internal
standard set by the manufacturer and was reported in µmol/L. Fifty-one of 188 metabolites were
excluded from further analysis if at least one of the following conditions was present: a coefficient
of variation greater than 25% in 32 aliquots of a reference plasma sample, which were measured in
parallel with the study samples for quality control; metabolites, for which the measurements were
zero in more than 95% of the samples; metabolites, for which the measurements were below the limit
of detection (= mean [21 blanks] + 3SD [21 blanks]) in more than 95% of the samples. For all other
metabolites, measurements which were below the limit of detection were kept as values calculated in
MetIDQ™ in the analysis instead of imputation, as GGMs have been reported to be very robust against
application of different methods concerning data handling of values below the limit of detection [39].
In total, our data set included 13 metabolites for which the concentration in at least one sample was
below the LOD. These included, in particular, acylcarnitines with medium-chain fatty acids and their
derivatives with expected low frequencies (e.g., AC C10:1, AC C12, AC C12:1, AC C14:1-OH).
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4.6. Statistical Analysis

To test whether the included mother–offspring pairs were different in demographic or clinical
characteristics from pairs who were excluded due to missing OGTTs, Mann–Whitney U test
(for continuous variables) or chi-square test (for categorical variables) was applied.

Correlations between BMI/BMI-SDS, ISI-M, physical activity (MET-h/week), and dietary variables
within and between generations were assessed by Spearman’s correlations.

Metabolite concentrations of mothers and their offspring were quotient normalized and
log-transformed, as has been recommended for normalizing omics data [14,40]. To depict the metabolic
response to glucose challenge, the area under the curve (AUC) was calculated for each maternal
and offspring metabolite from metabolite concentrations obtained at 0, 30, and 120 min during the
OGTT. Intergenerational correlations of same metabolites were assessed by Gaussian graphical models
(GGMs) using the GeneNet package [41]. GGMs were calculated based on the full-order partial
Pearson correlation coefficients (i.e., pairwise correlations of metabolite AUCs within and across
generations corrected for all remaining metabolite AUCs). GGMs were additionally corrected for
maternal and offspring BMI/BMI-SDS, ISI-M, and age at the study visit and offspring sex by including
the variables in the partial correlation calculation. Metabolites were considered to be significantly
correlated between mothers and offspring after correction for multiple testing by applying the
Benjamini–Hochberg approach for adjusting the p-values by controlling the false discovery rate (FDR)
at 5%. Identified networks, including correlations between AUCs of metabolites within generations
and AUCs of same metabolites between generations, were exported to Cytoscape for visualization [42].
The minimum partial correlation between generations, which was significant at FDR > 0.05, was selected
as cut-off for the visualization of intragenerational correlations. In a sensitivity analysis, similar GGMs
were calculated from metabolite concentrations obtained at 30 min and 120 min during OGTT.

To investigate whether postpartum dietary or physical activity behaviors affect AUCs
of intergenerationally correlated metabolites in mothers and offspring, Spearman’s correlation
coefficients were calculated for intergenerationally correlated metabolites and dietary glycemic
load and MET-h/week separately in mothers and offspring. For the comparison of the AUCs of
metabolites between mothers with or without impaired fasting glucose or impaired glucose tolerance,
the Mann–Whitney U test was applied. Statistical analyses were performed with R software version 3.4.0.
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Abbreviations

GDM Gestational diabetes mellitus
OGTT Oral glucose tolerance test
SDS Standard deviation score
ISI-M Matsuda insulin sensitivity index
FFQ Food frequency questionnaire
GI Glycemic index
CHO Carbohydrate
MET Metabolic equivalent of task
GGM Gaussian graphical model
FDR False discovery rate
PC Phosphatidylcholine
AC Acylcarnitine
SM Sphingomyelin
Lyso-PC Acyl-lysophosphatidylcholine
PCaa Diacyl-phosphatidylcholine
PCae Acyl-alkyl-phosphatidylcholine
DASH Dietary Approach to Stop Hypertension
AUC Area under the curve

Appendix A

Table A1. Characteristics of mother–offspring pairs included in the study and mother–offspring pairs
excluded due to missing oral glucose tolerance tests for the offspring.

Included
Mother–Offspring Pairs

Excluded
Mother–Offspring Pairs

N N p-Value

Country of origin Germany, n (%) 48 40 (83.3%) 70 57 (81.4%) 0.40
Offspring sex, female n (%) 48 23 (48%) 70 31 (44%) 0.7

Maternal age at follow-up (years),
median (IQR) 48 42.1 (38.0; 44.2) 70 40.2 (35.2; 43.5) 0.1

Offspring age at follow-up (years),
median (IQR) 48 8.0 (5.4; 8.8) 70 5.1 (4.1; 7.4) <0.0001

Maternal BMI at follow-up (kg/m2),
median (IQR)

48 26.4 (22.6; 32.0) 70 25.3 (22.5; 30.4) 0.5

Offspring BMI-SDS, median (IQR) 48 0.1 (−0.6; 0.8) 47 0.04 (−0.8; 0.5) 0.3
Maternal fasting glucose (mg/dl),

median (IQR) 48 94 (87; 103) 70 91 (87; 100) 0.2

Offspring fasting glucose (mg/dl),
median (IQR) 48 88 (84; 92) 34 84 (80; 92) 0.06

Appendix B

Table A2. Intergenerational correlations of daily intake of energy, protein, carbohydrates, fiber, fat,
fatty acids, and DASH score in mothers with GDM and their offspring at a median of 8 years after
delivery. Results are presented as Spearman’s correlation coefficients.

Intergenerational Correlation

Correlation Estimate r p-Value

Energy and Nutrients
Energy (kcal/day) −0.05 0.83

Protein (% of total EI) 0.17 0.47
Carbohydrates (% of total EI) 0.21 0.37

Fiber (g/day) −0.10 0.60
Total Fat (% of total EI) −0.06 0.78

Polyunsaturated fatty acids (% of total EI) 0.40 0.07
Monounsaturated fatty acids (% of total EI) 0.17 0.46

Saturated fatty acids (% of total EI) 0.08 0.74
DASH score 0.24 0.29

DASH, Dietary Approaches to Stop Hypertension; modified according to [34], calculated based on daily intake
of the following food groups: whole grains, fruits, vegetables, nuts/legumes, low-fat dairy, red/processed meat,
sweet snacks, salty snacks, sweetened beverages, sodium. EI, energy intake.
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Appendix C

Table A3. Correlations of AUC of plasma metabolite levels between mothers with GDM and their
offspring and within generations at a median of 8 years after delivery (adjusted for maternal and
offspring BMI/BMI-SDS, ISI-M, age, and offspring sex and all remaining metabolite AUCs, and significant
at false discovery rate corrected p-value < 0.05). Results are shown for all metabolites with a partial
correlation of >0.06 (minimum partial correlation for intergenerational correlations at FDR > 0.05)
assessed by GGM, sorted according to inter- and intragenerational correlations and correlation strength.

Node1 Node2 Estimate r P Raw P FDR

Intergenerational correlations of same metabolites between mothers and offspring
Carnitine 0.070 <0.00001 <0.01
Taurine 0.069 <0.00001 <0.01
Proline 0.065 <0.00001 <0.01

SM –OH C14:1 0.061 0.0001 0.01
Creatinine 0.061 0.0001 0.01

PC ae C34:3 0.060 0.0001 <0.05
Offspring correlations

Lyso PC a C16:0 Lyso PC a C18:0 0.118 <0.00001 <0.0001
Leucine Valine 0.115 <0.00001 <0.0001
AC C5 Kynurenine 0.112 <0.00001 <0.0001

PC aa C40:4 PC aa C40:5 0.111 <0.00001 <0.0001
Isoleucine Leucine 0.110 <0.00001 <0.0001
AC C4:1 AC C6:1 0.110 <0.00001 <0.0001
SM C18:0 SM C18:1 0.107 <0.00001 <0.0001

PC ae C34:2 PC ae C36:3 0.106 <0.00001 <0.0001
PC aa C36:4 PC aa C38:4 0.104 <0.00001 <0.0001

Citrulline Taurine 0.103 <0.00001 <0.0001
SM (-OH) C22:1 SM (-OH) C24:1 0.103 <0.00001 <0.0001

PC ae C42:4 PC ae C44:4 0.101 <0.00001 <0.0001
PC ae C32:1 PC ae C32:2 0.101 <0.00001 <0.0001
PC aa C34:2 PC aa C36:2 0.101 <0.00001 <0.0001

SM (-OH) C14:1c SM (-OH) C16:1 0.100 <0.00001 <0.0001
SM -C24:0 SM (-OH) C22:1 0.094 <0.00001 <0.0001

PC ae C44:5 PC ae C44:6 0.093 <0.00001 <0.0001
PC aa C38:6 PC aa C40:6 0.092 <0.00001 <0.0001
PC aa C34:1 PC aa C36:1 0.091 <0.00001 <0.0001

AC C6:1 Valine 0.090 <0.00001 <0.0001
Kynurenine Phenylalanine 0.089 <0.00001 <0.0001

Histidine Serine 0.088 <0.00001 <0.0001
PC ae C42:5 PC ae C44:5 0.088 <0.00001 <0.0001
PC ae C40:4 PC ae C42:4 0.088 <0.00001 <0.0001
Isoleucine Valine 0.087 <0.00001 <0.0001
SM C24:0 SM (-OH) C24:1 0.086 <0.00001 <0.0001
Carnitine AC C3 0.086 <0.00001 <0.0001

SM (-OH) C22:1 SM (-OH) C22:2 0.086 <0.00001 <0.0001
LysoPC a C18:2 LysoPC a C20:4 0.085 <0.00001 <0.0001

SM C18:0 SM (-OH) C16:1 0.085 <0.00001 <0.0001
PC ae C38:4 PC ae C40:4 0.084 <0.00001 <0.0001
PC aa C42:5 PC aa C42:6 0.083 <0.00001 <0.0001

Serine Threonine 0.083 <0.00001 <0.0001
AC C16 AC C18 0.082 <0.00001 <0.0001

PC ae C34:3 PC ae C36:5 0.082 <0.00001 <0.0001
PC aa C40:5 PC aa C42:5 0.082 <0.00001 <0.0001
PC aa C38:5 PC aa C40:5 0.081 <0.00001 <0.0001
PC ae C36:4 PC ae C38:5 0.081 <0.00001 <0.0001
PC ae C44:4 PC ae C44:5 0.081 <0.00001 <0.0001

AC C18:1 AC C18:2 0.081 <0.00001 <0.0001
LysoPC a C20:3 LysoPC a C20:4 0.081 <0.00001 <0.001
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Table A3. Cont.

Node1 Node2 Estimate r P Raw P FDR

AC C4-OH AC C4:1 0.080 <0.00001 <0.001
AC C2 AC C4-OH 0.080 <0.00001 <0.001

LysoPC a C18:1 LysoPC a C18:2c 0.079 <0.00001 <0.001
PC aa C38:6 PC ae C38:0 0.078 <0.00001 <0.001
PC ae C42:5 PC ae C44:6 0.078 <0.00001 <0.001

LysoPC a C18:2 LysoPC a C20:3 0.078 <0.00001 <0.001
Glycine Phenylalanine 0.078 <0.00001 <0.001

LysoPC a C18:1 LysoPC a C20:3 0.078 <0.00001 <0.001
PC ae C38:4 PC ae C40:5 0.077 <0.00001 <0.001

SM C26:1 SM (-OH) C24:1 0.077 <0.00001 <0.001
PC aa C38:0 PC ae C38:6 0.077 <0.00001 <0.001
PC aa C30:0 PC ae C30:0 0.077 <0.00001 <0.001
PC aa C30:0 PC aa C32:0 0.077 <0.00001 <0.001
PC ae C40:4 PC ae C40:5 0.077 <0.00001 <0.001
PC ae C42:4 PC ae C44:5 0.077 <0.00001 <0.001

AC C10:2 Creatinine 0.076 <0.00001 <0.001
Glutamine Lysine 0.076 <0.00001 <0.001
PC aaC40:4 PC aaC42:5 0.076 <0.00001 <0.001
Citrulline Glycine 0.076 <0.00001 <0.001
AC C18 Taurine 0.076 <0.00001 <0.001

PC ae C42:4 PC ae C42:5 0.076 <0.00001 <0.001
LysoPC a C16:0 LysoPC a C17:0 0.075 <0.00001 <0.001

PC aa C42:0 PC aa C42:1 0.075 <0.00001 <0.001
PC ae C40:4 PC ae C42:5 0.075 <0.00001 <0.001
Asparagine Serine 0.074 <0.00001 <0.001
SM C16:1 SM C18:1 0.074 <0.00001 <0.001

PC aa C38:4 PC aa C40:4 0.073 <0.00001 <0.001
LysoPC a C18:1 LysoPC a C20:4 0.073 <0.00001 0.001

PC ae C36:5 PC ae C38:6 0.073 <0.00001 0.001
AC C16:1 AC C4:1 0.073 <0.00001 0.001

PC aa C42:0 PC ae C44:6 0.073 <0.00001 0.001
LysoPC a C18:0 LysoPC a C20:4 0.073 <0.00001 0.001

PC aa C32:2 PC aa C34:4 0.073 <0.00001 <0.01
LysoPC a C17:0 LysoPC a C18:0 0.072 <0.00001 <0.01

PC aa C38:6 PC ae C40:6 0.072 <0.00001 <0.01
PC aa C40:4 PC aa C42:6 0.072 <0.00001 <0.01

AC C12 AC C14 0.071 <0.00001 <0.01
AC C16:1 AC C4-OH (C3DC) 0.071 <0.00001 <0.01

PC aa C40:6 PC ae C40:6 0.071 <0.00001 <0.01
PC aa C38:0 PC ae C40:6 0.071 <0.00001 <0.01

SM C16:0 SM C16:1 0.070 <0.00001 <0.01
PC ae C40:5 PC ae C40:6 0.070 <0.00001 <0.01
PC aa C36:2 PC ae C34:3 0.070 <0.00001 <0.01
PC aa C40:3 PC aa C42:5 0.070 <0.00001 <0.01
PC aa C36:6 PC ae C38:0 0.070 <0.00001 <0.01

SM C16:0 SM C18:0 0.070 <0.00001 <0.01
PC aa C40:2 PC aa C40:3 0.070 <0.00001 <0.01
PC aa C38:5 PC aa C40:4 0.069 <0.00001 <0.01

LysoPC a C16:0 LysoPC a C16:1 0.069 <0.00001 <0.01
LysoPC a C16:0 LysoPC a C20:4 0.069 <0.00001 <0.01

AC C10:2 Kynurenine 0.068 <0.00001 <0.01
PC ae C38:4 PC ae C38:5 0.068 <0.00001 <0.01
PC ae C42:5 PC ae C44:4 0.067 <0.00001 <0.01
Glutamine Serine 0.067 <0.00001 <0.01

PC aa C36:3 PC aa C38:3 0.067 <0.00001 <0.01
AC C3 AC C4 0.067 <0.00001 <0.01

PC aa C40:2 PC aa C42:4 0.067 <0.00001 <0.01
PC aa C40:2 PC ae C42:1 0.067 <0.00001 <0.01
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Table A3. Cont.

Node1 Node2 Estimate r P Raw P FDR

AC C14 AC C16 0.066 <0.00001 <0.01
PC aa C38:3 PC aa C40:4 0.066 <0.00001 <0.01
PC aa C32:0 PC ae C32:1 0.066 <0.00001 <0.01
PC aa C38:4 PC aa C40:5 0.066 <0.00001 <0.01

Arginine Methionine 0.066 <0.00001 <0.01
SM C16:0 SM C24:1 0.065 <0.00001 <0.01
AC C16 AC C18:1 0.065 <0.00001 <0.01

LysoPC a C16:0 LysoPC a C18:1 0.065 <0.00001 <0.01
Leucine Serine 0.065 <0.00001 <0.01

PC aa C38:4 PC aa C38:5 0.065 <0.00001 <0.01
PC ae C42:1 PC ae C42:2 0.064 <0.00001 <0.01
Glutamine Histidine 0.064 <0.00001 <0.01

PC ae C36:4 PC ae C36:5 0.064 0.0001 <0.01
Histidine Lysine 0.064 0.0001 <0.01

PC aa C42:4 PC aa C42:5 0.064 0.0001 <0.01
PC aa C40:3 PC aa C42:4 0.064 0.0001 <0.01
PC aa C34:2 PC aa C36:4 0.064 0.0001 <0.01
PC ae C40:2 SM (-OH) C24:1 0.064 0.0001 <0.01
Methionine Tryptophan 0.064 0.0001 <0.01
PC aa C38:3 PC aa C40:5 0.064 0.0001 <0.01
PC aa C40:2 PC ae C42:2 0.064 0.0001 <0.01

LysoPC a C20:4 PC aa C36:4 0.063 0.0001 <0.01
PC aa C42:0 PC ae C42:5 0.063 0.0001 <0.01

LysoPC a C16:0 LysoPC a C20:3 0.063 0.0001 <0.01
Methionine Phenylalanine 0.063 0.0001 <0.01
PC aa C32:1 PC aa C36:1 0.063 0.0001 <0.01

Lysine Methionine 0.063 0.0001 <0.01
AC C14 AC C14:1-OH 0.063 0.0001 0.01

PC ae C36:4 PC ae C38:4 0.063 0.0001 0.01
PC aa C36:1 PC ae C34:1 0.062 0.0001 0.01
PC aa C36:4 PC aa C38:5 0.062 0.0001 0.01

SM C18:1 SM (OH) C16:1 0.062 0.0001 <0.05
PC ae C40:5 PC ae C42:5 0.062 0.0001 <0.05

AC C2 AC C4:1 0.062 0.0001 <0.05
LysoPC a C16:1 LysoPC a C18:1 0.062 0.0001 <0.05

PC aa C32:2 PC aa C36:6 0.062 0.0001 <0.05
PC aa C32:1 PC aa C34:1 0.062 0.0001 <0.05
PC ae C36:5 PC ae C38:5 0.062 0.0001 <0.05
PC ae C38:2 PC ae C40:3 0.062 0.0001 <0.05
PC aa C36:0 PC aa C38:0 0.061 0.0001 <0.05

AC C10 AC C12:1 0.061 0.0001 <0.05
PC aa C34:1 PC ae C36:0 0.061 0.0001 <0.05

Arginine Glycine 0.061 0.0001 <0.05
PC ae C34:0 PC ae C34:1 0.061 0.0001 <0.05

Arginine Glutamine 0.061 0.0001 <0.05
AC C18 AC C18:1 0.061 0.0001 <0.05

PC aa C38:1 PC aa C40:2 0.061 0.0001 <0.05
AC C12 AC C14:1 0.061 0.0001 <0.05

PC aa C36:4 PC ae C36:5 0.061 0.0001 <0.05
PC ae C38:6 PC ae C40:6 0.061 0.0001 <0.05

SM (OH) C16:1 SM (OH) C22:2 0.061 0.0001 <0.05
Phenylalanine Proline 0.061 0.0001 <0.05

PC ae C36:4 PC ae C38:6 0.061 0.0001 <0.05
PC aa C40:2 PC aa C42:2 0.061 0.0001 <0.05
PC ae C32:1 PC ae C34:1 0.060 0.0001 <0.05
PC aa C30:0 PC aa C32:2 0.060 0.0001 <0.05

AC C4:1 Hexoses 0.060 0.0001 <0.05
PC aa C40:4 PC aa C42:4 0.060 0.0001 <0.05

AC C4 AC C6:1 0.060 0.0001 <0.05
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Table A3. Cont.

Node1 Node2 Estimate r P Raw P FDR

PC aa C32:3 PC aa C34:4 0.060 0.0001 <0.05
AC C12 AC C12:1 0.060 0.0001 <0.05

PC aa C36:0 PC aa C36:1 −0.061 0.0001 <0.05
Carnitine PC ae C36:0 −0.062 0.0001 <0.05
AC C4:1 Phenylalanine −0.075 <0.00001 <0.001

Creatinine SM (OH) C24:1 −0.078 <0.00001 <0.001
Maternal

correlations
PC aa C40:2 PC aa C40:3 0.112 <0.00001 <0.0001
Methionine Threonine 0.111 <0.00001 <0.0001
PC ae C34:2 PC ae C36:3 0.107 <0.00001 <0.0001
PC aa C40:3 PC aa C42:5 0.099 <0.00001 <0.0001
Aspartate Taurine 0.099 <0.00001 <0.0001

PC ae C42:4 PC ae C44:4 0.098 <0.00001 <0.0001
PC ae C42:5 PC ae C44:5 0.098 <0.00001 <0.0001

SM C16:1 SM C18:1 0.094 <0.00001 <0.0001
SM C18:1 SM C20:2 0.094 <0.00001 <0.0001

PC ae C36:4 PC ae C36:5 0.094 <0.00001 <0.0001
SM C24:0 SM (OH) C22:1 0.093 <0.00001 <0.0001

PC ae C36:4 PC ae C38:5 0.093 <0.00001 <0.0001
Alanine Threonine 0.093 <0.00001 <0.0001

PC aa C40:4 PC aa C40:5 0.092 <0.00001 <0.0001
Carnitine AC C2 0.092 <0.00001 <0.0001
SM C18:0 SM C18:1 0.091 <0.00001 <0.0001

Asparagine Threonine 0.091 <0.00001 <0.0001
Isoleucine Leucine 0.090 <0.00001 <0.0001
Leucine Valine 0.089 <0.00001 <0.0001

PC ae C34:3 PC ae C36:5 0.089 <0.00001 <0.0001
PC aa C36:4 PC aa C38:4 0.089 <0.00001 <0.0001

SM (OH) C22:1 SM (OH) C24:1 0.088 <0.00001 <0.0001
PC ae C40:4 PC ae C42:4 0.088 <0.00001 <0.0001

SM C26:1 SM (OH) C24:1 0.088 <0.00001 <0.0001
Methionine Tyrosine 0.088 <0.00001 <0.0001
PC ae C40:2 SM C26:1 0.087 <0.00001 <0.0001

AC C16 AC C18 0.086 <0.00001 <0.0001
SM (OH) C14:1 SM (OH) C16:1 0.086 <0.00001 <0.0001

PC aa C36:6 PC ae C38:0 0.086 <0.00001 <0.0001
PC ae C40:2 SM (OH) C24:1 0.085 <0.00001 <0.0001

Glycine Serine 0.085 <0.00001 <0.0001
PC aa C38:6 PC aa C40:6 0.085 <0.00001 <0.0001
PC ae C44:4 PC ae C44:5 0.084 <0.00001 <0.0001
PC aa C36:5 PC aa C36:6 0.084 <0.00001 <0.0001
PC ae C36:4 PC ae C38:4 0.084 <0.00001 <0.0001

Citrulline Threonine 0.083 <0.00001 <0.0001
Asparagine Methionine 0.083 <0.00001 <0.0001
PC ae C36:2 PC ae C38:2 0.082 <0.00001 <0.0001
Isoleucine Valine 0.082 <0.00001 0.0001
SM C16:1 SM C20:2 0.081 <0.00001 0.0001

AC C3 AC C4 0.081 <0.00001 0.0001
SM C24:0 SM C24:1 0.081 <0.00001 0.0001

PC ae C32:1 PC ae C32:2 0.080 <0.00001 <0.001
PC ae C38:4 PC ae C40:4 0.079 <0.00001 <0.001

AC C12 AC C2 0.079 <0.00001 <0.001
AC C4:1 AC C6:1 0.078 <0.00001 <0.001

LysoPC a C16:0 LysoPC a C18:0 0.077 <0.00001 <0.001
Citrulline Methionine 0.076 <0.00001 <0.001

PC aa C32:2 PC aa C34:4 0.076 <0.00001 <0.001
SM C24:0 SM (OH) C24:1 0.075 <0.00001 <0.001

PC ae C34:2 PC ae C34:3 0.075 <0.00001 <0.001
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Node1 Node2 Estimate r P Raw P FDR

Alanine AC C10:2 0.075 <0.00001 <0.001
AC C16 AC C18:1 0.075 <0.00001 <0.001

PC ae C42:2 PC ae C42:3 0.075 <0.00001 <0.001
PC ae C34:3 PC ae C36:3 0.075 <0.00001 <0.001
PC aa C36:5 PC ae C38:0 0.075 <0.00001 <0.001
PC aa C34:4 PC aa C36:6c 0.074 <0.00001 <0.001
PC aa C38:5 PC aa C40:5 0.074 <0.00001 <0.001
PC ae C40:1 PC ae C42:1 0.074 <0.00001 <0.001

LysoPC a C18:1 LysoPC a C18:2 0.074 <0.00001 <0.001
AC C14 AC C16 0.073 <0.00001 <0.001

PC ae C42:4 PC ae C44:5 0.073 <0.00001 <0.001
LysoPC a C17:0 LysoPC a C18:0 0.073 <0.00001 <0.001

SM C20:2 SM (OH) C22:2 0.072 <0.00001 0.001
SM C24:1 SM C26:1 0.071 <0.00001 0.001
AC C10 AC C12:1 0.071 <0.00001 <0.01

PC aa C40:2 PC aa C42:5 0.071 <0.00001 <0.01
AC C10 AC C10:1 0.071 <0.00001 <0.01

LysoPC a C16:0 LysoPC a C17:0 0.071 <0.00001 <0.01
PC ae C36:3 PC ae C36:4 0.070 <0.00001 <0.01
PC ae C36:5 PC ae C38:6 0.070 <0.00001 <0.01

AC C18:1 AC C18:2 0.070 <0.00001 <0.01
PC aa C38:0 PC ae C38:6 0.070 <0.00001 <0.01

AC C14 AC C14:1-OH 0.069 <0.00001 <0.01
AC C10:1 AC C12:1 0.069 <0.00001 <0.01

PC aa C34:1 PC aa C36:1 0.069 <0.00001 <0.01
PC aa C36:0 PC ae C38:6 0.069 <0.00001 <0.01
PC ae C36:5 PC ae C38:5 0.069 <0.00001 <0.01
PC aa C40:2 PC aa C42:4 0.068 <0.00001 <0.01
PC aa C34:2 PC aa C36:2 0.068 <0.00001 <0.01
PC ae C40:5 PC ae C42:5 0.068 <0.00001 <0.01

LysoPC a C16:1 LysoPC a C20:3 0.068 <0.00001 <0.01
PC ae C34:2 PC ae C36:4 0.068 <0.00001 <0.01
PC ae C40:4 PC ae C44:5 0.068 <0.00001 <0.01

LysoPC a C16:0c LysoPC a C18:1 0.068 <0.00001 <0.01
PC ae C40:4 PC ae C44:4 0.067 <0.00001 <0.01
Kynurenine Tyrosine 0.067 <0.00001 <0.01
PC aa C42:0 PC aa C42:1 0.067 <0.00001 <0.01
PC ae C40:4 PC ae C42:5 0.066 <0.00001 <0.01
PC ae C42:1 PC ae C44:3 0.066 <0.00001 <0.01

AC C16 AC C2 0.066 <0.00001 <0.01
Asparagine AC C10:2 0.066 <0.00001 <0.01
PC aa C42:0 PC ae C44:6 0.066 <0.00001 <0.01

Carnitine Taurine 0.066 <0.00001 <0.01
Carnitine AC C3 0.066 <0.00001 <0.01

PC aa C42:5 PC aa C42:6 0.066 <0.00001 <0.01
Aspartate Ornithine 0.066 <0.00001 <0.01

Acetylornithine Glycine 0.065 <0.00001 <0.01
PC aa C30:0 PC ae C30:0 0.065 <0.00001 <0.01

Acetylornithine AC C4 0.065 <0.00001 <0.01
PC aa C32:3 PC aa C34:3 0.065 <0.00001 <0.01
Glutamine Serine 0.065 <0.00001 <0.01

LysoPC a C18:1 LysoPC a C20:4 0.065 <0.00001 <0.01
PC aa C42:4 PC aa C42:5 0.065 <0.00001 <0.01
PC ae C42:4 PC ae C42:5 0.065 <0.00001 <0.01

AC C4:1 Hexoses 0.065 <0.00001 <0.01
Arginine Histidine 0.064 <0.00001 <0.01

LysoPC a C16:0 LysoPC a C18:2 0.064 <0.00001 <0.01
PC aa C38:5 PC aa C42:6 0.064 0.0001 <0.01

LysoPC a C14:0 LysoPC a C16:1 0.064 0.0001 <0.01
PC aa C38:6 PC ae C38:0 0.064 0.0001 <0.01
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Node1 Node2 Estimate r P Raw P FDR

Arginine Threonine 0.064 0.0001 <0.01
AC C3 AC C6:1 0.064 0.0001 <0.01

PC ae C42:1 PC ae C42:2 0.064 0.0001 <0.01
AC C10 AC C12 0.064 0.0001 <0.01
Alanine Asparagine 0.063 0.0001 <0.01

PC ae C40:3 PC ae C44:4 0.063 0.0001 <0.01
SM C16:1 SM (OH) C22:2 0.063 0.0001 <0.01

PC ae C36:4 PC ae C38:6 0.063 0.0001 <0.01
PC aa C42:0 PC ae C42:5 0.063 0.0001 0.01

LysoPC a C20:3 LysoPC a C20:4 0.062 0.0001 0.01
PC aa C30:0 PC ae C34:0 0.062 0.0001 0.01

AC C16:1 AC C6:1 0.062 0.0001 0.01
PC aa C38:4 PC aa C40:4 0.062 0.0001 0.01

SM C24:0 SM C26:1 0.062 0.0001 0.01
SM C20:2 SM C24:1 0.062 0.0001 0.01
AC C12 AC C14 0.061 0.0001 0.01

PC ae C42:5 PC ae C44:6 0.061 0.0001 0.01
LysoPC a C18:0 LysoPC a C18:2 0.061 0.0001 0.01

Isoleucine Phenylalanine 0.061 0.0001 0.01
AC C14:1-OH AC C7-DC 0.061 0.0001 0.01
AC C14:1-OH AC C18 0.061 0.0001 0.01

AC C16:1 Phenylalanine 0.061 0.0001 0.01
PC aa C40:3 PC aa C42:4 0.061 0.0001 0.01
PC ae C30:0 PC ae C34:0 0.061 0.0001 0.01

AC C14 AC C14:1 0.061 0.0001 0.01
SM C16:0 SM C16:1 0.061 0.0001 0.01
Citrulline Taurine 0.060 0.0001 <0.05

PC ae C38:5 PC ae C38:6 0.060 0.0001 <0.05
PC aa C36:5 PC aa C38:5 0.060 0.0001 <0.05

LysoPC a C18:0 LysoPC a C18:1 0.060 0.0001 <0.05
AC C18 PC aa C42:5 −0.060 0.0001 <0.05

Creatinine PC ae C40:3 −0.062 0.0001 0.01
Carnitine PC aa C32:0 −0.062 0.0001 0.01
Aspartate PC aa C38:4 −0.062 0.0001 0.01
AC C18 SM C20:2 −0.067 0.0000 <0.01

Acetylornitine SM C18:0 −0.068 0.0000 <0.01
Aspartate PC ae C38:4 −0.070 0.0000 <0.01

PC aa, diacyl-phosphatidylcholine; PC ae: acyl-alkyl-phosphatidylcholine; LysoPC a, acyl-lysophatidyl-choline; SM,
sphingomyelin; AC, acylcarnitine.

Appendix D

Table A4. AUCs of six intergenerationally correlated metabolites (mean, SD) in mothers with GDM and
impaired fasting glucose or impaired glucose tolerance and mothers with GDM and normal glucose
tolerance at a median of 8 years after delivery.

Metabolites
(AUC)

Mothers with Impaired
Fasting Glucose or Impaired

Glucose Tolerance

Mothers with Normal
Glucose Tolerance p-Value *

Mean SD Mean (SD)

Carnitine (C0) 294.1 20.6 293.3 20.4 0.7
Creatinine 368.1 19.2 361.5 17.3 0.2

PC ae C34:3 95.9 28.1 105.9 27.5 0.2
476.1 35.9 472.0 39.1 0.6
116.3 22.3 103.4 19.4 0.05
330.1 27.4 334.9 22.0 0.6

* Comparisons were performed by Mann–Whitney U test.
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