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The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable
agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an
attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected
and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process
regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined
through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared
to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between
adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude)
than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption
kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in
Kd is noted with increase in induced concentration due to the formation of bound or aged residue.

1. Introduction

Sustainable agriculture demands high and good quality food
production. Increase in agricultural base has become a
challenge for the growers and farmers.This compels extensive
use of insecticides that lead to growing accumulation of pol-
lutants in environment over the last decade.The environment
and human health are adversely affected by irrational and
high pesticides use [1].The toxicological and ecotoxicological
effect ismanifested as pesticides remain chemically active and
rapidly broke down into other chemicals [2]. Pesticides when
applied on crops get transported to various environmental
compartments [3] like soil, plant, and water, while only a
small part of the chemical stays in the area where it is applied.

Organophosphates have been detected in air, snow, fog,
rainwater [4, 5], and in the pine needles in the mountains
[6], miles away from the agricultural spraying area. Toxicity

of organophosphates for nontarget organisms has also been
the subject of extensive research [7]. Organophosphates are
extensively used in China, Colombia, and Pakistan. Use of
chemicals to control pests is increasing at the rate of 25% a
year [8] in Pakistan.

Organophosphates are esters of phosphoric acid and exist
in two forms, Thion and Oxon [9]. Parathions (methyl and
ethyl) are a group of highly toxic compounds used extensively
in agricultural crops especially cotton, soybean, corn, wheat,
alfalfa, vegetables, fruit trees, and domestic activities [10]
leading to different hazards.

Methyl parathion, C
8
H
10
NO
5
PS [11], also known as

metaphos, is a broad-spectrum agricultural insecticide and
acaricide that is released to the environment primarily
through spraying using aircraft or ground spray equipment
[12]. Methyl parathion is rapidly removed from the atmo-
sphere [13] by wet and dry deposition and forms bound
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residues restricting its movement in soils [14–16], where
its adsorption is influenced by organic matter and CEC of
the soil [17]. However, its mobility and leaching into the
soil-water system is affected by pH. Methyl parathion when
introduced into the environment is degraded by hydrolysis,
photolysis, or microorganisms, whereas degradation appears
to be significantly retarded [18, 19] when its concentration is
high, as in bulk disposal and spills.

Ethyl parathion, C
10
H
14
NO
5
PS, also known as thiophos,

has little or no potential for groundwater contamination
[11]. The major metabolites of ethyl parathion are amino
parathion and 4-nitrophenol. However, in soils that have
received multiple applications, 4-nitrophenol is the only
metabolite and rate of degradation is faster. Soil act as a buffer
and offer degradation potential for the stored pollutants
with the help of soil organic carbon [20]. Pesticides also
bind to soil particles thus reducing chemical availability and
transportation to different environmental compartments.
Chemodynamics of pesticides is generally considered to be
effectively controlled through adsorption process by offering
high adsorption capacity, extra ordinary surface area, and
microporous structure of adsorbents.

To remediate the adverse effects and chemical accumula-
tion of active metabolites of applied insecticides in soil fields,
different control methods are in use. Solid-phase adsorption
is one of the most efficient technologies for the treatment of
pesticide [21].

The adsorption of organophosphorus pesticides onto
activated carbon has attracted many researchers due to its
high removal efficiency [22, 23], but high cost inhibits its
application on a large scale [24].

To overcome these and other limitations associated with
commercial adsorbent materials, the researchers continue
their work to find out more economical and easily available
materials [25] to be used as potential adsorbents.

Knowing the fact that sorption of organic chemicals to
soil is a process that can affect mobility, degradation, and
toxicity by reducing availability, the present investigation is
designed with the following objectives:

(i) explore the use of most abundantly available soil as
natural adsorbent for the removal of organophos-
phate pesticides;

(ii) quantify the fate and transport process of organ-
ophosphates for understanding their behavior in the
environment;

(iii) determine the factors affecting binding of pesticide
with soil through batch adsorption experiment.

Pakistan is a developing country with agro-based econ-
omy. Its life line and development rest on sustainable agri-
cultural practices. Improving soil conditions of agricultural
fields can ensure best growing conditions and can also offset
the adverse effects of applied pesticides; for example, organic
matter in soil has multiple functions. It revolves nutrient
storage, improves soil structure, maintains tilt, minimizes
erosion, and binds the unwanted chemical to be removed
thereafter.

Table 1: Physiochemical analysis of soil fields.

Sample fields
Wheat
field

(WF I)

Wheat
field

(WF II)

Wheat
field

(WF III)

Barren
field
(BF I)

Barren
field
(BF II)

pH 7.42 7.61 7.57 8.75 8.78

Electrical
conductivity 𝜇S at
25∘C

73.2 54.4 54.8 37.4 36.1

Bulk density g/cm3 1.33 1.36 1.37 1.5 1.6
Organic content (%) 4.2 4.4 4.5 3.1 3.2
Moisture content
(%) 3.7 2.33 3.5 5.5 5.1

Thepresent studywill facilitate the prediction of the expo-
sure level of humans andnontarget organisms to organophos-
phate pesticides and its active ingredients. The development
of low cost soil adsorbent will suggest a pest control product
for environmental remediation and sustainable agriculture.

2. Materials and Methods

Two different sampling areas of Jhelum, that is, agricultural
(wheat) and barren (suburbs of wheat), were selected for
sampling with the objective to represent varying organic
matter. Topsoil (4-5 inches) 90 samples from agricultural and
60 of barren area were collected in X and zigzag pattern,
respectively. Composite sieved (2mm) soil sample of each
type was prepared by mixing the subsoil samples in agate
mortar and pestle. pH and temperature were noted on site.

Each soil sample was analyzed for physicochemical
parameters of pH, bulk density, electrical conductivity, and
organic matter content following standard methods. The pH
and EC of all solutions were recorded by pH (inoLab pH
720) and conductivity meter (con-500, Cyberscan), respec-
tively. Color of samples was observed using Munsell color
chart. Results of physicochemical parameters are summa-
rized in Table 1.

The physicochemical characteristics of oil samples reveal
that agricultural fields have relatively lower pH than barren.
It may be related to the higher organic content due to more
fulvic and humic acid. The range is generally alkaline for
both classes of soil. Pakistani soil is mostly alkaline in nature
ranging from 7.5 to 8.5 [26].

The low value of bulk density is indicative of higher
organic matter content and large pore size [27]. Soil with
higher content of organic matter is more porous and has
relatively low bulk density [28].

EC of the soil sample decreases with decrease in % age
organic matter (see Table 1). It may be attributed to the fact
that ionic concentration is greater in alkaline soils [29] and
the higher the ionic species, the higher the conductivity [30].

2.1. Batch Adsorption. Nine series of batch experiments for
each pesticide were conducted as a function of time to
determine the percentage concentration of the pesticide
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removed by adsorption on each soil. The following general
procedure for a batch experiment was adopted.

Aqueous solution of known concentration of the pesticide
was induced to fixed mass (5 g) of soil adsorbent, adjusted at
known pH at room temperature. Solution pHwas adjusted to
the desired value (pH 4, 7 and 10) by adding sodium acetate
and acetic acid (pH 4), 0.1M NH

3
, and NH

4
OH for pH 7 to

10 solutions [31].
The mixture was allowed to shake on Isothermal shaker

(Lab-Companion SK-300). After regular contact time inter-
val (one hour), pesticide was extracted using equimolar
solvent mixture of acetone and n-hexane. The extracted
aliquot was run on UV-Visible spectrophotometer (UV1601,
Shimadzu) to determine the absorbance of the solution
against blank. The concentration was calculated from stan-
dard calibration curve.The process continued till equilibrium
was attained between adsorbate and adsorbent.

The sameprocedurewas repeated for varying adjusted pH
(4, 7 and 10) and variable induced concentration in 𝜇g/L (10,
30 and 50) for each selected pesticide.

The percentage removal of methyl parathion and ethyl
parathion by different soils at equilibrium is calculated using
the following mass balance equation:

𝑞
𝑒
=
𝐶
𝑖
− 𝐶
𝑒

𝑆
, (1)

where 𝑞
𝑒
is amount (in 𝜇g/kg) of the pesticide removed, 𝐶

𝑖
is

initial concentration of pesticide in solution (𝜇g/L), and 𝐶
𝑒
is

equilibrium concentration of pesticide in solution (𝜇g/L).
The dose concentration 𝑆 is expressed as 𝑆 = 𝑚/V, where

V is initial volume of pesticide solution used and𝑚 is mass of
soil used.
𝐾
𝑑
and 𝐾oc were also calculated using the following

equations:

𝐾
𝑑
=
amount of pesticide in adsorbent
amount of pesticide in solution

, (2)

(see [32]),

𝐾oc =
𝐾
𝑑

OC
, (3)

(see [33]).
𝐾
𝑑
is the distribution coefficient so𝐾

𝑑
= 𝑋/𝑆, where𝑋 is

the amount of adsorbent and 𝑆 is the amount of pesticide in
solution. 𝐾oc is the distribution coefficient of organic carbon
and OC is the organic carbon.

2.2. Kinetic Studies. Theadsorption kinetics was computed to
optimize the appropriate correlation for equilibrium adsorp-
tion behavior. Rate was determined through application
of first order, pseudo-first-order [34], pseudo-second-order
[35], and intraparticle diffusion [36].

2.3. Adsorption Models. Adsorption models of Freundlich
and Langmuir [37] are commonly used to describe the
adsorption process. Equations are tabulated in Table 2.

3. Results and Discussion

3.1. Effect of pH. The effect of different pH (4, 7 and 10) on
the adsorption of methyl parathion and ethyl parathion by
different soil samples is studied. The results are graphically
presented in Figures 1 and 2.

It is observed that pH has a momentous effect in adsorp-
tion capacity. In moving from pH 4 to 7, an increase in
methyl parathion adsorption followed by a decrease at pH
10 is observed for agricultural and barren soil. The presence
of hydronium ions on the adsorbent surface at lower pH
may enhance the interaction of pesticide molecules with the
binding sites of adsorbentmaterial. It is further suggested that
carbonaceous functional groups are dissociated at different
pH values and consequently take part in the sorption process.

Same trend is noted for adsorption of ethyl parathion on
both soil types in terms of variable pH (see Figure 2).

The present study behavior of organophosphates
(parathion) is in contrast to Lindane and Carbofuran [38]
reporting that adsorption increases with increase in pH of
neutral molecules.

Decrease in percent adsorption with time is accompanied
by a reduction in the adsorption capacity while extending
to basic pH in both soil types. The reduction in adsorption
capacity at higher pH is also reported by other authors [39].
It may also be attributed to the lesser adhesive forces between
adsorbate and adsorbent than the cohesive forces of the
adsorbate (due to alkaline soil and adjusted alkaline media).

The study concludes that pH 7 is optimumevident to both
pesticides, showing maximum removal efficiency for methyl
and ethyl parathions as 83% and 80% for agricultural soil,
whereas 82% and 79% for barren soil.

It reflects preference of organic matter content in agricul-
tural soil for adsorption; the higher is the organic content,
the more is the adsorption. Soil high in organic matter and
clay are more adsorptive than coarse sandy soil because a clay
or organic soil has more particle surface area or more sites
into which pesticide can bind [40]. The closeness in percent
adsorption on two types of soil at pH 7 (neutral) is highly
encouraging as sustainable agricultural approach suggests
that little or nomodification is required in soil characteristics
for optimum removal of parathion.

3.2. Effect of Concentration. In order to study the effect of
concentration on adsorption, batch experiment was adminis-
tered at induced pesticide concentration of 10, 30, and 50𝜇g/L
for each soil type. The results are presented in Figures 3 and
4.

It is noted that adsorption potential of agricultural soil
for removal of methyl and ethyl parathions is found to be
72%, 78%, and 83% and 75%, 79%, and 80%, respectively, on
increasing the concentration from 10 through 30 to 50𝜇g/L
(see Figure 3).

As reported in the literature themaximum loading capac-
ity of the adsorbent and the rate of adsorption were found to
increase with increase in the pesticide initial concentration
[24].

A different behavior is depicted by barren soil field
samples for the removal of methyl parathion with change
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Table 2: Adsorption models along with their parameters.

Isotherms Linear expression Plot Parameters

Langmuir (1918)
𝐶
𝑒

𝑞
𝑒

=
1

𝑞
𝑚
𝐾
𝐿

+
𝐶
𝑒

𝑞
𝑚

𝐶
𝑒

𝑞
𝑒

v 𝐶
𝑒

𝑞
𝑚
=
1

slope

𝐾
𝐿
=

slope
intercept

Freundlich (1906) log 𝑞
𝑒
= log𝐾

𝐹
+
1

𝑛
log𝐶
𝑒

log 𝑞
𝑒
v log𝐶𝑒

𝑛 =
1

slope
𝐾
𝐹
= Antilog (intercept)

Pseudo-first-order log (𝑞
𝑒
− 𝑞
𝑡
) = log 𝑞

𝑒
− (
𝑘
1

2.303
) 𝑡 log (𝑞

𝑒
− 𝑞
𝑡
) v 𝑡 𝑘

1
= slope

𝑞
𝑒
= Antilog (intercept)

Pseudo-second-order
𝑡

𝑞
𝑡

=
1

𝑘
2
𝑞2
𝑒

+ (
1

𝑞
𝑒

) 𝑡
𝑡

𝑞
𝑡

v 𝑡
𝑞
𝑒
= slope

ℎ = intercept
𝑘
2
=
intercept
(slope)2

Intraparticle diffusion 𝑞
𝑡
= 𝑘ip𝑡

0.5
+ 𝐶 𝑞

𝑡
v 𝑡 𝑘ip = slope

𝐶 = intercept
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Figure 1: Effect of pH on %-adsorption of methyl parathion.

in concentration. An initial decrease of 8 orders followed
by 14 orders increase in adsorption is observed in moving
from 10 𝜇g/L to 50𝜇g/L (see Figure 4). This peculiar feature
of methyl parathion adsorption is affected by the chemical
properties of the pesticide [41].

The general lower adsorption behavior on barren soil
is demonstrated by soil parameters like higher moisture
content, significantly lower EC, and high density allowing less
number of sites available.

On the other hand, barren soil behaves similarly to
agricultural soil for the removal of ethyl parathion showing
a gradual increase in adsorption with a regular increase
in concentration. This is due to the fact that increased
concentration provides necessary driving force to overcome
the resistances to the mass transfer of pesticide between
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Figure 2: Effect of pH on %-adsorption of ethyl parathion.
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Figure 3: Effect of induced concentration on %-adsorption of
methyl parathion.

aqueous and solid phase. This behavior is comparable and
supported by other studies [38].

The study concludes that optimum adsorption takes place
at higher induced concentration (50𝜇g/L). However, the
induced concentration on average impact slightly showsmore
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Figure 5: Effect of contact time on %-adsorption of methyl
parathion.

adsorption for methyl parathion than ethyl parathion. It may
be due to insignificant structural difference between two
pesticides.

3.3. Effect of Contact Time. Batch experiment was conducted
with regular intervals of time in order to determine the
equilibrium between adsorbate and adsorbent.

It is generally observed that adsorption increases with
increase in contact time for both pesticides. The removal was
rapid in early stages and finally attained almost constant value
for longer contact time (see Figures 5 and 6). Obviously, the
initial high adsorption rate is due to the abundance of free
binding sites [24].

It is interesting to note that the first adsorption equi-
librium for both pesticides is attained in 10 hours time.
This is also supported by other studies. However, the rate
of adsorption follows a very slow increase for barren soil
till equilibrium. Agricultural soil shows a rapid increase in
adsorption for the first 6 hours followed by almost the same
adsorption rate till equilibrium.

3.4. AdsorptionKinetics. Theaverage values of the adsorption
kinetic parameters for both pesticides on two soil types are
tabulated in Table 3.

It can be seen that pseudo-second-order kinetic fits the
adsorption data equally best for both soil types and both
pesticides with correlation coefficient 𝑅2 (0.999) at optimum
operating conditions of pH and induced concentration.
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Figure 6: Effect of contact time on%-adsorption of ethyl parathion.

Intraparticle diffusion kinetics also provides a good
description of sorption data. A set of correlation coefficients
of 0.979, 0.918 and 0.976, 0.961 is comparable for methyl and
ethyl parathions on agricultural and barren soils, respectively.

It can be seen from Table 3 that distribution of methyl
parathion in agricultural soil samples is comparatively higher
than ethyl parathion. This is also in conformity with higher
adsorption of the former on agricultural soil.

The sequence of distribution constant as a function of pH
follows pH 7 < pH 4 < pH 10 on agricultural and barren soil
for both pesticides. On further investigation, a direct relation
of 𝐾
𝑑
and 𝐾oc is found verifying the trend that agricultural

soils are relatively proven to be better adsorbent and work
optimally at pH 7. Direct relation of 𝐾

𝑑
and 𝐾oc depicting

higher values for agricultural than barren soil is reported by
other researchers [42] (see Table 4).

3.5. Adsorption Isotherms. Both Freundlich and Langmuir
isotherms are best fit for experimental data. The magnitude
of𝐾
𝑓
(see Table 5) shows relatively good adsorption capacity.

Dada et al. reported 𝐾
𝑓
value of 7.61mg/g for adsorption

of Zn onto modified rice husk [43]. Good fit of Freundlich
isotherm describes that the adsorbent surface is heteroge-
neous in nature [44].

On the other hand, Langmuir also holds best sorption
data with average 𝑅2 (0.998). Langmuir model suggests
formation of a monolayer adsorbate on the outer surface of
the adsorbent and equilibrium distribution between the solid
and liquid phases [45].

4. Conclusions

The present study concludes with the following:

(i) the batch adsorption experiment provides an efficient,
convenient, and simple method for the removal of
selected pesticides attaining equilibrium in 10 hours;

(ii) the parameters of paramount significance are found
to be organic matter content, pH and induced con-
centration, optimum being higher organic matter, pH
7, and higher (50 𝜇g/L) induced concentration for the
removal of both pesticides;
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Table 3: Kinetic models for methyl parathion and ethyl parathion.

Soil type Kinetic models Parameters Methyl
parathion Ethyl parathion

𝐾
1

−0.0011 −0.0011
Agricultural Pseudo-first-order 𝑞

𝑒
2.896 2.8903

𝑅
2 0.402 0.393
𝐾
1

−0.0011 −0.0011
Barren Pseudo-first-order 𝑞

𝑒
2.8813 2.880

𝑅
2 0.3634 0.4023
𝐾
2

0.1387 0.1295
Agricultural Pseudo-second-order 𝑞

𝑒
0.0014 0.0011

𝑅
2 0.999 0.999
𝐾
2

0.0181 0.0255
Barren Pseudo-second-order 𝑞

𝑒
0.1059 0.0011

𝑅
2 0.5486 0.999
𝐴 0.0098 0.0105

Agricultural Intraparticle diffusion log𝐾id 1.8802 1.8925
𝑅
2 0.979 0.918
𝐴 0.0064 0.0167

Barren Intraparticle diffusion log𝐾id 1.8716 1.8763
𝑅
2 0.976 0.961

𝑞𝑒 is in 𝜇g/L.

Table 4: 𝐾
𝑑
and 𝐾oc values of agricultural and barren soil samples.

𝐾
𝑑

𝐾oc

pH 4 pH 7 pH 10 pH 4 pH 7 pH 10
Methyl parathion

Agricultural 48.966 63.33 42.500 3726.71 3804.80 3079.71
Barren 44.516 51.429 42.500 3548.23 3632.48 3413.11

Ethyl parathion
Agricultural 63.333 66.957 53.585 589.37 851.92 259.78
Barren 3.375 3.474 3.310 288.50 296.94 282.91

Table 5: Adsorption isotherm for methyl parathion and ethyl parathion.

Adsorption isotherm Soil types Parameters Methyl parathion Ethyl parathion

Freundlich

Agricultural
𝑛 −1.606 −1.597
𝐾
𝑓 3.25 3.257
𝑅
2 0.999 0.999

Barren
𝑛 −1.602 −1.65
𝐾
𝑓 3.325 3.332
𝑅
2 0.999 0.999

Langmuir

Agricultural
𝑏 −3.325 −3.271
𝑄
𝑜

0.335 0.322
𝑅
2 0.999 0.998

Barren
𝑏 −3.161 −3.512
𝑄
𝑜

0.282 0.332
𝑅
2 0.998 0.995
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(iii) methyl parathion is found to be more effectively
removed than ethyl parathion due to lower molecular
weight and less steric hindrance;

(iv) pseudo-second-order, intraparticle diffusion, Lang-
muir and Freundlich models explain the experimen-
tal data to the best fit.

The authors propose that adsorption attains equilibrium
between adsorbate and adsorbent upon contact of 10 hours.
The goodness of Langmuir suggests monolayer adsorption
and nature of adsorbent (soil) is determined to be het-
erogeneous. It also reveals that pores are not uniformly
distributed. kinetics reveals that pseudo-second-order is in
good agreement for agricultural soil samples suggesting its
dependence on concentration of organic content. On the
other hand, intraparticle diffusion is found to be equally
appropriate for both soils suggesting that diffusion is not
characteristics of physical characteristics of soil and pore size
is the same in both soil samples.
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