
Early onset of renal oxidative stress in small for gestational age newborn pigs
Hitesh Sonia, Taisiya Yakimkovab, Anberitha T. Matthewsa, Paul K. Amarteya, Robert W. Readc, Randal
K. Buddingtona,b,d and Adebowale Adebiyi a

aDepartment of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA; bSchool of Health Studies, University of Memphis,
Memphis, TN, USA; cDepartment of Biological Sciences, University of Memphis, Memphis, TN, USA; dCollege of Nursing, University of Tennessee
Health Science Center, Memphis, TN, USA

ABSTRACT
Objective: Oxidative stress, a common feature in cardiovascular and renal disease is associated with
the causes and consequences of fetal growth restriction. Hence, renal redox status is likely an early
determinant of morbidity in small-for-gestational-age (SGA) infants. In this study, we examined renal
oxidative stress in naturally-farrowed SGA newborn pigs.
Methods: We studied SGA newborn pigs with 52% less body weight and 59% higher brain/liver
weight ratio compared with their appropriate-for-gestational-age (AGA) counterparts.
Results: The kidneys of the SGA newborn pigs weighed 56% less than the AGA group. The glomerular
cross-sectional area was also smaller in the SGA group. SGA newborn pigs exhibited increased renal
lipid peroxidation, reduced kidney and urine total antioxidant capacity, and increased renal
nitrotyrosine immunostaining. Whereas the protein expression level of NADPH oxidase (NOX)2 was
unchanged, NOX4 expression was significantly higher in SGA kidneys. The level of serum potassium
was lower, but serum sodium and creatinine were similar in SGA compared with AGA newborn
pigs. The serum concentrations of C‐reactive protein and NGAL, the biomarkers of inflammation
and early acute kidney injury were significantly elevated in the SGA group.
Conclusion: Early induction of oxidative stress may contribute to the onset of kidney injury in growth-
restricted infants.
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Introduction

Low birth weight due to premature birth or intrauterine
growth restriction (IUGR) is associated with infant and adult
cardiovascular, metabolic, and kidney disorders [1–4]. Small-
for-gestational-age (SGA) newborns exhibit nephron deficit,
which may disrupt renal hemodynamics and contribute to
proteinuria and elevated blood pressure [3,4]. Epidemiological
studies and animal experimentations have also demonstrated
that SGA infants are at higher risks of developing diabetes,
coronary heart disease, chronic kidney disease (CKD), and
hypertension in later life [1–5]. Hence, elucidation of the
mechanisms that underlie progressive organ derangements
in SGA infants is necessary to reduce the burden of infant
and adult cardiovascular morbidity and mortality.

Increased reactive oxygen species (ROS) generation from
the mitochondria, endoplasmic reticulum, and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases (NOX)
have been implicated in intrauterine perturbations, such as
placental insufficiency that may result in IUGR [6–9]. ROS
accumulation promotes trophoblast apoptosis and autop-
hagy and damage to placental vasculature and tissues [10].
Maternal administration of antioxidants protected against
IUGR in rodents [11–14]. The levels of antioxidants were
reduced, whereas, oxidants were increased in the cord
blood of human SGA newborns [15–18]. Also, older children
born at low birth weights are prone to oxidative stress [19–
21]. Chronic treatment with the free radical scavenger
TEMPOL reversed elevated arterial pressure in male [22],

while antioxidant resveratrol promoted recovery from ische-
mia/reperfusion-induced myocardial injury in both male and
female growth-restricted rat offspring [23,24]. These studies
indicate that oxidative stress contributes to the etiology and
consequences of IUGR. However, it remains unclear whether
basal redox status is altered in naturally-occurring SGA fetal
or newborn kidneys.

Human and pig newborn kidneys are comparable in size,
structure, and function [25,26]. Runt pigs reflect full-term
growth-restricted human neonates as they are naturally far-
rowed and can result from uteroplacental dysfunction, imbal-
anced maternal-fetal nutrient supply, or multifetal pregnancy
[27–30]. In the present study, we examined renal oxidative
status in full-term SGA newborn pigs.

Materials and methods

Animals and sample collection

Animal protocols used in this study were approved by the Uni-
versity of Memphis and University of Tennessee Health
Science Center (UTHSC) Institutional Animal Care and Use
Committees. Term vaginally-delivered newborn pigs were col-
lected from a commercial facility with a consistent mixed
strain genetic lineage. SGA (runt) pigs were selected from
multiple litters based on body weights estimated to be 50%
lower than littermates. Additional pigs of appropriate body
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weight (AGA; ∼1.6 kg) were collected from the same litters
and served as controls.

Within ∼12 h after delivery, the pigs were sedated with
Telazol (5 mg/kg) and then anesthetized (isoflurane, 5%) for
the collection of blood by cardiac puncture and subsequent
euthanasia (Euthasol; 1 ml/4.5 kg, IC). Urine was collected
directly from the bladder post-mortem, and both kidneys
were harvested. Serum and urine samples were stored at -80 C.

Renal oxidative stress determination

Lipid peroxidation in the kidneys was evaluated with the thio-
barbituric acid reactive substances (TBARS) kit (Cayman
Chemical; Ann Arbor MI, USA; catalog number 700870). Mal-
ondialdehyde (MDA) levels were measured in kidney
samples that were homogenized in RIPA buffer as we have
previously described [31]. The data were normalized to
protein concentrations. Urine and kidney total antioxidant
capacity was determined using the Cayman Chemical’s anti-
oxidant assay kit (catalog number 709001). Total kidney anti-
oxidant capacity was also normalized to protein
concentrations. Nitrotyrosine was immunostained in kidney
sections with a rabbit polyclonal antibody (Abcam Inc. Cam-
bridge, MA; ab42789). Images were acquired from ran-
domly-selected fields using a Zeiss LSM 710 confocal
microscope and were analyzed using the ImageJ software
(NIH, Bethesda, MD USA).

Western blot

SDS-polyacrylamide gel electrophoresis was performed as we
have previously described [31–33]. Briefly, proteins were sep-
arated by 4–20% ExpressPlus PAGE Gel (GenScript Corpor-
ation, Piscataway, NJ) in a Mini Trans-Blot Cell (Bio-Rad) and
transferred onto PVDF membranes using a Pierce Fast Semi-
Dry Blotter (Life Technologies, Grand Island, NY, USA).
Immunoreactive protein blots were visualized and documen-
ted using a gel documentation system (Bio-Rad, Hercules, CA).
Protein band intensities (normalized to beta-actin) were ana-
lyzed by digital densitometry (Quantity One software; Bio-
Rad). NOX2 (ab129068) and NOX4 (ab133303) antibodies
were purchased from Abcam.

Serum electrolytes and biomarker assays

Serum concentrations of sodium and potassium were quan-
tified using the fully-automated X•pedite ion-selective elec-
trode veterinary electrolyte analyzer (DiaSys Diagnostic
Systems, USA, LLC; Wixom, MI). The serum level of nitrogen-
ous waste product creatinine was determined at the UTHSC
Regional Biocontainment Lab using the respons 910 veterin-
ary chemistry analyzer (DiaSys). All analyses were performed
following manufacturers’ instructions. Serum concentrations
of neutrophil gelatinase-associated lipocalin (NGAL) and C-
reactive protein (CRP) were quantified using porcine-specific
NGAL (Abcam, Cambridge UK; catalog number ab207924)
and CRP (Immunology Consultants Laboratory, Portland OR
USA; catalog number E-5CRP) ELISA kits.

Histology

Formalin-fixed kidney samples were processed into paraffin,
cut at 5 µm, and stained with hematoxylin and eosin (H&E)

and Periodic acid-Schiff (PAS) kits in a commercial lab (Mass
Histology Services, Worcester, MA). The samples were evalu-
ated for potential differences in side-by-side comparison by
a certified veterinary pathologist. Both H&E- and PAS-
stained slides were evaluated in comparison of SGA and
AGA renal histology. The sections were imaged using a
Nikon Ci microscope, 20x Plan APO objective, Fi2 camera
(2560 × 1920-pixel jpeg images) and Nikon NIS Elements soft-
ware. Image calibration was performed with a stage
micrometer and glomeruli were measured using Adobe
PhotoShop software. Between the outer immature cortex
and the medulla, 7 random images were collected per
section and all recognizable glomeruli were measured
unless they touched image margins or were tangential. To
measure the approximate average cross-sectional area, the
largest 5 values were excluded as outliers and the next
largest 25 values, in each group, were compared.

Data analysis

Statistical analysis was performed using the GraphPad InStat
statistics software (Graph Pad, Sacramento, CA). Data were
compared using the Student’s t-tests for paired or unpaired
data and analysis of variance with the Student-Newman-
Keuls test for multiple comparisons. All data are reported as
mean ± standard error of mean (SEM). Differences between
data sets were considered significant when the P value is
less than 0.05.

Results

All SGA pigs were as active as AGA littermates, and none had
any evidence of infection or respiratory distress. Figure 1 sum-
marizes the mean body and kidney weights of AGA and SGA
newborn pigs. Body weights averaged 52% lower for SGA pigs
(Figure 1(a)). Mean brain to liver weight ratio was higher in the
SGA group (Figure 1(b)). There were no differences in the
weights of the right versus left kidneys in each group
(Figure 1(c)). The weights of the right and left kidneys were
∼54% and 57% less, respectively in SGA compared with
AGA newborn pigs (Figure 1(c)). However, the kidney to
body weight ratio was comparable in both groups, indicating
that differences in kidney weights were related to body
weight variances (Figure 1(d)).

Renal histology revealed trends of slightly greater imma-
turity and glomerular hypercellularity in the SGA group. The
SGA group also showed marginally thicker immature cortex,
and the AGA group showed somewhat taller epithelium in
the collecting ducts. However, the two groups overlap
broadly, and these features were not unique discriminators.
There was no evidence of glomerular or tubular damage in
AGA versus SGA pig kidneys (Figure 2(a)). However, the glo-
merular cross-section area was smaller (∼9%) in SGA
newborn pigs (Figure 2(a) and (b)).

The lipid peroxidation product, MDA was increased ∼ 2-
fold in SGA kidney lysates (Figure 3(a)). To further evaluate
the redox status of the newborn pig kidneys, we determined
the renal total antioxidant capacity, a measure of the cumulat-
ive effect of antioxidants [34]. As shown in Figure 3(b) and (c),
the kidney and urine total antioxidant capacity was signifi-
cantly reduced in SGA pigs. Immunofluorescence staining
indicated that nitrotyrosine, a marker of peroxynitrite, was
essentially absent in AGA kidney sections (Figure 3(d) and
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(e)). However, SGA kidneys showed robust immunostaining
for nitrotyrosine (Figure 3(d) and (e)).

NOX2 and 4 are major sources of ROS in the kidney [35].
Hence, we investigated whether the expression levels of the
enzymes are altered in the kidneys of SGA newborns.
Western blotting indicated that NOX2 was unchanged;
whereas, NOX4 expression was increased ∼3-fold in kidney
samples of SGA compared with AGA pigs (Figure 4).

Serum sodium concentration was similar in both
groups, but the level of serum potassium was lower in
the SGA newborn pigs (Figure 5(a) and (b)). Serum creati-
nine was slightly higher in SGA pigs but did not reach
statistical significance (Figure 6(a)). By contrast, serum con-
centrations of NGAL and CRP were significantly elevated
∼1.5-fold and 4-fold, respectively in the SGA group
(Figure 6(b) and (c)).

Figure 1. Bar graphs summarizing (a) body weights, (b) brain to liver weight ratio, (c) kidney weights, and (d) kidney to body weight ratio of AGA and SGA newborn
pigs (n = 5 each). *P < 0.05 vs. AGA.

Figure 2. (a) Kidney section images (PAS staining) and (b) bar graphs showing the mean glomerular cross-sectional area in AGA and SGA newborn pigs (n = 5 each).
*P < 0.05 vs. AGA; scale bar = 50 µm.
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Figure 3. Bar graphs summarizing (a) the levels of malondialdehyde (MDA; n = 5 each), (b) kidney total antioxidant capacity (n = 5 each), and (c) urine total anti-
oxidant capacity (n = 4 each) in SGA compared with AGA newborn pigs. (d) Confocal microscopy images showing immunostaining of nitrotyrosine in AGA and SGA
newborn pig kidney sections. (e) bar graphs of mean fluorescence density in AGA and SGA newborn pig kidney sections immunostained for nitrotyrosine (NT); *P <
0.05 vs. AGA. Scale bar = 50 µm.

Figure 4. (a) and (b) Western blot images and (c) and (d) bar graphs demonstrating protein expression levels of NOX2 and NOX4 in the kidneys of AGA (n = 4) and
SGA (n = 5) newborn pigs. Data were normalized to AGA; *P < 0.05 vs. AGA.
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Discussion

We used naturally occurring growth-restricted newborn pigs
to investigate basal renal oxidative status in SGA newborns.
We show that the average kidney weight of the SGA
newborn pigs was about half of the AGA group and related
to body weight differences. Furthermore, the SGA newborn
pigs exhibited higher renal lipid peroxidation, lower renal
antioxidant capacity, and higher expression levels of renal
nitrotyrosine and NOX4. Moreover, the serum concentrations
of inflammation and kidney injury biomarkers CRP and NGAL
were significantly higher in SGA when compared with AGA
newborn pigs. Our data suggest that early oxidative stress
may contribute to the onset of kidney injury in SGA infants.
As the pigs were littermates, the differences are attributed
to the consequences of being SGA.

Previous morphometric analyses indicated that runt pigs
display similar characteristics to human asymmetric IUGR
with a hallmark of increased mean brain to liver weight
ratio [36], a fact corroborated in this study. Growth-restricted
pigs also exhibited nephron deficits and impaired glomerular
filtration rate (GFR) [36,37]. Here, we demonstrate that the
mean glomerular cross-sectional area was slightly, but signifi-
cantly lower in SGA compared with AGA newborn pigs.
Although a reduction in nephron numbers may result in com-
pensatory glomerular hypertrophy as SGA neonates mature
[38], nephron and filtration surface area deficits may contrib-
ute to a decline in glomerular filtration within the first week of
life of the SGA newborns. Morphological and functional
changes in the immature SGA kidneys may promote local
stressors and set the stage for an unfavorable course of cardi-
ovascular and renal disease.

ROS, including superoxide anion, hydroxyl radical, and
hydrogen peroxide are produced by several mechanisms,
including cellular respiration and enzymatic reactions
[39,40]. Although at low levels, endogenously generated
ROS are involved in cellular signaling mechanisms that regu-
late homeostasis. Amplified ROS production overwhelms anti-
oxidant defense systems resulting in oxidative stress [39,40].
Oxidative stress induces cellular injury and plays a significant

role in the pathophysiology of cardiovascular disease, includ-
ing hypertension, atherosclerosis, myocardial infarction, and
congestive heart failure [40,41]. Increased generation of reac-
tive oxygen and nitrogen species in the kidney dysregulates
renal hemodynamics and induces renal cell death [31,42–
45]. Redox-mediated renal insults may also be involved in
the initiation of systemic hypertension [44,46,47]. To prevent
oxidative stress, cellular redox state is fine-tuned during
fetal growth [48,49]. However, intrauterine stressors, including
abnormal nutritional supply, prenatal hypoxia, and fetotoxic
drugs may alter fetomaternal hemodynamics and fetal
growth thereby engendering perinatal organ dysfunctions
and their short- or long-term sequelae [48,50]. Data presented
herein demonstrate elevated renal oxidative stress in SGA
newborn pigs as evidenced by increased levels of renal lipid
peroxidation and nitrotyrosine (an index of peroxynitrite-
dependent oxidative damage), as well as attenuated kidney
and urine total antioxidant capacity. This study does not elu-
cidate specific oxyradicals and related species that are
increased in the kidneys of growth-restricted newborn pigs.
However, our findings indicate that renal oxidative stress
manifests early in SGA infants.

The seven-member NOX family (NOX1-5 and DUOX1 and
DUOX2) are key enzymes that catalyze cellular ROS-generat-
ing reactions [51,52]. NOX2 and NOX4 are the predominant
isoforms in the kidney and are expressed in fibroblasts and
vascular, glomerular, and tubular cells [35,53]. Upregulation
of renal NOX2 or NOX4 or both have been implicated in
acute kidney injury (AKI) and CKD [35,53]. Unlike NOX2,
Western immunoblotting revealed that expression of NOX4,
a regulator of peroxynitrite signaling [54–56], is increased in
the kidneys of SGA newborn pigs. These data suggest NOX4
contributes to renal oxidative stress in the pigs. The mechan-
isms that trigger the increased expression of NOX4 in SGA
newborn kidneys are unclear. However, studies have shown
that angiotensin II (Ang II) induces NOX isoforms in a variety
of tissues and organs, including kidneys which may contribute
to hypertension [35,53]. Interestingly, Ang II type 1 receptor
expression levels were found to be upregulated in the
kidneys of SGA pigs [57]. The plasma concentration of Ang II
has also been shown to be elevated in growth-restricted
newborn human and lambs [58–60]. Conceivably, amplified
renin-angiotensin system controls renal NOX expression and
activity in SGA infants.

Growth-restricted newborns exhibit electrolyte imbalance
and hallmarks of AKI [61–63]. Here, we show that the serum
concentration of sodium was unchanged in SGA newborn
pigs, which is consistent with previously reported normal frac-
tional sodium excretion [37]. However, the SGA newborn pigs
in this study exhibited hypokalemia. Serum creatinine concen-
tration, a poor biomarker of early stages of AKI was not altered

Figure 5. Bar graphs summarizing serum concentrations of (a) sodium, (b) pot-
assium in AGA and SGA newborn pigs (n = 5 each); *P < 0.05 vs. AGA.

Figure 6. Bar graphs summarizing serum levels of (a) creatinine (Cr), (b) NGAL, and (c) C-reactive protein (CRP) in AGA and SGA newborn pigs (n = 5 each); *P < 0.05
vs. AGA.
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in SGA newborn pigs. Histopathology data revealed a lack of
apparent kidney damage in SGA newborn pigs, but an
increase in the serum level of NGAL, an early predictor of
AKI [64], suggests the onset of AKI in the pigs. Although
serum and urinary NGAL are effective biomarkers of early
AKI, an increase in NGAL levels can also occur in acute and
chronic inflammation [65]. The elevated serum CRP observed
in the SGA group indicates the presence of systemic inflam-
mation. Moreover, CRP has not only been shown to cause
kidney injury, but its circulating levels are also increased in
AKI and CKD [66–68]. Since oxyradical generation and renal
inflammation are both involved in the initiation and pro-
gression of kidney injury, possible pathophysiology mechan-
isms of early renal insults in growth-restricted newborns
may include a crosstalk between renal oxidative stress and
inflammation.

In summary, we provide evidence of early renal oxidative
stress and kidney injury in SGA newborn pigs. As the
kidneys are involved in the long-term control of homeostasis,
more studies using naturally-occurring large animal models of
IUGR are needed to understand progressive renal dysfunction
in growth-restricted infants and possible preemptive thera-
peutic approaches to mitigate the development of short-
and long-term cardiovascular and renal disease.
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