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Cytochrome P450 2C9 (CYP2C9) metabolizes dehydroepiandrosterone-sulfate (DHEA-S), but in elderly people the amount of
DHEA-S remaining after CYP2C9 metabolization may be insufficient for optimal health. A prediction model, molecular docking,
andmolecular dynamicswere used to screen theTraditionalChineseMedicine (TCM)database to determinemolecular compounds
that may inhibit CYP2C9.The candidate compounds apocynoside(I), 4-methoxymagndialdehyde, and prunasin have higher Dock
Scores, and prediction bioactivity than warfarin (the control drug). The interaction between 4-methoxymagndialdehyde and
CYP2C9 is more intense than with other TCM compounds, but the simulation is longer. In these compounds, apocynoside(I)
and prunasin have a greater number of pathways for their flexible structure, but these structures create weak interactions. These
candidate compounds, which are known to have antioxidation and hypolipidemic functions that have an indirect effect on the aging
process, can be extracted from traditional Chinese medicines. Thus, these candidate compounds may become CYP2C9 inhibitors
and play an important role in providing optimal health in the elderly.

1. Introduction

Cytochrome P450 2C9 (CYP2C9) is an enzyme of the Cyto-
chrome P450 superfamily of monooxygenases [1]. The four
subfamilies of CYP are involved in different drug-metabolism
processes, and both CYP2C9 and cytochrome P450 2C19
(CYP2C19) have major clinical functions [2]. CYP2C9 can
metabolize a large range of therapeutic drugs, such as those
involved with blood sugar regulation, anticoagulants, and the
weak acid or base types of drugs [3–5]. CYP2C9 is involved
in an NADPH-dependent electron transport pathway in liver
microsomes [6].

Dehydroepiandrosterone (DHEA) is a human antistress
19-carbon steroid hormone [7], secreted mainly by the
adrenal glands [8]. Most DHEA is secreted in the form
of dehydroepiandrosterone-sulfate (DHEA-S) into the cir-
culatory system [9] and converted to either androgens or
estrogens [10–12]. DHEA thus has many functions, such as
sex-hormone production, stress regulation, neural activity

affection, neurotransmitter metabolism [13], and the preven-
tion of brain aging [14]. DHEA secretions become maximal
in the mid-twenties and then steadily decline over the next
decades to around half the youthful value over the age of
45.This phenomenon will induce a loss of disease-resistance.
Reports in the literature claim that CYP2C9 metabolizes
DHEA-S, thus creating a reduced level of circulating DHEA
in elderly people and, consequentially, causing aging and
lowered disease resistance [15, 16]. Therefore it would seem
that the inhibition of CYP2C9 can increase the level of DHEA
in the circulatory system and reduce geriatric problems [7, 8,
17, 18].

Computer-Aided Drug Design (CADD) is an in silico
simulation technique that has become popular in the
pharmaceutical industry due to its low cost and speed
of obtaining results. In this investigation CCAD was
accomplished by using a molecular simulation of drug
design and incorporating structure-based and ligand-based
investigations.
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Figure 1:The disorder prediction and binding site detection.The blue curve indicates the disorder disposition of each amino acid and the red
lines are the residues of the important amino acids. The amino acid sequence describes the information for the disorder regions. The green
regions show the predicted disordered regions and the yellow regions, with the amino acids noted in red, contain important amino acids.
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Figure 3: The structure of the control and the top three selected TCM compounds: (a) warfarin, (b) apocynoside(I), (c) 4-methoxy-
magndialdehyde, and (d) prunasin.

The main aspects of simulation are molecular docking,
bioactivity prediction, and molecular dynamics. The screen-
ing and selection of compounds was based on the above
technique and the analysis of protein-ligand interactions [19–
21].

Traditional Chinese medicine (TCM) plays an important
role in health care in Asia. The TCM Database@Taiwan
(http://tcm.cmu.edu.tw/) is the world’s largest TCM database
[22] and contains approximately 61,000 TCM compounds,
as well as including information on the structure, bioac-
tivity, and molecular data. The drug design application of
the TCM Database@Taiwan has been confirmed by the
phosphodiesterase-5 block [23], epidermal growth factor
receptor (EGFR) inhibition [24], HER 2 receptor inhibition
[25], inflammation inhibition [26], stroke prevention [27, 28]
and against virus [29–31]. The TCM database is using cloud-
computing web server for application, now [32, 33].

In this study the possible compounds were screened
against CYP2C9 from the TCM Database@Taiwan. After
molecular docking, the selected compounds are detected
based on their bioactivity calculated by the support vec-
tor machine (SVM) and multiple linear regression (MLR)
prediction models. Molecular dynamics (MD) was used to

investigate the variation of protein-ligand interactions. This
work canmake a contribution to the assessment of the effects
of CYP2C9 inhibition.

2. Materials and Methods

2.1. Data Collection. The molecular simulations were per-
formed by Accelrys Discovery Studio 2.5 (DS 2.5). A total of
61,000 TCM compounds were downloaded from the TCM
database (http://tcm.cmu.edu.tw/). The sequence of CYP2C9
was generated from Uniprot (http://www.uniprot.org/,
CYP2C9 HUMAN, P11712) and the 3D crystal structure
(PDB: 1OG5) was downloaded from the Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do). Warfarin is a
generally available drug for the treatment of cardiovascular
disease [34–36] and this drug was defined as the control drug
[37, 38].

2.2. Disorder Protein Detection. Disordered proteins play an
important role in drug design; thus, drug efficacy is based
on protein structure and the ligand-interacting docking site
[39, 40]. The disordered region could be predicted through

http://tcm.cmu.edu.tw/
http://tcm.cmu.edu.tw/
http://www.uniprot.org/
http://www.rcsb.org/pdb/home/home.do
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Figure 4: The hydrophobic interaction with the ligands in docking poses: (a) warfarin, (b) apocynoside(I), (c) 4-methoxymagndialdehyde,
and (d) prunasin.

the protein sequence of CYP2C9 submitted to the Database
of Protein Disorder (DisProt, http://www.disprot.org/).

The docking site of CYP2C9 was based on the references
for warfarin interactions with Arg97, Phe100, Ala103, Arg108,
Phe110, Val113, Phe114, Asn204, Ile205, Leu208, Asn217,
Val237, Met240, Val292, Asp293, Gly296, Ala297, Thr301,
Leu366, Pro367, and Phe476 in CYP2C9 [37, 38].

A comparison of the disordered region and the docking
site could help in the evaluation of the protein-ligand inter-
action.

2.3. Molecular Docking. The molecular simulations were
performed using LigandFit, which is a receptor-rigid docking
algorithm program in Accelrys Discovery Studio 2.5 (DS 2.5)
[41]. In this program, warfarin and TCM compounds dock to
CYP2C9 in the force field of CHARMm [42].

2.4. Ligand-Based Prediction. Bioactivity prediction was as-
sessed by theMLR and SVMmodels.The pIC

50
of 19 CYP2C9

inhibitors was set as the template to assist with model assess-
ment (Table S1, see the Supplementary Material available

http://www.disprot.org/
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Figure 5: The H bonding between protein and ligand interaction in docking poses: (a) warfarin, (b) apocynoside(I), (c) 4-methoxy-
magndialdehyde, and (d) prunasin. The ligand is shown in purple, orange represents pi-pi interactions, cyan shows the control pi-pi
interactions bonding amino acids, white is the nonbonding amino acids of the ligand, and green is H-bonds.

online at http://dx.doi .org/10.1155/2014/404505) [43]. Before
creating the prediction model, the descriptors of the ligand
were evaluated through the Genetic Approximation (GA)
algorithm of the Calculate Molecular Properties module in
Accelrys Discovery Studio 2.5 (Table S2) [44].

The MLR was established by the five descriptors and the
Matlab Statistics Toolbox was used to select the ligand based
on activity [45] and was detected by the Leave One Out
Validation [23]. The equation is as follows:

𝑦 = 𝑏0 + 𝑏1 ∗ 𝑋1 + 𝑏2 ∗ 𝑋2 + ⋅ ⋅ ⋅ + 𝑏5 ∗ 𝑋5, (1)

where 𝑌 is the pIC
50
prediction result, 𝑋 is descriptor, and 𝑏

is a coefficient in the equation.
The SVM model used the same ligand template and

descriptors. The descriptors should be normalized to trans-
form the range from −1 to 1. Fivefold Cross Validation was

used to screen the best training model [46]. The equation is
as follows:

𝑌
𝑖
= (𝛼
𝑖
, 𝑥
𝑖
) + 𝑏,

(𝑥, 𝛼) = ∑𝛼
𝑖
𝑘
𝑖
(𝑥) + 𝑏,

(2)

where 𝑘
𝑖
(𝑥) represents a set of kernel transformations, 𝑖 =

1, . . . , 𝑚, 𝛼
𝑖
is a vector of the linear function, and 𝑏 is a

coefficient.
The SVM regression model is determined by the 𝜀-insen-

sitive loss function:

𝐿𝜀 (𝑦, 𝑓 (𝑥, 𝛼)) = 0, if 󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥, 𝛼)
󵄨󵄨󵄨󵄨 ≤ 𝜀

󵄨󵄨󵄨󵄨𝑦 − 𝑓 (𝑥, 𝛼)
󵄨󵄨󵄨󵄨 − 𝜀, otherwise.

(3)

After prediction, we selected the top 1–3 ligands based on
data and employed these compounds as candidates for MD
simulation.

http://dx.doi.org/10.1155/2014/404505
http://dx.doi.org/10.1155/2014/404505
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Figure 6: MD trajectories depicting changes during 20 ns simulation: (a) plot of complex RMSD, (b) plot of ligand RMSD, and (c) plot of
complex total energy verses MD simulation time.
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2.5. Molecular Dynamics Simulation. In the Standard Dy-
namics Cascade and Dynamics (Production) package of DS
2.5 [19, 47], minimization was set to the steepest descent and
the conjugate gradient set to a maximum of 500 steps. The
heating time was 50–310K, the equilibration time was 200 ps,
and the total production time was 20 ns, with using NVT
and the constant temperature dynamics used the Berendsen
weak couplingmethod.The temperature coupling decay time
was 0.4 ps with the Berendsen thermal coupling method.
The target temperature was 310 K. After MD simulation [48],
hydrogen bonds, the distance of the hydrogen bond, root
mean square deviations (RMSD) of the complex, RMSD of
the ligand, and total energy of the complex were analyzed by
the analysis trajectory ofDS 2.5. Finally, to depict the pathway
of the ligand’s movement into the docking site and run the
protein after interaction, we calculated the aperture of the
protein and the molecular structure of the ligand [49].

3. Results and Discussion

3.1.TheDetection of Disorder Protein. Thedisordered protein
is intrinsically an unstructured protein andwhile the docking
site consists of a disordered region the complex will only
stabilize with difficultly. The disordered regions of CYP2C9
are defined as those regions with a disposition greater than
0.5 (Figure 1). This result indicates that the important amino
acids do not consist of disordered regions; thus, the ligand
docks to the appropriate selected site and our results have
a weaker effect compared to the disordered protein. Conse-
quently, the compounds selected were based on docking that
could have an influence on CYP2C9.

3.2. Bioactivity Prediction by MLR and SVMModels. TheGA
algorithm can determine the optimal relationship between
pIC50 andmolecular descriptors.The top ten selectedmodels
have five molecular descriptors. For example, the correlation
coefficient (𝑟2) of the topmodel is 0.9581, confirming that this
model is credible (Table S2). The equation for the model is
shown below:

GFATempModel1 = 9.3969 + 4.6637 ∗ 𝐴Log𝑃

− 1.5025 ∗ ESSumdssc

− 4.0939 ∗ Log𝐷

+ 0.0089932 ∗ JursDPSA1

− 0.27175 ∗ Jurs WPSA 3,

(4)

in which 𝐴Log𝑃 measures the hydrophobic surname of the
molecule. The ES Sum dssc is the calculation of the E-state
sum for atom type dssc. Log𝐷 is thewater partition coefficient
calculated by taking into account the ionization states of the
molecule, and the default pH is 7.4. The Jurs DPSA1 is the
difference in charged partial surface areas. The Jurs WPSA 3
is the surface-weighted charged partial surface area.

The results show theMLR and SVMmodels, with correla-
tion coefficients of 0.9446 and 0.7534, respectively (Figure 2).
Thesemodels are used to predict the bioactivity of the control
and the TCM compounds. Finally, the top models were
selected as candidates based on the SVM prediction (under
the condition that docking score and SVM were better than
in the control) (Table 1).
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3.3. Molecular Docking. The top three compounds selected
by the threshold, which requires that both the docking score
and the bioactivity predicted from SVM are higher than the
control, are apocynoside(I), 4-methoxymagndialdehyde, and
prunasin. The 2D structure of the top three candidates, and
warfarin, are presented in Figure 3. The top TCM candidate
is apocynoside(I), extracted from Apocynum venetum L.
while 4-methoxymagndialdehyde (top 2) is extracted from
Magnolia officinalis Rehd. et Wils., and prunasin (top 3) is
extracted Citrus aurantium L. These compounds have been
confirmed for antioxidant and anti-inflammatory actions
[50–54], which are important aspects of antiaging treatment.
It could be suggested that the selected compounds, having
these functions, may have an influence on CYP2C9.

The hydrophobic interaction analysis was calculated by
Ligplot v.2.2.25 to interpret docking poses (Figure 4). The
results shown in Figure 4 indicate that the top three com-
pounds have hydrogen bonds (H-bonds) but only warfarin

has a hydrophobic interaction. Each docking score for the top
three compounds is higher than the control because of their
stronger interaction in the docking site.

An interesting result in the docking poses presented by
DS 2.5 (Figure 5) is that warfarin has a pi bond interaction
with some of the twenty-one amino acids. It is well known
that the pi bond is stronger than the H-bond but the docking
score is not presented. In the observation of the distance
between ligand and protein, warfarin is greater than the
TCM compounds and warfarin has a fewer amino acids
around the ligand than the TCM compounds. Based on
the above reasons, we suggest that the docking score will
be calculated according to the ligand’s interaction with the
protein’s docking site.

3.4. Molecular Dynamics Simulation. After an MD of 10 ns,
the RMSD of the ligand, the RMSD of the complex, and
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the total energy are recorded (Figure 6). The RMSD of the
complex and the total energy tend to lessen. This result
indicates that the protein-ligand interaction will become
balanced (4-methoxymagndialdehyde as ligand) at 20 ns of
simulation. Interestingly, in Figure 6, the ligand RMSD of
prunasin is the highest, but the complex RMSD and total
energy are the lowest. To solve this problem, we will use
the analysis of the protein-ligand interaction and the protein
structure variation.

We captured the simulation PDB file based on the signifi-
cant variation of RMSD and total energy (Figure 7).We noted
that the pi bond in warfarin and in the CYP2C9 complex was
not stable after making the comparisons between 5 ns, 7 ns,
14.5 ns, and 16 ns.The fact that the docking score forWarfarin
was lower than TCMcomplex can be confirmed based on this
result.

Torsion helps to describe the variation of a protein
structure (Figure 8). In this result, we can determine that the
site involved with H-bonds will have an intense variation,
such as torsions 1 and 5 in warfarin, torsions 11 and 14 in apoc-
ynoside(I), torsions 19 and 20 in 4-methoxymagndialdehyde,
and torsions 27 and 28 in prunasin.This result shows that the

H-bond in the warfarin complex is less than the observations
for the frequency and amplitude in torsion.

We selected the occupancy of H-bonds to be greater than
50% in each TCM complex and we inspected the H-bond
distance (Figures 9–11). In these results, the 5 ns and 16 ns data
were captured on behalf of the first and last group balance
structure based on RMSD.

The results indicate that the top three H-bond occupan-
cies of apocynoside(I) interact with CYP2C9 and the top
two among these amino acids are important (Figure 9(a)).
The distance of each H-bond is consistent after an MD of
2 ns and these amino acids are at similar positions after
superimposition (Figures 9(b) and 9(c)). Based on the above,
we suggest that apocynoside(I) and CYP2C9 can become
a stable complex and that apocynoside(I) can influence
CYP2C9.

We note that 4-methoxymagndialdehyde is modified
based on ligand RMSD and the top two H-bonds (over the
threshold of occupancy); distances are presented in Figure 10.
In these results, one of the important amino acids, Phe476,
vigorously interacts with the ligand to create a balanced
complex. This situation may indicate that the structure of
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Figure 11: The variation in H-bond distance of the Prunasin and CYP2C9 interactions in MD. (a)The top two (Leu208 and Asn217) H-bond
occupancies and their distance variations in (b) 5 ns and in (c) 16 ns.

Table 1: Scoring functions of the top compounds and the inhibitor of CYP2C9.

Compounds Herbs Predicted (pIC50) Dock Score
SVM MLR

Apocynoside(I) Apocynum venetum L. 7.252 4.175 81.260
4󸀠-methoxymagndialdehyde Magnolia officinalis Rehd. et Wils. 6.211 7.681 60.282
Prunasin Citrus aurantium L. 5.989 6.040 81.165
Warfarin∗ 5.957 13.085 40.014
∗Control.

4-methoxymagndialdehyde can have H-bonds with adjacent
amino acids; thus, the interaction will be extended.

The ligand RMSD indicates that the ligand has a variation
of between 5 ns and 16 ns; otherwise, the H-bond distance is
not transformed with the ligand (Figure 11). This condition
confirms that the total energy and the complex RMSD do
not have large amplitude after 5 ns. We suggest the main
functional point of the ligand interacts with the protein but
the benzene of the ligand cannot establish H-bond with

the amino acids; thus, this benzene moiety will change
position and angle to create a weak interaction. This result
may indicate that prunasin, in the simulation site, will make
the complex stable and prunasin will vary to induce a better
complex.

The pathway of the ligand as it moves into the docking
site is calculated based on the aperture of the protein
and the molecular structure of the ligand (Figure 12). This
result shows that prunasin has the largest pathway into
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Figure 12: The pathway for ligand into the simulation site. The Cyan is number one path, the green is the second path, the yellow is the third
path, and the red is ligand site: (a) warfarin, (b) apocynoside(I), (c) 4-methoxymagndialdehyde, and (d) prunasin.

the simulation site. We suggest that the structure of prunasin
is not complicated and that the molecular weight, being less
than others, induces the ligand to transform easily to give
many pathways that can be traversed.

4. Conclusion

An important knowledge of personalized medicine and
biomedicine, such as the analysis of regional disease [55],
rare disease [56], clinical diagnosis cases [57, 58], and disease
associated mutations [59–61] has been attracting more and
more attention [62, 63]. The TCM is defined as a personal
medicine. Our research applies a structure-based and ligand-
based theory of CADD to screen TCM compounds for inhi-
bition of CYP2C9.The selected compounds can take effect on
CYP2C9when the docking site does not consist of disordered
regions. The efficacy of the selected TCM compounds is
confirmed and this efficacy can indirectly prevent aging.
After the analysis of MD and protein-ligand interactions,
we suggest that apocynoside(I) and prunasin can make the

complex balance faster but that 4-methoxymagndialdehyde
has a more intense ligand dock in the protein. On the basis of
the above observations, and compared towarfarin, we suggest
that the selected compounds may have an effect on CYP2C9
inhibition.
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