
Vol.:(0123456789)1 3

Physical and Engineering Sciences in Medicine (2020) 43:1399–1414 
https://doi.org/10.1007/s13246-020-00952-6

SCIENTIFIC PAPER

StackNet‑DenVIS: a multi‑layer perceptron stacked ensembling 
approach for COVID‑19 detection using X‑ray images

Pratik Autee1 · Sagar Bagwe1 · Vimal Shah1,2 · Kriti Srivastava1

Received: 25 July 2020 / Accepted: 21 November 2020 / Published online: 4 December 2020 
© Australasian College of Physical Scientists and Engineers in Medicine 2020

Abstract
The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively 
slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches 
have suggested that visible irregularities found in the chest X-ray of Covid-19 positive patients are indicative of the presence 
of the disease. Hence, Deep Learning and Image Classification techniques can be employed to learn from these irregulari-
ties, and classify accordingly with high accuracy. This research presents an approach to create a classifier model named 
StackNet-DenVIS which is designed to act as a screening process before conducting the existing swab tests. Using a novel 
approach, which incorporates Transfer Learning and Stacked Generalization, the model aims to lower the False Negative 
rate of classification compensating for the 30% False Negative rate of the swab tests. A dataset gathered from multiple reli-
able sources consisting of 9953 Chest X-rays (868 Covid and 9085 Non-Covid) was used. Also, this research demonstrates 
handling data imbalance using various techniques involving Generative Adversarial Networks and sampling techniques. The 
accuracy, sensitivity, and specificity obtained on our proposed model were 95.07%, 99.40% and 94.61% respectively. To the 
best of our knowledge, the combination of accuracy and false negative rate obtained by this paper outperforms the current 
implementations. We must also highlight that our proposed architecture also considers other types of viral pneumonia. Given 
the unprecedented sensitivity of our model we are optimistic it contributes to a better Covid-19 detection.

Keywords Covid-19 · Stacked generalization · Transfer learning · Deep neural networks · Generative adversarial networks · 
Image segmentation

Introduction

Coronavirus disease 2019 (Covid-19) is defined as illness 
caused by a novel coronavirus now called severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2; formerly 
called 2019-nCoV). After the first documented outbreak in 

Wuhan, China, the spread of Covid-19 virus has increased 
rapidly worldwide. As of 11 July 2020, 12.4 million cases 
have been confirmed worldwide. As Covid-19 spreads 
through contact with contaminated surfaces or infected 
person, early diagnosis plays an important role in breaking 
the transmission chain and slowing down the spread of this 
virus. One of the widely used testing methods is a polymer-
ize chain reaction (PCR) test. Even though PCR tests can 
determine the presence of the virus very early on, these tests 
are laborious with several stages at which errors may occur. 
Moreover, PCR tests have nearly 30 percent false nega-
tive rate in the initial week of infection [1], which is useful 
for confirming the virus but not for clearing the patient as 
negative for Covid-19. Another testing method is Serologic 
testing which detects SARS-CoV-2 antibodies in serum or 
plasma components of blood. However, such antibody tests 
do not rule out the chance of an active infection.

To make these tests more accurate Chest X-ray (CXR) 
can be used for the first rough screening process. As CXRs 
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are cheap, less time consuming and effortless they can pro-
vide an easy early detection mechanism and thus, can be 
used to determine the need of a swab test. Moreover, the 
results of these CXR images can be used to reexamine the 
negative results of swab tests, reducing the effect of false 
negative results of the swab tests. The major hurdle in using 
manual detection from CXR by a radiologist is the insuf-
ficient sensitivity in ground-glass opacity (GGO) nodule 
[2]. This leads to inefficient early detection of the disease 
using CXR. However, a well-trained deep learning model 
can differentiate and detect such nodules which can be easily 
missed by the human eye.

CNNs (convolutional neural networks) show good perfor-
mance in image classification tasks. Pre-trained CNN archi-
tectures can be fine-tuned to achieve high accuracy in image 
classification tasks, even on a small dataset. However, in 
some situations, CNNs fall short. In [38] Mateusz Buda et al. 
demonstrate how CNNs do not perform well in situations 
where an imbalance exists in the dataset. In the case where 
one class represents a high majority of the dataset, the CNN 
classifier leans towards the overrepresented class. This leads 
to the classifier having a misleading high accuracy. Another 
case, when the test set is balanced and training set is not bal-
anced; here, the classifier’s decision reflects the prior class 
probabilities (likelihood of an outcome before new evidence 
is presented); which leads to low test set accuracy while 
the classifier’s real discriminative power does not change. 
Our implementation avoids this situation by using sampling 
methods (Sect. 2.2.2) before training the CNN models.

In [39] Hosseini et al. demonstrate how CNN do not 
perform well on some transformed inputs such as nega-
tive images, even though they have the same structure and 
semantics as their normal counterpart. Hosseini et al. found 
that CNNs have a lower accuracy in identifying/classify-
ing the negative of the image if the CNN is trained on a 
regular version of the same image. Our implementation 
avoids this problem as our dataset consists of X-ray images 
which are not affected by inversion of colors and other such 
transformations.

CNNs and CXR images have been used previously 
for detection of various respiratory diseases including 
COVID-19. Wang and Wong [3] proposed a deep model for 
COVID19 detection (COVID-Net), which obtained 92.4% 
accuracy in classifying normal, non-COVID pneumonia, and 
COVID-19 classes. Apostolopoulos et al. [4] developed the 
deep learning model for Covid detection with success rates 
of 98.75% for two classes and 93.48% for three classes.

In this study we have used a combination of four CNN 
models. CNNs have been used in several computer vision 
tasks [5]. A significant progress has been recorded in the 
performance of CNNs in medical studies in the past few 
years. In this work we aim to propose a system designed to 
reduce the false negatives by using a combination of four 

CNN models trained on segmented and non-segmented 
Chest X-rays of publicly available images. Our proposed 
architecture is an end-to-end solution for COVID-19 diagno-
sis which can determine the presence of the disease based on 
raw Chest X-ray images. The use of Stacked Generalization 
approach to create the model and evaluating it thoroughly 
using various metrics and also a unique verification method 
contribute to the novelty of our approach. Using this tech-
nique we were able to achieve a better accuracy and sensitiv-
ity of 99.07% and 99.4% respectively.

Related work

Generative Adversarial Networks (GANs) have been proven 
to handle dataset imbalance by generating synthetic sam-
ples of the same. The system implemented in [6] by Abdul 
Waheed et al. have used ACGAN architecture [7] to gen-
erate samples of Covid and Non-Covid X-ray images to 
handle the lack of image data. The discriminator takes a 
(112 × 112 × 3) image as in input, where it goes through 5 
blocks, each consisting of a convolutional layer, batch nor-
malization layer, activation layer and a dropout layer in the 
mentioned sequence. The discriminator outputs the prob-
ability that the image is real or fake, and the class label it 
belongs to. The generator takes as input a latent point in 
space and a class label to output a (112 × 112 × 3) image. 
In training, discriminator layers are initially set as non-train-
able and hence, only the generator gets updated by the dis-
criminator. In addition to their existing dataset, their system 
generated 1399 synthetic images of Normal X-ray images 
and 1669 synthetic images of Covid-19 X-ray images. In [8] 
Khalifa et al. have used a GAN architecture consisting of 5 
convolutional layers, 4 ReLU layers, 4 Batch Normalization 
Layers and 1 Tanh layer in the generator network and 5 con-
volutional layers, 4 ReLU layers and 3 Batch Normalization 
layers in the discriminator network. This network resulted 
in an increase in the dataset by a factor of 10.

Use of deep neural networks in medical diagnosis has 
been studied for many years and many researchers have suc-
cessfully achieved great results. Use of CNNs for diagno-
sis of chest diseases started with a boom after the release 
of massive Chest X-ray (CXR) dataset by Wang et al. [9] 
with more than 1 million CXRs. Some researchers have also 
claimed to outperform radiologists while diagnosing CXR. 
As an example, Rajpurkar et al. [10] proposed ChexNet a 
model trained end-to-end on DenseNet-121 [11] pretrained 
on ImageNet [12] which has outperformed the average 
F1-Score (0.387) of 4 radiologists with ChexNet F1-Score 
(0.435). In [13] Shin et al. has investigated the performance 
of various CNNs for classification of interstitial lung dis-
ease. In 2005 Xuanyang et al. [14] focused on the classifi-
cation of CXR to diagnose SARS where feature mining is 
done on segmented lungs images and classification by three 
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algorithms was performed. Among the three classification 
algorithms, Regression trees outperformed shallow neural 
nets and decision trees. Still, Neural Nets are supposed to be 
the best methods for pneumonia classification.

In [15] Sethy et al. compared the performance of various 
CNNs trained using transfer training approach, where mod-
els trained on ImageNet were used to initialize the CNNs. 
The models were used to extract features from the CXRs 
followed by training SVM on these mined features for Covid 
classification. While Narin et al. [16] used a transfer learning 
based approach to train and performed comparative analy-
sis on the results of three CNN models namely Inception 
ResNet v2, Inception v3 and ResNet50. They used a fivefold 
cross validation strategy and achieved accuracy of 98% for 
ResNet50 while performances of Inception ResNet v2 and 
Inception v3 were 97% and 87% respectively.

Proposed work

False negative (FN) rate which is a crucial metric while 
determining performance of any model for biomedical 
image classification, as any particular false case can cause a 
sense of negligence in one’s mind. Considering the Covid-19 
detection, where-in any false detection following no further 
examination can cause huge impact keeping in mind the 
novelty of the virus. Various CNNs used for the classifica-
tion trained using transfer learning method have achieved 
high accuracies but still the FN rates are comparatively high. 
The proposed model StackNet-DenVIS has achieved both 
best accuracy and lowest FN rate. Consideration of the fea-
tures on which the predictions are made is also important 
and there too DenVIS performed outstandingly. StackNet-
DenVIS is a model built by stacked generalization ensem-
bling of four different CNNs where-in we optimized outputs 
from CNNs and achieved precise accuracies. We combined 
multiple Chest X-ray datasets which included Covid-19 
Pneumonia images and then handled data imbalance using 
SMOTE and Tomek Links along with addition of synthetic 
images with the help of DCGAN. The balanced dataset was 
then passed through the UNet model where segmentation 
of lungs was done which in turn helped in making lungs 
as the only prominent part in the X-ray. Four CNN mod-
els DenseNet-121, VGG19 bn, Inception ResNet v2, SE 
ResNeXt50-32 × 4d were trained on two datasets (1) Non-
Segmented Balanced, (2) Segmented Balanced. Best per-
forming models were then selected for ensembling. Figure 1 
shows the architecture of the proposed model.

The novelty of concatenating two multi-layer perceptron 
(MLP) models trained on different inputs, helped us in mak-
ing decisions on both the classes independently detailed in 
Sect. 2.4.

This reduced the FN rate and also helped in outperform-
ing other models as demonstrated in Sect. 3.2.

Methods

Data preparation

The dataset used to train the models was collected from 4 
different sources. Choice of the datasets include (1) Chest 
X-ray Images [dataset] [17] (2) Covid-19 chest X-ray data 
[dataset] [3] (3) Covid-19 radiography database [dataset] 
[18] (4) Covid-19 Chest X-ray dataset [dataset] [19]. These 
sources were chosen as they were chosen as they were 
openly accessible. Further, the agglomerated dataset com-
prises 2 sets, Training and Testing with two labels, Covid 
and Non-Covid for each set (Fig. 2).

Differentiating the types:

• Covid: comprises of images which are labelled as 
Covid in the source.

• Non-Covid: comprises of images labelled as Non-
Covid Pneumonia, Healthy and Normal in the source.

Our model classifies the images into two major catego-
ries Covid and Non-Covid thus, we labelled all possible 
types of Pneumonia other than those caused by COVID19 
as Non-Covid. Finally, the dataset consists of 700 Covid 
and 7500 Non-Covid images in the training set while the 
test set contains 168 Covid and 1596 Non-Covid images.

Fig. 1  Proposed architecture
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Preprocessing

Augmenting dataset

CNNs have been proven to be effective in the field of medi-
cal imaging in the last few years [5]. However, their effi-
cacy is contingent on the size of the datasets. CNNs have a 
propensity to overfit on small datasets. This is because the 
efficiency of generalization is proportional to the size of the 
dataset. Thus, an acute data imbalance can lead to a biased 
classifier. After the combination of the datasets mentioned 
in Sect. 2.1, we get 868 Covid images and 9094 Non-Covid 
images. It is evident from these statistics that the number 
of Covid-19 training and testing images are lower than the 
Non-Covid categories i.e. other viral infections like influ-
enza, H1N1 etc. Figure 3 shows the distribution of Covid 
and Non-Covid cases for training and testing images. The 
orange bar represents the Covid images while the green bar 
represents the Non-Covid images.

Data Augmentation is generally used to overcome such 
data imbalance, in which we artificially extend the training 
dataset. However, it cannot introduce new unseen data and 
is limited to operations like flipping, zooming, blurring the 
images etc. Thus, to introduce unseen data in the training 

set, we have used Generative Adversarial Networks (GANs). 
GAN is a generative model with two adversaries; the genera-
tor network and the discriminator network. These networks 
compete against each other to generate new unseen data 
which is similar to the input distribution. In this research, we 
have used a version of GAN known as Deep Convolutional 
GAN (DCGAN).

DCGAN is a variant on GAN which uses CNNs. It mainly 
consists of convolutional layers without any max pooling 
or fully connected layers. It uses transpose convolution and 
convolutional strides for up sampling and down sampling 
respectively. Figures 4 and 5 show the architecture of the 
generator and discriminator DCGAN used in our research.

The architecture of the DCGAN is based on the Cov-
idGAN [6] along with a few modifications. The generator 
takes in a 100-dimensional laten noise vector to produce a 
112 × 112 × 3 image. The point in the latent space is inter-
preted by a dense layer and reshaped to 7 × 7 × 1024. Then 
using transpose convolution layers the low-resolution image 
is up sampled to a 112 × 112 × 3 image. The discriminator 
takes in a 112 × 112 × 3 image and outputs if the generated 
image is real or fake. Down sampling is performed by a 
number of convolutional layers, converting the input of 
112 × 112 × 3 to 7 × 7 × 512 where each layer has a batch 
normalization and a dropout layer of probability 0.4. The 
sigmoid output layer predicts the authenticity of the gener-
ated image. The results of the DCGAN are shown in Fig. 6.

After combining, relabeling and addition of images, done 
with the help of GANs, dataset still has an issue of high 
imbalance where COVID X-rays are in the minority class 
and considering the use case here i.e. screening the COVID 
X-rays for Covid-19 detection this issue needs a solution.

SMOTE and Tomek Links Under‑Sampling

To overcome the dataset imbalance problem, we have used 
Synthetic Minority Oversampling Technique (SMOTE) 
and Tomek Links Under sampling in a pipelined approach 
as proposed by Gustavo E. A. P. A. Batista [20]. Unlike 

Fig. 2  a, c and e represent 
labels of source dataset and b, 
d, and f represent labels of our 
dataset

Fig. 3  Data imbalance
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in simple oversampling, where the same examples of the 
minority class are copied, SMOTE generates synthetic 
classes which are close to the feature space of the minor-
ity class, thereby increasing the minority class examples. 
It is a technique based on nearest neighbors judged by 

Euclidean Distance between data points in feature space. 
There is a parameter which represents the percentage of 
Over-Sampling whose value indicates the number of syn-
thetic samples to be created. For each minority instance, k 

Fig. 4  Generator architecture

Fig. 5  Discriminator architec-
ture

Fig. 6  Comparison of images 
generated by DCGAN and real 
images
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number of nearest neighbors are found such that they also 
belong to the same class where,

The difference between the feature vector of the con-
sidered instance and the feature vectors of the k nearest 
neighbors are found. So, k number of difference vectors are 
obtained. The k difference vectors are each multiplied by a 
random number between 0 and 1 (excluding 0 and 1). Now, 
the difference vectors, after being multiplied by random 
numbers, are added to the feature vector of the considered 
instance (original minority instance) at each iteration.

In this case, the minority class is oversampled with the 
applied ‘sampling_strategy’ parameter represented as ‘k’ 
(k = 0.5) i.e. keeping the sampling strategy parameter as 0.5 
increases the number of minority class examples by 50%.

Tomek Links [21] is one of the finest techniques for 
under-sampling in which the Tomek Links are identified 
from the given samples and according to the stated class 
that particular sample is removed. It has the effect of mak-
ing the decision boundary in the training dataset less noisy 
or ambiguous. A Tomek Link is the distance between two 
samples from two different classes say x and y such that for 
any sample z:

Tomek Links basically exist between the nearest neigh-
bors in the feature space and thereby removing the sample of 
the minority class. In order to apply the Tomek Links con-
figuration, the tomek argument can be passed to the SMO-
TETomek() class to create an instance of the configuration.

In a pipelined approach the minority Class is oversampled 
by using SMOTE followed by removing the majority class 
samples by Tomek Links [22]. The above-mentioned meth-
ods are implemented using the imblearn library.

Since the usage of SMOTE [20] and Tomek Links [22] 
requires the application of feature comparison thus, it is a 
slow algorithm and the images are required to be stored in 
the RAM for processing. So to avoid crashing of our system 
we have used Batch-SMOTE followed by undersampling 
where-in we divided the combined dataset into four batches 

k =
(SMOTE%)

100

d(x, y) < d(x, z) and d(x, y) < d(y, z)

containing 2063 images each with Covid images shuffled 
in such a way that every batch contains at least 125 images.

As shown in Table 1, oversampling the minority class 
(i.e. ‘Covid’) resulted in at least 900 image samples in each 
batch. After, undersampling the majority class resulted in 
matching distribution size for each class in a batch. Finally, a 
total number of 7490 images with 3745 images in each class 
were obtained after this process.

Lung Segmentation

As we train to differentiate between different classes from 
different datasets, a Neural Network model might learn fea-
tures specific to the dataset and not specific to the disease. 
These unwanted features include lead markers and medical 
instruments or implants the patient might have. Such arti-
facts can create an intensity variation which might be incor-
rectly identified by the model as Covid-19 nodule. Moreover, 
a number of X-rays have the initials of the radiologic tech-
nologist. These initials are marked using lead markers. Such 
lead markers often include the alphabets ‘R’ and ‘L’ indicat-
ing the right or left of the patient respectively. These artifacts 
can influence the model’s decision as the model might learn 
to identify these initials as a feature for classifying the X-ray 
as positive for Covid-19. As these lead markings are not 
pertinent to the disease these should be removed. Figure 7 
illustrates some of these artefacts.

Thus, in order to eliminate the unwanted features per-
taining to the dataset we perform semantic segmentation of 
the lungs [23–26]. The goal of semantic segmentation is to 
generate a high-resolution image same as that of the input 
but with a label for every pixel. This ensures that only the 
features relevant to the disease are preserved and it trims 
away the possible sources of bias such as annotations pre-
sent on the CXRs and medical instruments attached to the 
patient etc.

We implement this task of lung segmentation using U-Net 
[27] trained on Montgomery County Xray Set and Shenz-
hen Hospital X-ray Set [28]. The U-Net model architecture 
consists of two major parts; the contracting part with convo-
lutional and max pooling layers and the expansive part con-
sisting of transposed 2D convolutional layers. The model is 
able to distinguish and localize borders by classifying every 

Table 1  Summary 
of oversampling and 
undersampling

Batch Original After Oversampling After Undersampling Total

Sr. no Covid Non-Covid Covid Non-Covid Covid Non-Covid

1 200 1850 925 1850 925 925
2 250 1813 907 1813 907 907
3 175 1888 944 1888 944 944
4 125 1938 969 1938 969 969
Total 3745 3745 7490
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pixel making it apposite for the task of segmentation. The 
segmentation is performed with the obtained mask and then 
the segmented image is blurred with a pixel radius of 4 to 
eliminate the sharp edges. Figure 8 shows the Lung segmen-
tation process.

Transfer Learning

Training a CNN model from scratch and achieving best 
results requires the dataset to be in millions and considering 
our dataset contains only 7490 images, training a new CNN 
model from scratch was elusive. Thus, we have used transfer 
learning as an alternative where-in the usage of pretrained 
models is suggested.

Rather than training from scratch, in transfer learning, the 
weights of a particular model are first initialized for a task, 
utilizing large-scale datasets and then the learnt features are 
applied over the problem set. Such an approach makes it 
possible to avoid computational cost, mathematical calcula-
tions, hardware limitations and helps in focusing to resolve 
the determined task.

An important aspect while using transfer learning is the 
initialization of weights which is done by considering the 
variations in the source dataset. As ImageNet [12] is widely 
used as an initializer where the required task to be solved is 
related to medical images, we have initialized our models 
with ImageNet weights.

Among the different approaches towards usage of transfer 
learning, we have used a fine-tuning method which includes 
training the model on the available dataset with making 
some of the layers in the model trainable and keeping oth-
ers non-trainable.

Pretrained Models Used

Considering the false negative rate of State-of-the-art CNNs 
when working with medical data, we narrowed the experi-
ment to consist of the following choices: DenseNet-121 
[11], VGG19 BN [29], Inception ResNet v2 [30] and SE-
ResNeXt50-32 × 4d [31]. The objective of selecting the 
particular models was their performance in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC). In 

Fig. 7  Artefacts in the dataset

Fig. 8  Process of lung segmentation
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this paper, the technique of discriminative layer training [32] 
was implemented using the fastai library.

Multi‑layer perceptron stacked ensembling

Stacked generalization

Ensembling [33] of different models is a common tech-
nique to improve the prediction accuracy. In Deep Learning 
with Python [34] Francois has stated two basic approaches 
towards ensembling—weighted and normal averages.

These approaches include averaging the predictions of the 
models, while weights are added accordingly, to support the 
most promising model. As the selection of weights is done 
manually, which creates a gap for manual error, we used the 
Stacked Generalization [35] method.

In Stacked Generalization the model learns to predict the 
classes taking the predictions of CNN models as input. This 
model is also sometimes termed as meta-learner. Stacked 
Ensembling approach generally outperforms Average 
Ensembling and Weighted average Ensembling.

Hypothesis

As Covid-19 is a novel disease and highly contagious, even 
if the patient has a 10% chance of being infected it should be 
taken into consideration while making predictions. Consider 
the results in Table 2, for case 1 the WA and NA predicted 
the probability as 0.23 and 0.47 respectively. As per our 
hypothesis any probability > 0.2 should be considered as 
Covid, so the image would be classified as Covid while the 
Ground Truth says it’s Non-Covid, unlike in Stack Ensem-
bling where the same result is stated as Non-Covid with 
a probability of 0.0046. Table 2 includes only few of the 
many such cases where Stack Ensembling outperforms other 
ensembling approaches.

Architecture

The use of Stacked Ensembling not only reduces the vari-
ance but also helps in reducing the error rate with signifi-
cant margin. Unlike in average ensembling, the conditional 
weights in stacked ensembling are added to the input 

predictions, thus helping in better generalization. Stacked 
Ensembling is done in two levels; first the predictions of the 
CNN models on the training datasets are stored and in the 
second level Multi-Layer Perceptron (MLP) Model built is 
trained on the predicted data.

The predicted probabilities by the CNN models are taken 
as training data rather than taking the class labels. This 
helps in making the level-2 predictions to be more precise. 
While the architecture of the MLP Model varies according 
to the usage, in our case we have used the model as shown 
in Fig. 9.

Our Stacked model contains two separate MLP models 
concatenated which then gives two output probabilities. The 
models are named as ‘C’ and ‘NC’ as they are trained on 
Covid and Non-Covid probabilities respectively.

Each of the two models contain 1 input, 1 hidden and 1 
output layer. The input layer consists of 4 units and a Recti-
fied Linear Unit (ReLU) as activation function. Hidden layer 
has 16 units and again ReLU activation. The output layer has 
a single unit with sigmoid activation function. Lastly, after 
concatenation we have added a final output layer which has 
two units and softmax function as activation.

This method helps to simultaneously concentrate on vari-
ations in both the probabilities without any bias of the other 
one. Also, consideration of both the probabilities simulta-
neously helps in accurate prediction while satisfying our 
hypothesis.

Training the model

General

Since neural networks process inputs using small weight 
values, inputs with large integer values can disrupt or slow 
down the learning process. Hence, we have normalized the 
pixel values so that each pixel has a value between 0 and 1. 
This is achieved by dividing all pixels values by the largest 
pixel value; that is 255. This is performed across all chan-
nels, regardless of the actual range of pixel values that are 
present in the image. Furthermore, all the images are resized 
to 224 × 224 pixels. After these preprocessing steps we had 
two datasets—segmented and non-segmented. Utilizing 
these datasets, we trained our models on both of them and 

Table 2  Examples of StackNet-DenVIS vs normal average vs weighted average

Sr. no DenseNet SE_
Resnext50-32 × 4d

Inception_resnetv2 VGG19_bn Weigted average
(WA)

Normal average
(NA)

StackNet-DenVIS Ground truth

1 0.9999 0.6783 0.1524 4.77e−06 0.2356 0.4756 0.0046 0
2 0.9993 0.0797 0.552 0.2343 0.367 0.4663 0.9995 1
3 0.9999 0.2502 0.1524 0.9999 0.6694 0.5903 0.9995 1
4 0.0066 0.9999 0.2502 0.4999 0.4631 0.4391 0.0046 0
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took the models with best accuracies for ensembling. For 
training, we split both the datasets randomly as training 80%, 
validation 20% and for testing we have a separate dataset 
with 170 Covid images and 1594 Non-Covid images.

GANs

The GAN model is a composition of a generator and a dis-
criminator where the discriminator is initially set to non-
trainable. For each batch of 32 images, the discriminator 
updates based on the generators output. The model is trained 
on 868 Covid X-rays for 2000 epochs with Adam optimizer 
at a learning rate of 0.00002 and momentum of optimizer 
as 0.5. Implemented using Keras deep learning library on a 
Tesla K80 GPU with 12 GB RAM, the model takes approxi-
mately 12 h to train.

DenseNet

While training DenseNet-121 we replaced the last layer with 
two fully connected (FC) layers, one with 256 units followed 
by dropout of 50% to reduce overfitting with activation as 
ReLu and second with 2 units and activation as softmax. 
The weights were initialized from a pretrained model on 
ImageNet. Keeping only the FC block trainable we trained 
the model using Adam with parameters as standard (1 = 0.9, 
2 = 0.999). We trained the model with batches of size 32 for 
15 epochs keeping initial learning rate as 0.001.

SE‑ResNeXt50‑32 × 4d, inception ResNet v2, and VGG19 bn

The training procedure for SE-ResNeXt50-32 × 4d, Incep-
tion ResNet v2, and VGG19 bn followed the concept of 
discriminative layer training [32] and 1-cycle policy [36]. 
The transfer learning parameters for the mentioned models 
are as in Table 3. The models were initially trained for 8 
epochs on the following hyperparameters: batch size = 64, 
optimizer function = Adam with parameters (1 = 0.9, 
2 = 0.99) and loss function = FlattenedLoss. After the ini-
tial 8 epochs, the model is trained for 3 additional epochs 
with a per cycle maximal learning rate sliced between 
(1e−6, 1e−4), in addition to the hyperparameters as men-
tioned. The given procedure was implemented using the 
fastai library.

Fig. 9  Architecture of multi-
layer perceptron stacked 
ensembling

Table 3  The CNN models used and the transfer learning parameters

Network Parameter Value

SE-ResNeXt50-32 × 4d Last layers cut 2
Split at block 6

Inception ResNet v2 Last layers cut 2
Split at block 9

VGG19 bn Last layers cut 1
Split at block 22

DenseNet-121 Last layers cut 1
Split at block 7



1408 Physical and Engineering Sciences in Medicine (2020) 43:1399–1414

1 3

Multi‑layer perceptron (MLP) stacking model

After training all the CNNs and selecting the best ones 
a new dataset for the Stacked model was created by pre-
dicting Covid and Non-Covid probabilities of the training 
images from all the selected CNNs. By applying fivefold 
cross validation on the newly created dataset of predicted 
values the Stacked model is trained for 200 epochs. We 
used Adam with standard parameters for training. Using 
Early Stopping callback, the training is stopped when the 
generalization error starts to increase.

Metrics

Along with total accuracy, we also compute the Macro-
average and the weighted average for each class. Macro 
average will compute the metric individually for each class 
and then take average, treating all the classes equally. On 
the other hand, a weighted average will be computed using 
true instances of each label. The formulas are as listed 
below.

where TP is true positives, FP is false positives, and FN is 
false negatives.

Results

Overall performance

The performance of the proposed implementation was 
tested on 168 Covid and 1596 Non-Covid images. Param-
eters like Precision, Recall, F1-Score, Accuracy, Sensitiv-
ity, and Specificity were calculated to analyze the perfor-
mance of the proposed implementation. When operating 
with medical data, especially highly contagious diseases 
like COVID-19, the sensitivity metric is more important 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − Score = 2 ∗
precision ∗ recall

precision + recall

Specificity =
TN

TN + FP

Accuracy =
Total correctly classified

Total samples for testing

as compared to the rest. In this case, Sensitivity (or True 
Positive Rate) denotes how likely an example of COVID-
19 positive case is correctly classified as COVID-19 
positive. Similarly, when considering an example of a 
Covid-19 negative case, specificity denotes how likely the 
example is correctly classified as Covid-19 negative i.e. 
a ‘Non-Covid’ case. A sensitivity of 99.40% is achieved 
on our proposed StackNet-DenVIS model. In addition to 
the given metric, our model achieves a high accuracy of 
95.07% and a specificity of 94.61%. Table 4 shows the 
class-wise performance metrics as achieved on different 
models used in this implementation. Figure  10 shows 
confusion matrices for the different models used in this 
implementation. 

We obtained an AUROC of 98.40% on the proposed 
StackNet-DenVIS model. The ROC-Curve of our model 
and the ROC-Curve comparison between the models used 
is as shown in Fig. 11.

Furthermore, we have also explored the inference time for 
each model. In order to measure inference time in neural net-
works, we must consider two factors—asynchronous execu-
tion and GPU power-saving mode. Asynchronous execution 
allows the lines of code to execute out of its order. Hence, 
it is possible that the line of code responsible to stop the 
recording of time can be executed abruptly and thus, giv-
ing the wrong inference time. Moreover, GPU power-saving 
mode causes the GPU to ‘slow down’ and thus can cause a 
delay in the actual inference time.

So, in order to avoid the problem caused due to asyn-
chronous execution, we use torch.cuda.synchronize() to per-
form synchronization and to avoid the delay caused by GPU 
power-saving mode, we ‘warm-up’ the GPU by initially run-
ning inference on a dummy input for 10 iterations. After this 
step, we perform 300 iterations of running inference on an 
image; in each iteration we use torch.cuda.Event() with the 
parameter enable_timing = True to measure inference time 
in that iteration. After performing this method for our mod-
els, we obtain the average inference time for each model as 
shown in Table 5. Figure 12 shows the graph comparing 
inference time between each model. 

Feature maps and black box evaluation

Figure 13 shows the feature map overlays in different sce-
narios. As we can see, in case of Covid-19 positive patients, 
the activation region is located inside the lungs, highlighting 
the Covid-19 nodules inside the lungs. On the other hand, for 
Normal and Pneumonia X-rays, these nodules are not present 
and hence, the activation region is away from the lungs. Fur-
thermore, in case of misclassified images certain regions are 
activated due to hindrance caused in the inference by factors 
like poor quality of X-ray images or lead markers appearing 
in the X-ray image and improperly captured X-rays.
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Table 4  Class-wise performance metrics as achieved on different models used in this implementation

Model Class Precision Recall F1-Score Support Accuracy (%) Sensitivity (%) Specificity (%)

Covid 0.6601 0.994 0.7933 168
StackNet-DenVIS Non-Covid 0.9993 0.9461 0.972 1596 95.07 99.4 94.61

Macro-average 0.8297 0.9701 0.8827 1764
Weighted-average 0.967 0.9507 0.955 1764
Covid 0.7703 0.9583 0.9825 168

VGG19 bn Non-Covid 0.9955 0.9699 0.8541 1596 96.88 95.83 96.99
Macro-average 0.8829 0.9641 0.9183 1764
Weighted-average 0.9741 0.9688 0.9703 1764
Covid 0.6653 0.9583 0.7854 168

SE-ResNeXt50-32 × 4d Non-Covid 0.9954 0.9492 0.9718 1596 95.01 95.83 94.92
Macro-average 0.8303 0.9538 0.8786 1764
Weighted-average 0.964 0.9501 0.954 1764
Covid 0.5189 0.9821 0.679 168

Inception ResNet v2 Non-Covid 0.9979 0.9041 0.9487 1596 91.16 98.21 90.41
Macro-average 0.7584 0.9431 0.8139 1764
Weighted-average 0.9523 0.9116 0.923 1764
Covid 0.3756 0.881 0.5267 168

DenseNet-121 Non-Covid 0.9854 0.8459 0.9103 1596 84.92 88.1 84.59
Macro-average 0.6805 0.8634 0.7185 1764
Weighted-average 0.9273 0.8492 0.8738 1764

Fig. 10  Confusion matrices

Fig. 11  ROC curves
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Figure 14a shows another example of a feature map of a 
Covid positive X-ray. As we can see that the areas of activa-
tion are located within the lungs, suggesting the detection of 
patches in the lungs.

In order to cross examine the results of the heatmap we con-
ducted an experiment similar to the one suggested by Gianluca 
Maguolo [37]. In this experiment, we resized a set of 40 test-
ing images and then a square of fixed size in the center of the 
image was turned black. This covered a majority area of the 
lungs in the CXRs with a black box. As a result, most of the 
information pertinent to the disease was removed. Figure 14b 
shows the images generated after the blackening out of pixels.

Then we tested these images with our trained model. The 
results were classified into three categories; ‘Covid’ for the 
images where the model predicts positive for Covid-19. ‘Non-
Covid’ for the images where the model predicts negative for 
Covid-19. And lastly, ‘Ambiguous’ for images with nearly 
equal probabilities for both ‘Covid’ and ‘Non-Covid’.

We observed that 30 out of 40 images were classified as 
ambiguous. While only 3 and 7 images were classified as 
Covid and Non-Covid respectively, indicating that the model 
learned features correlated to the presence of the disease.

Discussion

Covid-19 X-ray dataset was first uploaded by Cohen 
[19] which helped many researchers to develop models 
to diagnose this disease. Majority of the research papers 
included in the literature conducted their research using 
the Covid-19 X-rays from this dataset. Sethy and Behera 
[15] compared different models and various classifica-
tion methodologies in order to achieve promising results. 
ResNet50 as a feature extractor and SVM as a classifier 
gave them an accuracy of 95.83% with 25 Covid-19(+) and 
25 Covid-19(−) images. Narin et al. [16] used three CNN 
models with transfer learning as an approach to training. 
ResNet50 with an accuracy of 98% outperformed Incep-
tion v3 and Inception ResNet v2 with accuracies as 97% 
and 87% respectively. They used a test set containing 50 
Covid-19(+) and 50 Covid-19(−) images. Abdul Waheed 
et al. [6] proposed the CovidGAN model trained on syn-
thetically augmented Covid-19 X-rays with the help of 
Generative Adversarial Network and achieved an accuracy 
of 95%. Sensitivity achieved by this model was 90% on 
a test data containing 72 Covid-19(+) and 120 Normal. 
Apostolopoulos [4] compared 5 different CNN models 
including (VGG19, MobileNet v2, Inception, Xception, 
Inception ResNet v2) where MobileNet v2 achieved an 
accuracy of 96.78% and VGG19 achieved an accuracy of 
98.75%. Whereas the models were tested for two classes 
with 224 Covid-19 images and 1204 Non-Covid-19 
images. In this research, four deep CNN models ensem-
bled using the Stack Generalization [35] approach called 
StackNet-DenVIS were used for Covid-19 detection. In 
the existing works, a single model is used for prediction. 
Instead of using a single model, we have combined the 
class probabilities of four CNN models using stacked 
generalization which serve as a confidence measure for 
the predictions made. As stacked generalization works by 
deducing the biases of the generalizers, it can use the set of 
predictions as a context and conditionally decide to weigh 
the input predictions differently, potentially resulting in 
better performance. We obtained an accuracy of 95.07% 
and a sensitivity of 99.4%. Moreover, the improved sensi-
tivity measure in our research signifies that the Covid-19 
positive cases can be detected with better confidence and 
hence can be used for the screening process. We have also 
used SMOTE oversampling and Tomek Links undersam-
pling technique in order to get a balanced and less noisy 
data for training the model. This method is especially use-
ful in this case as the two classes are difficult to distinguish 
from each other.

In order to evaluate our model thoroughly, we have 
incorporated evaluation measures other than the stand-
ard performance measures. We have included a Black 

Table 5  Time consumed by each method on the same image

Network Time taken (ms)

SE-ResNeXt50-32 × 4d 40.213
Inception ResNet v2 63.982
VGG19 bn 28.822
DenseNet-121 0.191
Ensembled 215.485

Fig. 12  Time consumed by each method on the same image
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Fig. 13  Features map of various cases
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Box Evaluation (Sect. 3.2) to confirm the veracity of our 
results. This method verifies that the features learned by 
the model are present in the lungs and hence, is relevant 
to the disease.

We used a total of 7490 images; 3745 Covid and 3745 
Non-Covid images for training our model. The Test set con-
sisted of 168 Covid and 1596 Non-Covid (including images 
of Normal and other Pneumonia X-rays). We obtained an 
accuracy of 95.07% and a sensitivity of 99.4%. We obtained 
superior performance in terms of sensitivity, in comparison 
to other studies in the literature (Table 6).

The main limitation of this research pertains to the avail-
ability of the dataset. First, the limited number of Covid-19 
X-ray images obtained from open source datasets. In this 
research, although Covid-19 images were oversampled to 
compensate for the limited availability of images, the result-
ing quantity was still limited to use for all three stages i.e. 
training, validation and testing. Secondly, the images gener-
ated by GANs used in this research are limited by the avail-
able computational power at our disposal i.e. Tesla K80 
GPU with 12 GB RAM. Hence, the quality of these gener-
ated images can be improved drastically with an advanced 
GPU and an extended training time. Moreover, the input 
given to the system is restricted to frontal chest X-rays. In 
case of lateral chest X-rays the predictions of the model are 

less accurate due to the shortage of features. In previous 
researches listed in the literature, common transfer learning 
techniques were used with few having different classifiers. 
However, the proposed model is based on the Stack Gen-
eralization method. The proposed model can be used as a 
screening tool for Covid-19. Considering the low cost and 
low false negative rate as compared to the PCR test, the pro-
posed model can also be used for diagnosis purposes, where 
the patient has symptoms related to Pneumonia. Keeping in 
mind the ability of the model to detect Covid-19 nodules in 
the X-ray, this model will serve as a promising tool during 
detection procedures. Future work can reduce the computa-
tion overhead by increasing the efficiency of the model.

Conclusion

In this research, we proposed a set of models ensembled with 
a multi-layer perceptron model which is collectively termed 
as StackNet-DenVIS for the detection of Covid-19 Pneu-
monia from frontal Chest X-rays. We achieved a sensitivity 
of 99.4% with a false negative rate of 1 in 168 images for 
Covid class. While the model was later tested with images 
modified to censor the lungs with a black box placed on 
them, which resulted in 30 out of 40 images to be classified 
as ambiguous. Since this method of evaluating a model on 
images modified to censor the lungs with a black box placed 
on them was proposed; to the best of our knowledge, we are 
the first ones to achieve such results on the given evaluation 
technique. The proposed model can also be used for timely 
diagnosis of Covid-19 patients to check the development of 
pneumonia due to Covid-19. The model can be modified to 
classify between different types of Pneumonia by training 
on a balanced dataset and changing the prediction layer to 
respective number of classes. Since this research includes 
four computationally expensive training models such as 
VGG19 bn and DenseNet-121, we intend to make it more 
robust by working towards the reduction of training time.

Fig. 14  Images of heatmap and result of blackening out center pixels

Table 6  Comparison between performance metrics of related works

Study Model Number of cases Accuracy (%) Sensitivity (%) Specificity (%)

Waheed et al. [6] CNN with synthetic 
augmentation

72 Covid-19
120 Non-Covid-19

95.00 90.00 97.00

Apostolopoulos et al. [4] MobileNet v2 224 Covid-19 (+)
1204 Non-Covid

96.78 98.66 96.46

Sethy et al. [15] ResNet50 plus SVM 25 Covid-19 (+)
25 Covid-19 (−)

95.33 95.33 NA

Narin et al. [16] ResNet50 50 Covid-19 (+) 50 
Covid-19 (−)

98 96 100

Proposed network StackNet-DenVIS 168 Covid
1596 Non-Covid

95.07 99.40 94.61



1413Physical and Engineering Sciences in Medicine (2020) 43:1399–1414 

1 3

Acknowledgements First and foremost, we would like to acknowledge 
the healthcare professionals and researchers who are risking their lives 
to deal with Covid-19 patients. Secondly, we want to acknowledge 
the various professionals, who helped to collect the relevant data, and 
their research which made it possible for us to implement our proposed 
solution, thus contributing to the research and the fight against Covid-
19 as well.

Funding This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

References

 1. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J 
(2020) Variation in false-negative rate of reverse transcriptase 
polymerase chain reaction-based sars-cov-2 tests by time since 
exposure. Ann Internal Med

 2. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ 
(2020) Coronavirus disease 2019 (covid-19): a perspective from 
china. Radiology 200490

 3. Wang L, Wong A (2020) Covid-net: a tailored deep convolutional 
neural network design for detection of covid-19 cases from chest 
X-ray images. arXiv:2003.09871

 4. Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic 
detection from X-ray images utilizing transfer learning with con-
volutional neural networks. Phys Eng Sci Med

 5. Greenspan H, Van Ginneken B, Summers RM (2016) Guest edi-
torial deep learning in medical imaging: overview and future 
promise of an exciting new technique. IEEE Trans Med Imaging 
35(5):1153–1159

 6. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pin-
heiro PR (2020) Covidgan: data augmentation using auxiliary 
classifier gan for improved covid-19 detection. IEEE Access 
8:91916–91923

 7. Odena CO, Shlens J (2016) Conditional image synthesis with 
auxiliary classifier gans. arXiv:1610.09585

 8. Khalifa NEM, Taha MHN, Hassanien AE, Elghamrawy S (2020) 
Detection of coronavirus (covid-19) associated pneumonia based 
on generative adversarial networks and a fine-tuned deep transfer 
learning model using chest X-ray dataset. arXiv:2004.01184

 9. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) 
Chestx-ray8: hospital-scale chest X-ray database and benchmarks 
on weakly-supervised classification and localization of common 
thorax diseases. IEEE Conf Comput Vision Patt Recogn (CVPR) 
2017:3462–3471

 10. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, 
Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY (2017) 
Chexnet: radiologist-level pneumonia detection on chest X-rays 
with deep learning. arXiv:1711.05225

 11. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) 
Densely connected convolutional networks. arXiv:1608.06993

 12. Deng J, Dong W, Socher R, Li L (2009) Kai Li, Li Fei-Fei, Ima-
genet: a large-scale hierarchical image database, in. IEEE Conf 
Comput Vision Patt Recogn 2009:248–255

 13. Shin H, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mol-
lura D, Summers RM (2016) Deep convolutional neural net-
works for computer-aided detection: CNN architectures, dataset 

characteristics and transfer learning. IEEE Trans Med Imaging 
35(5):1285–1298

 14. Xuanyang X, Yuchang G, Shouhong W, Xi L (2005) Computer 
aided detection of sars based on radiographs data mining. In: 2005 
IEEE engineering in medicine and biology 27th annual confer-
ence, pp 7459–7462

 15. Sethy P, Santi KB, Kumar P (2020) Detection of coronavirus 
disease (covid-19) based on deep features and support vector 
machine. Int J Math Eng Manag Sci 12:643–651. https ://doi.
org/10.33889 /IJMEM S.2020.5.4.052

 16. Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coro-
navirus disease (covid-19) using X-ray images and deep convolu-
tional neural networks. arXiv:2003.10849

 17. Kermany DS, Zhang K, Goldbaum MH (2018) Labeled opti-
cal coherence tomography (oct) and chest X-ray images for 
classification

 18. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir 
MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, 
Reaz MBI, Islam TI (2020) Can AI help in screening viral and 
covid-19 pneumonia? arXiv:2003.13145.

 19. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M 
(2020) Covid-19 image data collection: prospective predictions 
are the future, arXiv 2006.11988. https ://githu b.com/ieee8 023/
covid -chest xray-datas et

 20. Batista GE, Prati RC, Monard MC (2004) A study of the behavior 
of several methods for balancing machine learning training data. 
ACM SIGKDD Explorations Newsl 6(1):20–29

 21. Tomek I et al (1976) Two modifications of CNN. In: IEEE trans-
actions on systems, man, and cybernetics SMC-6(11): 769–772. 
https ://doi.org/10.1109/TSMC.1976.43094 52

 22. Batista G, Bazzan A, Monard M-C (2003) Balancing training data 
for automated annotation of keywords: a case study. pp 10–18

 23. Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto 
M (2020) Unveiling covid-19 from chest X-ray with deep learn-
ing: a hurdles race with small data. arXiv:2004.05405

 24. Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue 
Z, Karargyris A, Antani S, Thoma G, McDonald CJ (2013) Lung 
segmentation in chest radiographs using anatomical atlases with 
nonrigid registration. IEEE Trans Med Imaging 33(2):577–590

 25. Hu S, Hoffman EA, Reinhardt JM (2001) Automatic lung segmen-
tation for accurate quantitation of volumetric X-ray CT images. 
IEEE Trans Med Imaging 20(6):490–498

 26. Mansoor A, Bagci U, Xu Z, Foster B, Olivier KN, Elinoff JM, 
Suffredini AF, Udupa JK, Mollura DJ (2014) A generic approach 
to pathological lung segmentation. IEEE Trans Med Imaging 
33(12):2293–2310

 27. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional 
networks for biomedical image segmentation. In: International 
conference on medical image computing and computer-assisted 
intervention, Springer, pp 234–241

 28. Jaeger S, Candemir S, Antani S (2014) Wang Y-XJ, Lu P-X, 
Thoma G (2014) Two public chest X-ray datasets for com-
puter-aided screening of pulmonary diseases. Quant Imag-
ing Med Surg 4(6):475–477. https ://doi.org/10.3978/j.
issn.2223-4292.2014.11.20

 29. Simon M, Rodner E, Denzler J (2016) Imagenet pre-trained mod-
els with batch normalization. arXiv:1612.01452

 30. Szegedy SI, Vanhoucke V, Alemi A (2016) Inception-v4, incep-
tion-resnet and the impact of residual connections on learning. 
arXiv:1602.07261

 31. Hu J, Shen L, Albanie S, Sun G, Wu E (2017) Squeeze-and-exci-
tation networks. arXiv:1709.01507

 32. Jin X, Chen Y, Dong J, Feng J, Yan S (2016) Collaborative 
layer-wise discriminative learning in deep neural networks. 
arXiv:1607.05440

https://doi.org/10.33889/IJMEMS.2020.5.4.052
https://doi.org/10.33889/IJMEMS.2020.5.4.052
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20


1414 Physical and Engineering Sciences in Medicine (2020) 43:1399–1414

1 3

 33. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE 
Trans Pattern Anal Mach Intell 12(10):993–1001

 34. Chollet F (2017) Deep learning with Python, Manning
 35. Wolpert H (1992) Stacked generalization. Neural Networks 

5(2):241–259. https ://doi.org/10.1016/S0893 -6080(05)80023 -1
 36. Smith LN (2018) A disciplined approach to neural network hyper-

parameters: part 1—learning rate, batch size, momentum, and 
weight decay. arXiv:1803.09820

 37. Maguolo G, Nanni L (2020) A critic evaluation of meth-
ods for covid-19 automatic detection from X-ray images. 
arXiv:2004.12823

 38. Buda M, Atsuto M, Mazurowski MA (2018) A systematic study 
of the class imbalance problem in convolutional neural networks. 
Neural Netw 106:249–259

 39. Hosseini H, Xiao B, Jaiswal M, Poovendran R (2017) On the limi-
tation of convolutional neural networks in recognizing negative 
images. arXiv:1703.06857v2

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S0893-6080(05)80023-1

	StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images
	Abstract
	Introduction
	Related work
	Proposed work

	Methods
	Data preparation
	Preprocessing
	Augmenting dataset
	SMOTE and Tomek Links Under-Sampling
	Lung Segmentation

	Transfer Learning
	Pretrained Models Used

	Multi-layer perceptron stacked ensembling
	Stacked generalization
	Hypothesis
	Architecture

	Training the model
	General
	GANs
	DenseNet
	SE-ResNeXt50-32 × 4d, inception ResNet v2, and VGG19 bn
	Multi-layer perceptron (MLP) stacking model

	Metrics

	Results
	Overall performance
	Feature maps and black box evaluation

	Discussion
	Conclusion
	Acknowledgements 
	References




