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Background: 5-Methylcytidine (m5C) methylation is an emerging epigenetic modification
in recent years, which is associated with the development and progression of various
cancers. However, the prognostic value of m5C regulatory genes and the correlation
between m5C methylation and the tumor microenvironment (TME) in prostate cancer
remain unknown.

Methods: In the current study, the genetic and transcriptional alterations and prognostic
value of m5C regulatory genes were investigated in The Cancer Genome Atlas and Gene
Expression Omnibus datasets. Then, an m5C prognostic model was established by
LASSO Cox regression analysis. Gene set variation analyses (GSVA), gene set enrichment
analysis (GSEA), clinical relevance, and TME analyses were conducted to explain the
biological functions and quantify the TME scores between high-risk and low-risk
subgroups. m5C regulatory gene clusters and m5C immune subtypes were identified
using consensus unsupervised clustering analysis. The Cell-type Identification By
Estimating Relative Subsets of RNA Transcripts algorithm was used to calculate the
contents of immune cells.

Results: TET3 was upregulated at transcriptional levels in PCa compared with normal
tissues, and a high TET3 expression was associated with poor prognosis. An m5C
prognostic model consisting of 3 genes (NSUN2, TET3, and YBX1) was developed and a
nomogram was constructed for improving the clinical applicability of the model. Functional
analysis revealed the enrichment of pathways and the biological processes associated
with RNA regulation and immune function. Significant differences were also found in the
expression levels of m5C regulatory genes, TME scores, and immune cell infiltration levels
between different risk subgroups. We identified two distinct m5C gene clusters and found
their correlation with patient prognosis and immune cell infiltration characteristics. Naive B
cells, CD8+ T cells, M1 macrophages and M2 macrophages were obtained and 2 m5C
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immune subtypes were identified. CTLA4, NSUN6, TET1, and TET3 were differentially
expressed between immune subtypes. The expression of CTLA4 was found to be
correlated with the degree of immune cell infiltration.

Conclusions: Our comprehensive analysis of m5C regulatory genes in PCa
demonstrated their potential roles in the prognosis, clinical features, and TME. These
findings may improve our understanding of m5C regulatory genes in the tumor biology
of PCa.
Keywords: prostate cancer, m5C methylation, prognostic model, molecular subtype, tumor microenvironment
INTRODUCTION

Prostate cancer (PCa), namely prostate adenocarcinoma
(PRAD), is one of major diseases that affect men’s health. It is
the second most common type of cancer in men and the fifth
leading cause of male cancer-related death, with an estimate of
almost 1.4 million new cases and 375,000 deaths in 2020
worldwide (1, 2). Active surveillance, surgery, radiotherapy,
chemotherapy, hormonal therapy, or a combination of these
options are conventional methods to treat PCa patients (3, 4).
The survival outcome of PCa is highly dependent on the tumor
stage at diagnosis (5). Patients with localized or regional PCa
often have a high 5-year survival rate, which is approximately
98% and 83% in the United States and Europe, respectively (1).
However, approximately 20%–30% patients with localized PCa
after treatment experience recurrence, associated with poor
outcomes (6). Once metastatic PCa is detected, the 5-year
survival rate is only 30%. Immune-based treatment has been a
current research hotspot in PCa treatment. Immunotherapy for
PCa, such as programmed death-1 (PD-1), programmed death
ligand-1 (PD-L1), and cytotoxic T lymphocyte–associated
antigen 4 (CTLA4) inhibitors, has achieved good results in
antitumor tumor effects and become an active field of
investigation in the recent 5 years (7, 8). Nevertheless, some
clinical trials of immunotherapy in PCa patients have only
shown modest clinical outcomes (9).

The tumor microenvironment (TME), an important part of
the tumor mass, which consists of tumor cells, immune cells, and
stromal cells, has been reported to promote tumor prognosis and
cause drug resistance in PCa (10, 11). An increasing number of
studies have observed that tumor-infiltrating immune cells in
TME affect the patients ’ prognosis and efficacy of
immunotherapy and chemotherapy (12, 13). However, the
immune mechanisms of TME in PCa remain unclear.
Therefore, an investigation of the immunophenotypes and a
comprehensive understanding of the TME features are urgently
needed for immunotherapy improvement.

RNA methylation, a post-transcriptional modification, may
impact gene expression through RNA metabolism, splicing,
stability, and translation (14, 15). It has been reported that
RNA methylation plays an important role in regulating a
variety of biological functions and is correlated with tumor
development and malignant progression (16). 5-Methylcytosine
(m5C) methylation is a modification form of the fifth N of
org 2
cytosine and is widely distributed in various RNAs including
mRNA, tRNA, rRNA, viral RNA, vault RNA, and lncRNA,
which participate in RNA stability and translation efficiency
(15, 17). The formation process of m5C methylation is
catalyzed by methyltransferases, also termed as “Writer” such
as NSUN and DNMT family members, and can be dynamically
regulated by demethylases such as TET families, and binding
proteins such as YBX1, which are termed as “Eraser” and
“Reader,” respectively (18). Increasing evidence demonstrated
that m5C regulators play a significant role in multiple biological
and pathological processes including cellular proliferation and
differentiation, stem cell fate determination, embryonic
development, tumorigenesis, tumor malignant progression, and
tumor immunity (16, 19). Recently, studies revealed that m5C
methylation regulatory genes such as YBX1 are associated with
the pathogenesis of bladder urothelial carcinoma and the
prognosis in patients with lung cancer or pancreatic cancer
(20, 21). The alteration of m5C regulatory genes can also affect
immune cells and thus reshape the TME. For instance, the TET
family can impact the function of many immune cell phenotypes
including B cells, plasma cells, dendritic cells, and Tregs (22–24).
However, ambiguity remains about the potential functions and
mechanisms of m5C methylation regulatory genes in the
development of cancer, especially in PCa. In addition, the
relationship between m5C methylation, TME, and tumor
immunotherapy is not fully understood. Therefore, a
comprehensive analysis of TME features mediated by m5C
regulatory genes will further our understanding on the TME
and provide important insights for immunotherapy in PCa.

In the current study, we comprehensively evaluated the
genetic and transcriptional alterations of m5C regulatory genes
based on the TCGA and GEO database. Then, we constructed a
prognostic model and performed functional analysis. m5C
regulatory gene clusters and m5C immune subtypes were
identified, and the relationship between m5C regulatory genes
and tumor immunity was investigated.
METHODS AND MATERIALS

The Workflow of Study Strategies
In our study, we explored the m5C regulatory gene expression
profiles between PCa and normal samples based on the TCGA
database and GEO database. Then, the univariable Cox
June 2022 | Volume 13 | Article 914577
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regression and LASSO Cox regression analyses were applied to
identify prognostic biomarkers and develop a prognostic model.
Functional enrichment analysis, clinical characteristics analysis,
and immune infiltration analysis were conducted. Furthermore,
we identified m5C regulatory gene clusters and m5C immune
subtypes using a consensus-unsupervised clustering analysis and
investigated the correlation between the subtypes and
tumor immunity.

Data Sources and Preprocessing
The gene expression data and clinical information of PCa
patients were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) and Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/) (Supplementary Table 1) (25, 26). A total of 499 PCa
cases and 52 normal cases with the gene expression profile (HTSeq-
FPKM), copy number variation (CNV), single-nucleotide
polymorphism (SNP), and relevant clinicopathological
information of prostate adenocarcinoma projects were collected
from the TCGA database. Level 3 HTSeq-FPKM data were
transformed into transcripts per million (TPM) reads for the
subsequent analyses. Three GEO cohorts including GSE3325,
GSE55945, and GSE155056 datasets were acquired from the GEO
database (27–29). The gene expression data of GSE3325 (tumor=13,
normal=6) and GSE55945 (tumor=11, normal=8) were based on
the platform of GPL570 (Affymetrix Human Genome U13s3 Plus
2.0 Array) and GSE155056 (tumor=3, normal=3) was based on the
platform of GPL28784 (085499_SBC human ceRNA microarray
version 1.1). The samples in 3 GEO cohorts were all collected from
human prostate benign and malignant tissues.

Identification of Differentially Expressed
m5C Regulatory Genes
m5C regulatory genes (TET1, TET3, DNMT3B, YBX1, NSUN2,
NSUN6, NOP2) were extracted from the prior studies (18, 30).
First, three GEO datasets were integrated and the “Combat”
algorithm from “SVA” package of R software was employed to
eliminate the batch effects caused by non-biotechnological bias
(31). Then, we used the “Limma” package to identify
differentially expressed genes (DEGs) between the tumor and
the normal samples. |Log2(Foldchange)| >1 and an adjusted P-
value <0.05 was regarded as the threshold to indicate DEGs.
Based on all m5C regulatory gene expression levels, principal
component analysis (PCA) was performed using the “prcomp”
function. Results were visualized using the R package “ggplot2”.

CNV and SNP Analysis
The Genomic Identification of Significant Targets in Cancer
(GISTIC) algorithm is widely applied to identify both broad and
focal (potentially overlapping) recurring events, which are
associated with trigger cancer pathogenesis (32). GISTIC 2.0
software was employed to detect genes showing significant
deletion and amplification in thousands of samples. An
amplification or deletion length >0.1 and P<0.05 were
considered as the parameter threshold. We utilized MutSig2.0
software to analyze the Mutation Annotation Format (MAF) file
Frontiers in Immunology | www.frontiersin.org 3
of TCGA mutation data to identify significantly mutated genes.
A P-value <0.05 was considered significant.

Construction of the m5C Prognostic
Model in PCa
We applied m5C regulatory genes to construct a prognostic risk
score signature. Firstly, the univariate Cox regression analysis
was conducted to extract m5C regulatory genes that were
associated with the overall survival significantly. The result was
visualized by the R package “forestplot”. Then, the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis was performed to reduce the dimension of high-
latitude data and construct the prognostic model using the R
package “glmnet” (33, 34). Ten-fold cross-validation was
employed to avoid the overfitting problem and select the
penalty parameter (l) according to the minimum criteria. The
prognostic scoring system for PCa patients was developed based
on a linear combination of regression coefficients derived from
the LASSO Cox regression analysis coefficients multiplied by the
expression levels of genes, and then patients were divided into
high-risk and low-risk subgroups accordingly. We compared the
overall survival probability of high-risk and low-risk subgroups
using the R package “survival” and “jskm”. A landmark time of 6
years was set. To evaluate the stability of the prognostic model,
the R package “survivalROC” was employed to perform receiver
operating characteristic (ROC) analysis and calculate the value of
the area under the curve (AUC). The expression levels of m5C
regulatory genes were analyzed between different risk subtypes
classified by the prognostic model.

GSVA and GSEA
Gene set variation analysis (GSVA) is a non-parametric,
unsupervised method for estimating the variation of gene set
enrichments in the gene expression data, which is commonly
used for exploring the variation in the pathway and biological
process activity in the samples of an expression dataset (35). We
performed GSVA to investigate the difference of the biological
func t ion be tween high- and low-r i sk subgroups .
“c2.kegg.v7.4.symbols” and “c5.go.v7.4.symbols” gene sets were
applied to performed GSVA using the R package “GSVA”. The R
package “pheatmap” was applied to visualize the results.

Gene set enrichment analysis (GSEA) was conducted by the R
package “clusterProfiler” to determine whether prior-defined
functional or pathway sets of genes differ significantly between
high- and low-risk subgroups in the enrichment of MSigDB
Collection (“c2.kegg.v7.4.symbols” and “c5.go.v7.4.symbols”
gene sets) (http://www.gsea-msigdb.org/gsea/index.jsp) (36).
The enrichments of gene sets with a P-value <0.05 were
regarded to be significant.

Correlation of m5C Prognostic Model with
TME and Clinical Features
The R package “ESTIMATE” can calculate the TME scores
including the stromal score, immune score, and estimate score
using gene expression datasets and evaluate the relative contents
of stromal cells or immunocytes in the TME. Higher stromal
June 2022 | Volume 13 | Article 914577
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scores or immune scores suggest higher relative contents of
stromal cells or immunocytes. Estimate scores represent the
aggregation of stromal scores and immune scores (37). We
investigate the correlation between TME scores and high- or
low-risk subgroups.

To individualize the predicted PCa patients’ survival
probability for 1, 3, and 5 years, a nomogram was developed
using the R package “regplot.” The nomogram contained the risk
score of the m5C prognostic model and clinical characteristics
including the age, M stage, and T stage. Then, we conducted
calibration analysis and calculated the optimism-corrected
concordance index (C-Index) by 1,000 bootstrap resamples to
assess the discrimination of the predictive nomogram.

Identification of m5C Regulatory Gene
Clusters in PCa
Based on the expression of m5C regulatory genes, we performed
consensus unsupervised clustering analysis to classify PCa
patients into distinct gene clusters employing R package
“ConsensusClusterPlus”, with the parameters of reps = 1,000
and pItem = 0.8 (38). To verify the stability of classification,
PCA was conducted based on the expression of all m5C
regulatory genes and the R package “ggplot2” was used to
visualize the results. Furthermore, we investigated the
relationship of the m5C prognostic model, m5C regulatory
gene clusters, and clinical pathological features.

Estimation of TME Cell Infiltration
Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) is a de-convolution algorithm that
uses a set of reference gene expression matrixes to evaluate 22
immune cell-type proportions from bulk tumor sample
expression data based on support vector regression. We
conducted CIBERSORT analysis using the R package
“CIBERSORT” to investigate TME cell infiltration between
different groups. The relative contents of immune cells were
calculated in distinct risk score subtypes and m5C regulatory
gene clusters by the CIBERSORT algorithm.

Identification of m5C Immune Subtypes
and Cancer Immunotherapy Analysis
Based on the relative contents of immune cells, which were
significantly different between the high- and low-risk subgroups
classified by the m5C prognostic model, as well as between
different m5C regulatory gene clusters, we performed
consensus unsupervised clustering analysis to classify PCa
patients into distinct immune subtypes employing the R
package “ConsensusClusterPlus”, with the parameters of reps =
50 and pItem = 0.8 (38). Meanwhile, we explore the expression
levels of m5C regulatory genes between the different m5C
immune subtypes.

The cytotoxic T lymphocyte–associated protein 4 (CTLA4)
gene has been demonstrated to be a key immunotherapy related
gene (39). To determine whether CTLA4 plays a role in
immunotherapy for PCa patients through TME cell infiltration,
we investigated the correlation of the expression of CTLA4 and
Frontiers in Immunology | www.frontiersin.org 4
m5C immune subtypes and infiltration levels for different
immune cells.

Statistical Analysis
All statistical analyses were conducted with R software (v4.0.2).
To compare the variables between the 2 groups, we employed the
independent sample t tests for normally distributed continuous
variables and the Wilcoxon rank sum test (Mann–Whitney U
tests) for nonnormally distributed continuous variables. All tests
were 2 sided, and P < 0.05 was considered statistically significant.
RESULTS

Genetic and Transcriptional Alterations of
m5C Regulatory Genes in PCa
Three GEO datasets were enrolled into one integrated dataset,
and the batch effects were eliminated (Figures 1A, B).
Figures 1C, D showed the result of PCA conducted in the
integrated GEO dataset and TCGA dataset, respectively, which
revealed significant differences in the m5C regulatory genes
transcription profiles between PCa and normal samples. Seven
m5C regulatory genes (TET1, TET3, DNMT3B, YBX1, NSUN2,
NSUN6, NOP2) were extracted for subsequent analyses.
Differential expression analysis, SNP analysis, and co-
expression analysis were performed. CNV frequencies were
computed based on the data from TCGA to identify genes
with significant amplifications or deletions. Among m5C
regulatory genes, NOP2 exhibited the highest amplification
frequency and lowest deletion frequency (Figure 1E).
Figure 1F exhibited the landscape of SNP and mutations in
PCa samples. Figure 1G showed the m5C regulatory gene
alterations closely associated with PCa progression, including
frameshift insertion, frameshift deletion, missense mutation,
synonymous mutation, nonsense mutation, and other non-
synonymous or cleavage sites. NOP2, TET3, NSUN6, and
DNMT3B were identified as differentially expressed genes
(DEGs) (P < 0.05) (Figures 1H, I). Co-expression analysis
showed that varying degrees of correlation existed among m5C
regulatory genes (Figures 1J, K).

Construction of the m5C Prognostic
Model in PCa
We conducted univariate Cox regression analysis to investigate
the prognostic value of m5C regulatory genes and screened
NSUN2 (HR=5.428, 95%CI=1.645-17.905, P=0.005), TET3
(HR=2.956, 95%CI=1.017-8.593, P=0.047), and YBX1
(HR=3.428, 95%CI=1.403-8.347, P=0.007) that were associated
with the prognosis of PCa (Figure 2A; Supplementary Table 2).

M5C regulatory genes were fit in the LASSO Cox regression
analysis, and three genes including NSUN2, TET3, and YBX1
were selected to develop an m5C prognostic model based on the
optimal value of l (Figures 2B, C). PCa patients were classified
into high-risk and low-risk subtypes according to the risk scores
calculated by the model. Supplementary Figure 1A showed the
distribution of the risk score and cut-off value in the TCGA
June 2022 | Volume 13 | Article 914577
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FIGURE 1 | Genetic and transcriptional alterations of m5C regulatory genes in PCa. (A) Gene expression levels of three GEO datasets before integration. (B)
Gene expression levels of three GEO datasets after integration. (C) PCA for the expression profiles of m5C regulatory genes to distinguish tumors from normal
samples in the integrated GEO dataset (normal, blue; tumor, orange). (D) PCA for the expression profiles of m5C regulatory genes to distinguish tumors from
normal samples in the TCGA dataset (normal, blue; tumor, orange). (E) CNV amplifications and deletions of m5C regulatory genes. (F) The landscape of genetic
variation of m5C regulatory genes. (G) SNV categories and frequencies of m5C regulatory genes. (H) The expression of 7 m5C regulatory genes between tumor
and normal samples in the integrated GEO dataset. (I) The expression of 7 m5C regulatory genes between tumor and normal samples in the TCGA dataset. (J)
Co-expression analysis of m5C regulatory genes in the integrated GEO dataset. (K) Co-expression analysis of m5C regulatory genes in the TCGA dataset. P-
values were shown as *P < 0.05 and ***P < 0.001.
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cohort. As the survival curves crossed, we used landmark survival
analysis to compare the difference between the different risk
subtypes (Supplementary Figure 1B). The result of landmark
analysis survival showed a longer OS in PCa patients in the low-
risk subtype within 6 years (P = 0.014). Nevertheless, no
significant difference was found in the survival probability
beyond 6 years (P = 0.578). Subsequently, the ROC curve was
plotted to assess the accuracy of our model’s predictions. As
shown in Figure 2D, the AUC of the model was 0.797, which
suggested a good efficacy in prognostic prediction. The
expression levels of m5C regulatory genes between high-risk
and low-risk subtypes were investigated. DNMT3B, NOP2,
NSUN2, NSUN6, TET3, and YBX1 were differentially expressed
(P<0.001) (Figures 2E–J).
Frontiers in Immunology | www.frontiersin.org 6
Then, to further explore the functional annotation between
high-risk and low-risk subtypes, GSVA was performed
(Supplementary Table 3). The results of the GSVA of gene
ontology biological processes (GOBPs) showed that the high-risk
subtype was significantly enriched in the regulation of protein
localization to the chromosome telomeric region, positive
regulation of telomerase RNA localization to the cajal body,
telomerase RNA localization, IMP biosynthetic process, and
protein localization to nucleoplasm (Figure 3A). As for KEGG
terms in GSVA, the high-risk subtype was enriched in the
nucleobase biosynthetic process, aminoacyl tRNA biosynthesis,
spliceosome, mismatch repair, glyoxylate and dicarboxylate
metabolism, and RNA degradation (Figure 3B). Gene set
enrichment analysis (GSEA) was employed to identify the
A B C

D E F

G H I J

FIGURE 2 | Construction of the m5C prognostic model in PCa. (A) m5C regulatory genes related to the prognosis of PCa were identified by univariable Cox
regression in a forest plot. (B) LASSO Cox regression analysis of m5C regulatory genes. (C) The parameter selection was tuned by cross-validation in the
LASSO Cox regression. (D) ROC curves showed the prognostic performance of the m5C prognostic model. Difference in the expression of m5C regulatory
genes including (E) DNMT3B, (F) NOP2, (G) NSUN2, (H) NSUN6, (I) TET3, and (J) YBX1 between high-risk and low-risk subtypes. P-values was shown as
***P < 0.001.
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biological processes and signaling pathways involved in PCa
between high- and low-risk subtypes. The most significantly
enriched biological processes and signaling pathways are shown
in Figures 3C–E and Supplementary Table 4. The risk score
based on the m5C prognostic model was enriched in GOBP
terms including the G protein coupled purinergic nucleotide
receptor signaling pathway, G protein–coupled purinergic
nucleotide receptor activity, sialic acid binding, T-cell receptor
complex, and negative regulation of interleukin 8 production and
Frontiers in Immunology | www.frontiersin.org 7
KEGG terms including the B-cell receptor signaling pathway,
calcium signaling pathway, cell adhesion molecules cams,
chemokine signaling pathway, and cytokine–cytokine
receptor interaction.

Furthermore, we evaluated the TME scores of high-risk and
low-risk subtypes using the Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm. The results demonstrated that the
patients in the high-risk subtype have a lower tumor immune
A

B

C D E

FIGURE 3 | GSVA and GSEA of the m5C prognostic model. (A) GSVA of GO terms between high-risk and low-risk subtypes, in which red and blue represent activated
and inhibited biological processes, respectively. (B) GSVA of KEGG terms between high-risk and low-risk subtypes, in which red and blue represent activated and
inhibited pathways, respectively. (C) GSEA of the significantly enriched GO terms in the high-risk subtype. (D) GSEA of the significantly enriched GO terms in the low-risk
subtype. (E) GSEA of the significantly enriched KEGG terms in the low-risk subtype.
June 2022 | Volume 13 | Article 914577
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infiltration level than those in the low-risk subtype (Figure 4A).
Correlation analysis was performed to analyze the relationship
between clinical features and risk scores. We observed that the
risk score of PCa patients increased with the T stage (Figure 4B).
We constructed a nomogram containing the risk score and
clinical characteristics including the age, T stage, and M stage
(Figure 4C). The risk score, T stage, and M stage were
significantly associated with the prognosis of patients.

Identification of m5C Regulatory Gene
Clusters in PCa
To further explore the potential biological characteristics of m5C
regulatory genes in PCa patients, a consensus clustering
algorithm was employed to classify patients into two distinct
modification patterns based on the expression of 7 m5C
regulatory genes, including 458 cases in modification pattern 1
and 93 patients in the modification pattern 2, which were termed
as m5C regulatory gene cluster 1 and 2 (Figures 5A–C). The
PCA plots both demonstrated an obvious different distribution
between two clusters (Figure 5D). Then, we used a Sankey
Frontiers in Immunology | www.frontiersin.org 8
diagram to visualize the relationship between gene clusters,
risk score subtypes, and the survival status (Figure 5E). We
observed that the patients in m5C gene cluster 1 corresponded
with the high-risk subtype, which dominated most of the PCa
patients with a death status. Compared to gene cluster 2, gene
cluster 1 had a significantly higher risk score (P<2.2e-16,
Figure 5F). In addition, the association between the expression
levels of m5C regulatory genes and m5C regulatory gene clusters
was investigated. Figures 5G–K showed that DNMT3B, NSUN2,
NSUN6, TET1, and TET3 were differentially expressed with a
statistical significance between gene cluster 1 and gene cluster 2
(P <0.001).

Relationship of m5C Regulatory Genes
and Tumor Immune Infiltration
To analyze the difference of tumor immune infiltration between
high-risk and low-risk subtypes, we used the CIBERSORT
algorithm to estimate the proportions of 22 distinct immune
cell phenotypes between different subtypes. The analysis result of
22 kinds of cells showed B-cell naïve (P<0.05), plasma cells
A B

C

FIGURE 4 | Correlation of the m5C prognostic model with TME and clinical features. (A) Correlation between risk score and TME scores including stromal, immune,
and ESTIMATE scores. (B) Risk scores of the PCa patients are classified by the T stage. (C) Nomogram consisting of the risk score and clinical characteristics to
predict the overall survival in the PCa patients. P-values were shown as *P < 0.05 and ***P < 0.001.
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(P<0.05), macrophages M0 (P<0.001), macrophages M1
(P<0.001), and macrophages M2 (P<0.05), mast cells resting
(P<0.05) and neutrophils (P<0.01) were statistically different
between high-risk and low-risk subtypes (Figures 6A–H).

Moreover, between m5C regulatory gene cluster 1 and m5C
regulatory gene cluster 2, we identified 9 immune cell
phenotypes that were statistically different, including naive
B cells (P<0.01), memory B cells (P<0.05), plasma cells
(P<0.01), CD8 T cells (P<0.001), resting CD4 T cells
(P<0.001), Tregs (P<0.001), M1 macrophages (P<0.001), M2
macrophages (P<0.01), and resting dendritic cells (P<0.001)
(Figures 7A–J). We extracted 4 overlapping immune cell
phenotypes (naive B cells, CD8 T cells, M1 macrophages,
M2 macrophages) for subsequent analyses.
Frontiers in Immunology | www.frontiersin.org 9
Identification of m5C Immune Subtypes
in PCa
In order to further explore the correlation between key immune
ce l l phenotypes and m5C in PCa, the R package
“ConsensusClusterPlus” was used once again to classify
patients based on 4 overlapping immune cell phenotypes (naive B
cells, CD8 T cells, M1 macrophages, M2 macrophages) that were
observed to be significantly different. PCa patients were divided into
two m5C immune subtypes (subtype A, n=385; subtype B, n=166)
(Figures 8A–C). Then, we conducted differential expression
analysis for the immune checkpoint gene CTLA4 and m5C
regulatory genes; we found that the expression of CTLA4
(P<0.01), NSUN6 (P<0.01), TET1 (P<0.05), and TET3 (P<0.01)
A B C

D E F G

H I J K

FIGURE 5 | Identification of m5C regulatory gene clusters in PCa. (A) The PCa patients were stratified into 2 clusters based on the consensus clustering matrix (k =
2). (B, C) Consensus clustering model with cumulative distribution function (CDF) by k from 2 to 9. (D) The PCA analysis of the m5C regulatory gene cluster 1 and
m5C regulatory gene cluster 2 based on the m5C regulatory genes. (E) Sankey diagram of subtype distributions in clusters with different risk scores and survival
outcomes. (F) Differences in the risk score between the m5C regulatory gene cluster 1 (cluster 1, blue) and the m5C regulatory gene cluster 2 (cluster 2, yellow).
Expression of m5C regulatory genes including (G) DNMT3B, (H) NSUN2, (I) NSUN6, (J) TET1, and (K) TET3 in m5C regulatory gene cluster 1 (cluster 1, blue) and
m5C regulatory gene cluster 2 (cluster 2, yellow). P-values was shown as ***P < 0.001.
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differed significantly between the m5C immune subtype A and B
(Figures 8D–G).

Correlation Between Immune Cell
Phenotypes and Immune Checkpoint
Gene CTLA4
To reveal a potential correlation between the infiltration of
immune cell phenotypes and the efficacy of immunotherapy,
we performed the CIBERSORT algorithm to assess the
association between the immune checkpoint gene CTLA4 and
the abundance of immune cell phenotypes. As shown in the
scatter diagrams (Figure 9), CTLA4 was positively correlated
with many types of innate and acquired immune cell types
including memory B cells (R=0.16, P=000049), activated
dendritic cells (R=0.15, P=000082), resting dendritic cells
(R=0.14, P=000017), M1 macrophages (R=0.18, P=4.2e-05),
CD4 T cells (R=0.24, P=6.8e-08), CD8 T cells (R=0.2, P=8.6e-
06), T follicular helper cells (R=0.097, P=0.03), gamma T cells
(R=0.2, P=8.4e-06), and Tregs (R=0.24, P=8.5e-08). CTLA4 was
negatively correlated withM2macrophages (R=-0.13, P=0.0051),
resting mast cells (R=-0.45, P<2.2e-16), monocytes (R=-0.13,
P=0.003), and plasma cells (R=-0.43, P<2.2e-16).
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

PCa is one of the most commonmalignancies in humans. Although
the treatment of PCa (chemotherapies, antiandrogens, and
radiopharmaceuticals) has achieved much over the past decade,
the rates of tumor metastasis and recurrence remain high and were
associated with a poor prognosis. It is urgent to identify new
prognostic biomarkers and therapeutic strategies. m5C
methylation modification is one of the most prominent
modifications in eukaryotes, which contributes to epigenetic gene
regulation through a different mechanism (40, 41). Increasing
evidence suggested that m5C modification plays an indispensable
role in both physiological and pathological processes, particularly in
the development and progression of cancer (42). Many studies have
explored the roles of m5C regulatory genes and constructed
prognostic models in colon adenocarcinoma, hepatocellular
cancer, cervical cancer, and clear cell renal cell carcinoma (43–
45). However, there were a few studies that investigated the
biological role of m5C regulatory genes in PCa.

In the current study, we comprehensively investigated the
potential function of 7 m5C regulatory genes in PCa in muti-
datasets and developed a gene signature to predict the prognosis
A B C

D E

F G H

FIGURE 6 | Relationship of the m5C prognostic model and tumor immune infiltration. (A) Differences in the abundance of 22 infiltrating immune cell phenotypes in
high-risk and low-risk subtypes. Differences in the abundance of 7 infiltrating immune cell phenotypes including (B) naive B cells; (C) M0 macrophages; (D) M1
macrophages; (E) M1 macrophages; (F) resting mast cells; (G) neutrophils, and (H) CD8+ T cells in high-risk and low-risk subtypes. P-values were shown as
follows: ns, not significant, *P < 0.05; **P < 0.01; ***P < 0.001.
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of PCa patients. We found that TET3 was differentially expressed
between normal and tissue samples, and its high expression was
associated with a poor prognosis in PCa. Compared to other
genes (TET1 and TET2) in the TET family, the functions of TET3
in human cancer remains limited. It has been confirmed that
TET3 functions as a tumor promoter or tumor suppressor in
different cancers and the different expression level of TET3 was
associated with patients’ survival (46). A recent study found that
TET3 was also proven to overexpress in AML patients, which
promoted AML growth and epigenetically regulates glucose
metabolism and leukemic stem cell–associated pathways (47).
The upregulation of TET3 was proven to elevate the 5-hmc levels
of the promoter regions of c-Myc and promoted the progression
of glioma (48). These studies are in line with our results, pointing
out that TET3 has a positive association with patients’ prognosis,
which could be a potential biomarker in PCa. However, the
potential mechanisms still need to be explored in the further
Frontiers in Immunology | www.frontiersin.org 11
studies. Then, we developed an m5C prognostic model in PCa by
the LASSO Cox regression, which contains NSUN2, TET3, and
YBX1 (AUC=0.797). It was also presented as an independent
predictor for overall survival, and the risk score was increased
with the T stage. Therefore, the m5C prognostic model and
clinicopathological-based nomogram was established to predict
the prognosis of PCa patients.

Immune-based treatment has emerged in recent years for PCa
patients, which has revolutionized cancer therapy and improved
patients’ overall survival in many solid tumors. However,
prostate cancer, especially metastatic castration–resistant
prostate cancer, was regarded as a “cold” tumor with a low
immune score and massive immunosuppressive components
including Tregs and TGF-b, which means that patients are
more likely to suffer immunotolerance and a poor response to
immunotherapy (49–51). Due to the immune-suppressive
microenvironment and heterogeneous presence in PCa, it is
A B
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FIGURE 7 | Relationship of m5C regulatory gene clusters and tumor immune infiltration. (A) Abundance of 22 infiltrating immune cell phenotypes in m5C regulatory
gene cluster 1 (cluster 1, blue) and m5C regulatory gene cluster 2 (cluster 2, yellow). Differences in the abundance of 9 infiltrating immune cell phenotypes including
(B) memory B cells; (C) naive B cells; (D) resting dendritic cells; (E) M1 macrophages; (F) M2 macrophages; (G) plasma cells; (H) resting CD4+ T cells; (I) CD8+ T
cells; and (J) Tregs in m5C regulatory gene cluster 1 (cluster1, blue) and m5C regulatory gene cluster 2 (cluster2, yellow). P-values were shown as follows: ns, not
significant, *P < 0.05; **P < 0.01; ***P < 0.001.
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important to identify the molecular subtypes and investigate the
characteristics of the TME, which can help us predict a response
to immunotherapy and recognize high-risk patients to intervene
early. Previous studies showed that m5C methylation
modification can affect the quantity and quality of immune
cells and thus reshape the TME and impact of the efficacy of
immunotherapy (52). Hence, we investigated the TME status
between high-risk and low-risk subtypes. The results of GSEA
demonstrated that the function of the 3 m5C regulatory genes
was potentially associated with the tumor immunity biological
process including the “activation of immune response”,
“activation of innate immune response” , and “acute
inflammatory response.” The KEGG terms of the “B cell
receptor signaling pathway”, “chemokine signaling pathway”,
and “cytokine cytokine receptor interaction” were also enriched
in the low-risk subtype. The TME score (StromalScore,
ImmuneScore, and ESTIMATEScore) in the low-risk subtype
was higher than in the high-risk subtype. Meanwhile, the
abundance of immune cells showed the difference between
high-risk and low-risk subtypes.

To further explore the biological features of m5C regulatory
genes in PCa, we revealed 2 distinct m5C gene clusters based on
gene expression profiles. These 2 gene clusters exhibited different
TME features. The high-risk subtype and m5C gene cluster 1 were
associated with a higher infiltration of naive B cells and M1
macrophages. The low-risk subtype and m5C gene cluster 2 were
associated with a higher infiltration of CD8+T cells and M2
Frontiers in Immunology | www.frontiersin.org 12
macrophages. These differences suggested a complex biological
function for infiltrating immune cells in the PCa development
and progression. We identified naive B cells, CD8+ T cells, M1
macrophages, and M2 macrophages as key immune cells, and then
PCa patients were classified into 2 distinct m5C immune subtypes
based on the contents of key immune cells. In m5C gene cluster 1,
the content of plasma cells was lower compared with m5C gene
cluster 2. The difference of the proportion of plasma cells and naive
B cells between two m5C gene clusters suggest that there might be
an inhibitor in the TME that can block the activation of immune
cells. CD8+ T-cell tumor infiltration is thought to be the key
characteristics of effective immunotherapy in cancer patients,
which was supposed to be associated with good response to
immune checkpoint inhibitors and inhibiting the process of
cancer (53, 54). However, the prognostic significance of CD8+ T
cells in PCa remains controversial (55). Many studies have shown
that the level of CD8+ T cell infiltration was positively correlated
with cancer prognosis and responsiveness to immunotherapy (56,
57). It was reported that the CD8+ T cell subpopulation also
presented immune suppressive activity in PCa. Kiniwa et al.
found that CD8+ Foxp3+ regulatory T cells can mediate
immunosuppression in prostate cancer (58). Tumor-associated
macrophages were mainly classified into two types (M1
macrophages and M2 macrophages), which play an important
role in the tumor growth and metastasis (59). In addition, the
proportion of M1 macrophages and M2 macrophages can impact
tumor therapy (60, 61). Previous studies showed that M1
A B C
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FIGURE 8 | m5C immune subtypes based on key immune cell phenotypes. (A) The PCa patients were stratified into 2 subtypes based on the consensus clustering
matrix (k = 2). (B, C) Consensus clustering model with cumulative distribution function (CDF) by k from 2 to 9. (D) The gene mRNA expressions of the immune
checkpoint gene CTLA4 between m5C immune subtype A and m5C immune subtype. The gene mRNA expressions of m5C regulatory genes including (E) NSUN6,
(F) TET1, and (G) TET3 between m5C immune subtype A (subtype A, blue) and m5C immune subtype B (subtype B, yellow). P-values were shown as follows:
*P < 0.05 and **P < 0.01.
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macrophages were often known to inhibit tumor progression.
Zhang et al. demonstrated that a low infiltration of M1
macrophages was associated with a poor outcome and Sadasivan’s
research found that patients with high infiltration levels of M2
macrophages had an almost 5-fold increased risk of recurrence in
PCa patients (62). The proportion of M1 macrophages and M2
macrophages decreased in the low-risk subtype and cluster 2,
potentially shedding light on the lack of clinical achievement of
immunotherapy for PCa patients (63). Targeting tumor-associated
macrophages could enhance the response to other synergistical
immunotherapy treatments, which provides a promising target for
immunotherapy for PCa patients. These findings strongly implied
the potential roles of m5C regulatory genes in reshaping the TME
in PCa.

Previous trails showed a great antitumor activity for the
CTLA4 antibody ipilimumab in PCa patients (64, 65). It was
demonstrated that ipilimumab not only increased the infiltration
of T cells, but it can also induce immune inhibitor pathways and
suppress the T-cell response (66). To explore the potential
correlation between immune cells and the efficacy of the
CTLA4 inhibitor, the immune checkpoint gene CTLA4
expression profile was analyzed. We observed higher
expression levels of CTLA4 in the m5C immune subtype A, in
which the m5C regulatory genes NSUN6, TET1, and TET3
showed a higher expression. CTLA4 was positively correlated
with memory B cells, activated dendritic cells, resting dendritic
cells, M1 macrophages, CD4+ T cells, CD8+ T cells, gamma T
cells, and Tregs in PCa. In addition, CTLA4 was negatively
correlated with M2 macrophages, resting mast cells,
monocytes, follicular helper T cells, and plasma cells in PCa.
These results suggested that CTLA4 was implicated in the
immunity of PCa. T-cell immunity and T-cell antitumor
responses can be increased via the blockade of CTLA4, which
is an important mechanism for immune checkpoint therapy (67).

Our study is, to our knowledge, the first to investigate the
potential roles of m5C regulatory genes in cancer prognosis and
tumor immunity in PCa. However, there are still some
limitations in our study. The data used were obtained from
public databases, and the samples used in our study were
obtained retrospectively. Hence, prospective studies are needed
to verify the findings in our study. Furthermore, the results of our
analysis lack experiment validation and externally clinical cohort
validation. The expression levels and molecular mechanisms of
model genes should be further experimentally investigated.
CONCLUSION

In summary, we have systematically demonstrated the
expression profile, potential role, and prognostic value of m5C
Frontiers in Immunology | www.frontiersin.org 14
regulatory genes in PCa. TET3 may serve as a potential
biomarker, and a 3-gene signature was established in PCa. We
identified 2 m5C gene clusters and 2 m5C immune subtypes and
revealed an extensive regulatory mechanism by which m5C
regulatory genes can impact the TME in PCa. These findings
may improve our understanding of m5C regulatory genes in the
tumor biology of PCa.
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