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Previous behavioural studies have shown that repeated presentation of a

randomly chosen acoustic pattern leads to the unsupervised learning of

some of its specific acoustic features. The objective of our study was to deter-

mine the neural substrate for the representation of freshly learnt acoustic

patterns. Subjects first performed a behavioural task that resulted in the

incidental learning of three different noise-like acoustic patterns. During

subsequent high-resolution functional magnetic resonance imaging scan-

ning, subjects were then exposed again to these three learnt patterns and

to others that had not been learned. Multi-voxel pattern analysis was used

to test if the learnt acoustic patterns could be ‘decoded’ from the patterns

of activity in the auditory cortex and medial temporal lobe. We found that

activity in planum temporale and the hippocampus reliably distinguished

between the learnt acoustic patterns. Our results demonstrate that these

structures are involved in the neural representation of specific acoustic

patterns after they have been learnt.
1. Introduction
As humans we are constantly bombarded with sounds, many of which can be

identified and assigned a semantic label. However, before a label is assigned,

the auditory system must first learn a ‘template’ corresponding to the specific

acoustic structure. Although a number of brain imaging studies [1–4] have

highlighted the brain system which represents the meaning of sounds, key

questions remain as to how the brain learns novel acoustic patterns, and

whether a specific mechanism exists for the storage of acoustic patterns per se.

Behavioural studies have shown that repeated presentation of complex

acoustic patterns results in the learning of templates. In a series of studies

[5–7], subjects were presented with either a 1 s sample of white noise (noise

condition, N) or two identical and seamlessly abutting 0.5 s samples of white

noise (repeated noise condition, RN). For both RN and N stimuli, samples of

white noise were generated anew from trial to trial. However, without this

being mentioned to subjects, there was in fact a third type of trials: one particu-

lar exemplar of repeated noise was presented over several trials, randomly

interspersed throughout an experimental block. These trials (reference repeated

noise, RefRN) were thus initially drawn from the same process as RN but,

unlike RN, they were acoustically identical across several trials. The task

assigned to subjects was to report the presence or the absence of repetition

within the noise: after each trial, they pressed one button (‘yes’) if they heard

a repetition and another button (‘no’) if not. The main result was that perform-

ance was considerably better for the RefRN stimuli than for the RN stimuli.

Since the only difference between RefRN and RN was that RefRN was heard
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over several trials, the improved performance could be attribu-

ted to the learning of a template for RefRN. The learning

process was fast, robust and unsupervised. Furthermore, learn-

ing appeared to be largely implicit: even though this was

not systematically quantified, the majority of subjects seemed

unaware that the same sound had been presented over differ-

ent trials. Using a different paradigm, McDermott et al. [8]

showed that when a fixed acoustic pattern mixed with other

randomly chosen acoustic patterns is repeatedly presented,

segregation of the fixed acoustic pattern from other patterns

could be achieved. This is also consistent with a learning of

random patterns through repeated exposure.

Given the suggested importance of repeated exposure for

auditory learning, we sought specific brain representations of

acoustic patterns following repeated exposure. We used high-

resolution functional magnetic resonance imaging (fMRI)

and multi-voxel pattern analysis (MVPA). Subjects were

first exposed to three acoustic patterns, among many other

highly similar patterns, to induce learning of the specific pat-

terns. During subsequent fMRI scanning, subjects were again

exposed to the three learned spectro-temporal patterns, along

with other novel patterns that shared their average spectro-

temporal characteristics. MVPA was used to test if the three

exemplars could be ‘decoded’ from the patterns of activity

in the brain.

Given evidence for the involvement of primary auditory

cortex in storing long-term representations of specific audi-

tory experiences [9–11], we hypothesized that Heschl’s

gyrus (HG), which contains primary auditory cortex, would

be involved. We also predicted that areas of non-primary/

associative areas of auditory cortex would also be recruited.

Specifically, we predicted engagement of planum temporale

(PT) which has been hypothesized to be involved in the gener-

ation of acoustic ‘templates’ at a stage before semantic

processing [12] and superior temporal sulcus (STS), which has

been shown to store long-term memories for sounds [13,14].

We also hypothesized that structures in the medial temporal

lobes (MTLs) would be crucial. In addition to hippocampus

(HC), which has been shown to have a role in long-term

memory for sounds [15,16], we also speculated that entorh-

inal/perirhinal cortex (EPC) and parahippocampal cortex

(PHC), both of which receive dense input from the non-primary

auditory areas [17], may be involved.
2. Material and methods
(a) Participants
Seven healthy subjects (two females, mean age ¼ 22.85 years,

s.d. ¼ 1.67 years, range ¼ 20–24 years) with no prior history of

neurological and psychiatric disorders participated in the

study. All subjects completed a consent form and were paid for

their participation.

(b) Stimuli
The stimuli were ‘tone clouds’. These are noise-like stimuli with

a coarser spectro-temporal structure than white noise that allows

them to be perceived easily under scanning conditions [18]. The

stimuli consisted of multiple brief tones (50 ms) at random fre-

quencies spanning a range from 100 to 10 000 Hz, with

random onset times. Specifically, the time-frequency plane was

divided into non-overlapping frequency channels and time win-

dows (figure 1). For each cell in the resulting grid, a pure tone
was generated with random onset time and random frequency

within the cell. This allows the matching of long-term spectrum

and temporal envelope for all tone clouds on average. There

were two frequency channels per octave and 50 ms per time

window. The stimuli were 1.5 s in duration and comprised

either three identical and contiguous 0.5 s tone clouds (repeated

tone cloud, RTC) or three different and contiguous 0.5 s tone

clouds (non-repeated tone cloud, NTC). Both RTC and NTC

stimuli were generated anew for each trial. Without the subjects’

knowledge, however, one exemplar of a repeated tone cloud

(reference tone cloud, RefTC) remained the same from trial to

trial. That is, for the RefTC stimulus not only the same burst

of tone cloud was repeated (three times) within a trial, but

also the exact same exemplar reoccurred over several trials.

The trials consisting of RefTC stimuli were presented randomly

among trials of RTC and NTC. A RefTC stimulus was drawn

from the same statistical process as any other RTC; the only

difference was that the same exemplar of RefTC was presented

across different trials.

(c) Training
The training paradigm was similar to that employed in [5].

A single trial consisted of the presentation of a single stimulus

(either of RefTC, RTC or NTC category, chosen randomly).

After listening to the stimulus, the task of the subject was to

detect repetitions in the stimulus by pressing one button if the

tone cloud stimulus repeated within a trial and pressing another

if no repetition was detected (figure 1). A single training block

consisted of 20 trials each of RefTC, RTC and NTC stimuli.

Three separate blocks of training were used, each consisting of a

different exemplar of RefTCs. The RefTC trials were pseudoran-

domly mixed with trials of RTC and NTC such that RefTC

stimuli never occurred on successive trials. All training occurred

inside the MRI scanner while it was running in order to create

the same conditions during learning as during subsequent testing.

Given the repeated exposure to the identical spectro-temporal

structure of the RefTC stimuli (compared to the variable spectro-

temporal structure from trial to trial of the RTC), subjects were

expected to form memories of the RefTCs which would be

reflected in a better performance on repetition detection for

RefTC compared to RTC.

(d) Testing during scanning
After training in the MRI scanner, subjects were tested in a single

session consisting of 20 trials each for the three trained RefTC exem-

plars randomly presented with 60 trials of RTC and 120 trials of

NTC (which were generated anew). The task was the same as

during training: on each trial after listening to a 1.5 s long stimulus,

subjects indicated by button presses if the stimulus was repeated.

The inter stimulus interval was 3 s. While the subjects were being

tested, high-resolution fMRI data were continuously acquired.

These data were our main focus and were analysed using MVPA.

After the acquisition of functional data, a high-resolution structural

scan was acquired in the same session. After the MRI scanning,

listeners were debriefed by means of a questionnaire. In particular,

a question was asked as to whether they thought that any of the

sounds recurred during the experiment. One listener said yes,

one said some and the remaining five said no.

(e) Magnetic resonance imaging data acquisition
All imaging data were acquired on a Siemens 3 T Allegra head only

scanner operated with a standard transmit-receive head coil. Func-

tional data (T2* weighted) were continuously acquired using

single-shot high-resolution echo-planar imaging sequence (in-

plane resolution ¼ 1.5 � 1.5 mm2, field of view ¼ 192 � 192 mm,

matrix ¼ 128 � 128, echo time (TE) ¼ 30 ms, asymmetric echo
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Figure 1. (a) Schematic of a tone cloud stimulus. Each stimulus consisted of brief tone pips at random frequencies (with two channels per octave) and random
onset times. (b) Illustration of the stimuli and task. The NTC stimuli were formed by concatenating three (0.5 s each) segments of tone cloud. The RTC consisted of
three repetitions of a single tone cloud segment of 0.5 s. Both NTC and RTC were generated anew for each trial. The RefTC also consisted of three repetitions of a
single segment of 0.5 s but, importantly, the same stimulus was used for all trials. In the experiment, subjects were presented with a single stimulus and the task
was to detect repetitions in the stimulus by pressing one button if repetitions were detected and another if no repetitions were detected.
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shifted forward by 26 phase-encoding lines, echo spacing ¼

560 ms). Forty-two interleaved slices, repetition time (TR) 4.2 s,

covering auditory cortex (HG, PT), STS and structures in the

MTL (HC, PHC and EPC) were acquired. For correction of distor-

tions in the magnetic field, field maps were acquired with a

standard manufacturer’s double-echo gradient echo field map

sequence (TE ¼ 10.0 and 12.46 ms, TR ¼ 1020 ms, matrix size ¼

64 � 64) with 64 slices covering the whole head (voxel size ¼

3 mm isotropic). A high-resolution T1-weighted structural MRI

scan (voxel size ¼ 1 mm isotropic) was also acquired for each

participant after the functional data collection.

( f ) Pre-processing of functional magnetic resonance
imaging data

Pre-processing of the fMRI data was carried out using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/). After discarding the

first six volumes to allow for magnetic saturation effects, the remain-

ing images were realigned to correct for movement of subjects

during scanning. The images were then minimally smoothed with

a 3 mm full width at half maximum Gaussian kernel. Each trial

was modelled as a separate regressor where the listening time of

each trial was modelled as an event and convolved with the

canonical haemodynamic response function. Participant-specific

movement parameters were included as regressors of no interest.
(g) Region of interest segmentation
The structural scan of each participant was manually segmen-

ted using ITK-SNAP 2.2 [19] to delineate six regions of interest:

HG, PT, STS, HC, PHC and EPC. Examples of segmentations

for PT and HC are shown in figure 2. Segmentation of a struc-

ture in each hemisphere was done based on the landmarks and

boundaries of that structure in an individual hemisphere.

Volumes of HG and PT were defined using the definitions of

borders developed in [20,21]. The anterior border of the HG was

defined by the complete transverse sulcus (TS), whereas the pos-

terior border was defined using the complete Heschl’s sulcus

(HS). If there was a repetition of HG, only the anterior gyrus

was considered and the posterior was included as part of PT.

The postero-medial boundary of the HG was drawn on the

axial section by drawing a line from the medial end of TS to

the medial end of HS. The lateral boundary of the HG was

defined by the termination of HG at the lateral surface of the

superior temporal gyrus. The inferior boundary was demarcated

in coronal section by noting the stem of HG in that section.

For segmenting PT, the posterior border of HG (Heschl’s

sulcus) was taken as the anterior border of PT. The markers for

the posterior boundary of PT are not well established, because

in most cases the posterior end of the sylvian fissure bifurcates

into ascending and descending rami, the pattern of which varies

across subjects [21]. There is no consensus on whether the

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Figure 2. Examples of segmented ROIs. Shown on sagittal (upper and
middle panel) and coronal (lower panel) sections from a subject chosen at
random. HCL, left hippocampus; HCR, right hippocampus; PTL, left planum
temporale; PTR, right planum temporale.
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posterior end of PT is limited to the posterior end of the horizontal

portion of sylvian fissure [22,23] or extends all the way up to the

end-point of the ascending ramus (which could cover a part of the

parietal lobe [21]). In this study, we chose the latter option.

For STS, both upper and lower banks were marked on the

coronal section. In subjects where the STS was interrupted by

short gyri (‘plis de passage’, [24]) and ascended to the parietal

lobe, all parts (anterior, middle, posterior, ascending anterior

and ascending posterior, [24]) were included in the STS volume.

Hippocampal anatomy was identified using the Duvernoy HC

atlas [25]. The EPC and PHC were segmented according to the

protocol described in [26]. Mean volumes (in cubic millimetre,

summed across both hemispheres) and standard deviations (SD)

for the region of interests (ROIs) were as follows: HC 4188.8

(472.97), EPC 5026.04 (488.71), PHC 1799.29 (256.69), HG 2317.93

(521.93), PT 3967.07 (719.66) and STS 14396.07 (2476.29).

We initially used standard univariate analyses to interrogate

the data, but did not find any significant difference in the mean

activity evoked by the three RefTC stimuli in any part of the

brain. We therefore focused on using MVPA which we believed

would have increased sensitivity in our experimental context.
(h) Multi-voxel pattern analysis
A linear support vector machine (SVM) classifier was created for

each ROI. Each classifier was trained on a portion of the fMRI

data relating to the three different exemplars of RefTCs and then

tested on an independent set of instances of these exemplars.

We used a standard MVPA procedure that has been

described in detail elsewhere [27,28] (for an in depth review,

see [29]). The overall classification procedure involved splitting

the fMRI data into two segments: a ‘training’ set used to train

a classifier with fixed regularization hyperparameter C ¼ 1, and

a ‘test’ set used to independently test the classification perform-

ance using a standard 10-fold cross-validation testing procedure.

This therefore generated 10 sets of SVM training and test sets that
produced overall classification accuracy from the proportion of

correct classification ‘guesses’ across all 10-folds of the cross-

validation. The classification was performed using the LIBSVM

implementation [30]. Prior to multivariate classification, feature

selection [31] was performed on the data from the training set.

This was conducted using a standard multivariate searchlight

strategy within the given ROI.

(i) Feature selection for multi-voxel pattern analysis
The purpose of feature selection is to reduce the set of features (in

this case, voxels) in a dataset to those most likely to carry relevant

information. This is effectively the same as removing voxels most

likely to carry noise and is a way of increasing the signal-to-noise

ratio. This was conducted using a standard multivariate search-

light strategy within the given ROI. For a given voxel, we first

defined a small sphere with a radius of three voxels centred on a

given voxel [27,32,33]. Note that the spheres were restricted so

that only voxels falling within the given ROI were included. There-

fore, the shape of the sphere and the number of voxels within it

varied depending on the proximity to the ROI’s borders. This pro-

cedure then allowed the selection of the searchlight voxel set that

contained the greatest degree of decoding information within

the training dataset. Using this voxel subset, the SVM classifier

was trained to discriminate between the three RefTCs using the

‘training’ dataset, and tested on the independent ‘test’ dataset.

Standard SVMs are binary classifiers that operate on two-class

discrimination problems, whereas our data involved a three-class

problem (i.e. three exemplars). The SVM can, however, be arbitra-

rily extended to work in cases in which there are more than two

classes. Typically, this is done by reducing the single multiclass

problem into multiple binary classification problems that can be

solved separately and then recombined to provide the final class

prediction [34]. We used the well-established error correcting

output codes approach [35] and computing of the Hamming

distance [27,32,36]. The classifier accuracy values for each

brain region were compared to chance, which in this case was

33% as we were classifying between three exemplars. Given

that we were interested in whether results were significantly

above chance, one tailed t-tests were used. Repeated measures

ANOVAs were used to compare accuracy values between regions,

and subsequently interrogated using two-tailed paired t-tests. A

threshold of p , 0.05 was employed throughout. Since the training

phase and the testing phase used different paradigms (during

training separate RefTCs were presented in different blocks and

in testing the three learned exemplars of RefTCs were presented

in the same block), the fMRI data from the training phase were

not analysed, and we focused on our main question of where the

learned RefTCs were represented.
3. Results
(a) Behavioural performance
Behavioural performance during training and testing is shown

in figure 3. There was a significant effect of stimulus on perform-

ance during training (F3,18¼ 7.08, p ¼ 0.002). Post hoc analysis

showed that dprimes for the three RefTC were greater than

RTC (RefTC-1 . RTC: t6 ¼ 2.93, p ¼ 0.02; RefTC-2 . RTC:

t6 ¼ 5.12, p ¼ 0.002; RefTC-3 . RTC: t6 ¼ 2.97, p ¼ 0.02). Per-

formance on the three RefTC did not differ significantly.

Analysis of behavioural performance during testing showed

a significant effect of stimulus on dprimes (F3,18¼ 8.98, p ¼
0.001). Post hoc comparison revealed better performance

on all the RefTC stimuli compared to RTC (RefTC-1 . RTC,

t6 ¼ 3.96, p ¼ 0.007; RefTC-2 . RTC, t6 ¼ 4.30, p ¼ 0.005;

RefTC-3 . RTC, t6 ¼ 5.43, p ¼ 0.001). Thus, consistent with
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previous findings [5,6,37], the behavioural data show learning of

spectro-temporal patterns that are repeatedly presented during

the course of the experiment. The novel question we then

addressed was where in the brain these RefTCs were represented.
(b) Multi-voxel pattern analysis
Using MVPA we examined whether it was possible to discrimi-

nate which of the three RefTC stimuli was being heard solely

from the pattern of activity across voxels in our ROIs. For

each ROI, a linear SVM classifier was first trained on a portion

of the fMRI data relating to the three RefTC stimuli and

then tested on an independent set of trials of these stimuli. If

information was present in the patterns of fMRI activity that

would allow for successful discrimination between the three

stimuli, then the classifier would produce a result that was sig-

nificantly above chance (33%). There was no statistically

significant difference between the classification accuracies of

left and right hemispheres (HC: t6 ¼ 0.465, p ¼ 0.658; EPC:

t6 ¼ 21.666, p ¼ 0.147; PHC: t6 ¼ 20.511, p ¼ 0.628;

HG: t6 ¼ 21.384, p ¼ 0.216; PT: t6 ¼ 21.532, p ¼ 0.177; STS:
t6 ¼ 0.789, p ¼ 0.460) and therefore the reported data are

collapsed across hemispheres.

Classification accuracy for the six ROIs is shown in figure 4.

Only two regions, HC and PT, showed performance above

chance: (HC: t6 ¼ 2.711, p ¼ 0.018; EPC: t6 ¼ 0.188, p ¼ 0.43;

PHC: t6 ¼ 0.117, p ¼ 0.46; HG: t6 ¼ 0.620, p ¼ 0.28; PT: t6 ¼

5.106, p ¼ 0.001; STS: t6 ¼ 1.715, p ¼ 0.07). A repeated measu-

res ANOVA showed a significant effect for region (F5,30¼

3.271, p ¼ 0.018), which was driven by more information

being present in the HC when compared with HG (HC . HG:

t6 ¼ 2.765, p ¼ 0.033) as well as more information present

in PT when compared with HG, EPC and PHC (PT . HG:

t6 ¼ 4.182, p¼ 0.006; PT . EPC: t6 ¼ 3.059, p ¼ 0.022; PT .

PHC: t6 ¼ 3.291, p¼ 0.017). Classification accuracy in the

STS was almost significant (see above) and did not differ signi-

ficantly from either PT (t6 ¼ 1.91, p¼ 0.11) or HC (t6 ¼ 0.25,

p ¼ 0.81).

To ensure that the classifiers were unbiased and that

classification was based on unique representations for

each of the three RefTCs, we ran a control analysis in which

we randomly shuffled (from trial to trial) the labels of the

three RefTCs. The classifiers were trained and tested as

above. As expected, the performance of the classifier drop-

ped to chance level for all the brain regions (HC:

t6 ¼ 20.341, p ¼ 0.628; EPC: t6 ¼ 0.735, p ¼ 0.245; PHG:

t6 ¼ 1.047, p¼ 0.168; HG: t6 ¼ 0.392, p¼ 0.354; PT: t6 ¼ 0.109,

p ¼ 0.459; STS: t6 ¼ 20.147, p ¼ 0.557).

To further confirm that classification of RefTCs was based

on stable representations (owing to the repeated presentation

of the same exemplars), we ran a second control analysis. In

this analysis, we divided the 60 RTC trials randomly into

three classes and performed the same classification analysis.

Since a different exemplar is presented in every trial of RTC,

representation of RTC changes from trial to trial. It is therefore

expected that the classifier should not be able to classify the

RTC stimuli significantly better than chance. As predicted,

the classifier performance was at chance for all ROIs, (HC:

t6 ¼ 20.058, p ¼ 0.955; EPC: t6 ¼ 20.421, p ¼ 0.689; PHG:

t6 ¼ 0.953, p ¼ 0.377; HG: t6 ¼ 1.365, p ¼ 0.221; PT:

t6 ¼ 20.174, p ¼ 0.868; STS: t6 ¼ 20.316, p ¼ 0.763).
4. Discussion
As in Agus et al. [5], the behavioural data in our study revealed

better performance on repeated exemplars compared to per-

formance on non-repeated exemplars confirming learning

of acoustic patterns. Importantly, the repeatedly presented

stimuli (RefTCs) and the non-repeated stimuli (RTC) were

well balanced with respect to acoustic parameters. The key

difference between the two conditions was in terms of exposure

over the course of the experiment. Subjective reports from the

participants after the experiment showed that most were not

aware of any stimulus re-occurring during the experiment,

suggesting that in some cases the learning occurred implicitly.

We found that patterns of activity across voxels in PT, but

not in HG, could distinguish between the three learned acous-

tic patterns. We speculate that this might reflect a type of

representation within PT that is not a simple representation

of acoustic pattern but a more refined representation that

requires interaction with HC (see below). The availability of

pattern specific information in the PT is consistent with a role

as a computational hub [12], where spectro-temporal patterns
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are matched with learned patterns that are stored beyond the

auditory cortex. Our results showing the involvement of audi-

tory cortex in the storage of long-term representations of

stimuli without semantic association is consistent with a

recent magnetoencephalography study [37] that showed differ-

ent phase patterns for different noise exemplars that had been

learnt, suggesting a specificity of the representation for a given

pattern. However, compared to the results in [37], our results

are more specific with respect to the areas of auditory cortex

involved in storing pre-semantic-specific templates.

Our results show that HC is involved in representations of

RefTC stimuli that are unique to each exemplar of RefTC.

Although HC is known to be involved in processing of complex

and meaningful sounds [15,38], to the best of our knowledge,

our study is the first to demonstrate the encoding of noise-

like acoustic patterns in the HC. There are some studies in the

visual domain [39] which showed sensitivity of the HC to

changes in low-level perceptual features (e.g. change in font

size of displayed letters). The results of our study further

extend these results by showing that the HC is not only sensitive

to low-level features of stimuli that are explicitly recalled, but

also constructs representations that are specific to acoustic

features which are learned implicitly.

Our results also showed that the classifier performance

was close to significant ( p ¼ 0.07) for the STS region. This

lack of significance may be owing to the low power of our

study, so a role for STS in the learning of novel acoustic pat-

terns cannot be ruled out. The STS is a broad region which

has been implicated in a wide range of unimodal and multi-

modal functions (for review, see [40]). From the auditory

perception point of view, converging evidence from neuroi-

maging studies show that STS is involved in categorical

perception of speech [13] and non-speech [14,41] auditory

stimuli. Categorical perception involves mapping a conti-

nuum of variation for low-level acoustic features of the

stimuli into a discrete number of abstract categories.
Furthermore, the connectivity analysis [42] between the

HG, PT and STS shows that representations of acoustic fea-

tures in HG and PT are relayed to the STS for object like

representations. In the context of current study, it is therefore

likely that although each of the three RefTC’s has a unique

representation in the PT, these representations may have

been further abstracted and instantiated in the STS.

We considered whether our results might be explained by

sensory or perceptual representations in PT and/or HC. The

existence of sensory representations of fine spectro-temporal

features that occurs in non-primary auditory cortex and HC

but not in primary auditory cortex is unlikely. Mapping of

the different perceptual timbre of different exemplars could

occur in non-primary auditory cortex, but there is no pre-

cedent for any effect of manipulating spectro-temporal

structure and timbre on hippocampal activity [43–46]. The

most parsimonious explanation for our data is a unique

memory trace in PT and HC that is formed for each of the

three RefTCs, although more work will be needed to probe

this point further. It will also be important to examine another

issue in the future. Our learning phase was optimized to facili-

tate acquisition of the three RefTCs; consequently, the fMRI

data acquired during this phase were not intended (nor were

they suitable) for analysis using MVPA, because our focus

was solely on where the learnt RefTCs were represented.

Further studies could investigate the learning over time

of RefTCs to see if PT and HC (and/or other brain regions)

are implicated.

Structural connectivity between human auditory cortex

and the MTLs is not completely understood. However, the

connectivity pattern between auditory cortex and the MTL

of monkeys [47] (for review, see [17]) shows that belt and

parabelt, but not the core, of the auditory cortex have direct

projections to the entorhinal cortex. The human PT we exam-

ined in our experiment is a non-core area containing

homologues of primarily auditory belt (and possibly
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auditory parabelt) cortex [48]. Based on the non-human pri-

mate work, therefore, it appears likely that PT and HC are

reciprocally connected. The connectivity between PT and

HC offers good grounds for proposing that PT and HC

might form a connected system that allows specific represen-

tations of learnt spectro-temporal patterns. The purpose of

such a system may be to transform the rich pattern of activity

for complex sounds expressed in HG into sparser represen-

tations, more amenable to long-term memory storage. This

raises questions about the dynamics of this system, as behav-

ioural data show that learning occurs rapidly. Further work is

required to determine how many repetitions of each exem-

plar are required during the training phase before a stable

representation is built in the PT and HC. A further question
concerns the direction of causal influences of the PT and

HC on each other that occur during the construction of

stable representations. As a first step, this study establishes

the existence of stabilized representations of sound structure

in PT and HC concurrent with auditory learning.
The study was approved by the local research ethics committee.
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