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Abstract: The recent results attained from a thermodynamically conceived numerical scheme
applied on wave propagation in viscoelastic/rheological solids are generalized here, both in
the sense that the scheme is extended to four spacetime dimensions and in the aspect of
the virtues of a thermodynamical approach. Regarding the scheme, the arrangement of which
quantity is represented where in discretized spacetime, including the question of appropriately
realizing the boundary conditions, is nontrivial. In parallel, placing the problem in the
thermodynamical framework proves to be beneficial in regards to monitoring and controlling
numerical artefacts—instability, dissipation error, and dispersion error. This, in addition to the
observed preciseness, speed, and resource-friendliness, makes the thermodynamically extended
symplectic approach that is presented here advantageous above commercial finite element
software solutions.
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1. Introduction

Solids may be less “solid” than expected. Beyond elastic behaviour, they may exhibit damped
and delayed response. This viscoelastic/rheological reaction may not be simply explained by a
viscosity-related additional stress (the Kelvin–Voigt model of rheology), but the time derivative of
stress may also be needed in the description, with the simplest such model being the so-called standard
or Poynting–Thomson–Zener (PTZ) one [see its details below]. Namely, the PTZ model is the simplest
model that enables describing both creep (declining increase of strain during constant stress) and
relaxation (declining decrease of stress during constant strain), as well as the simplest one, via which it
is possible to interpret that the dynamic elasticity coefficients of rocks are different from, and larger
than, their static counterpart [1–4]. Related to the latter aspect, high-frequency waves have a larger
propagation speed in PTZ media than low-frequency ones [4], which makes this model relevant for,
e.g., seismic phenomena and acoustic rock mechanical measurement methods.

Analytical solutions for problems in PTZ and more complex rheological solid media exist
(see, e.g., [5,6]), but mostly in the force-equilibrial/quasistatic approximation, which cannot give
account of transients and waves. Incorporating such ‘fast’ effects is expected to only be realizable by
means of numerical calculations in most practical situations.

In many of the practical applications, such a numerical calculation must be performed many times
with different material coefficients, for example, as part of a fitting procedure where the experimental
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data are to be fitted. Hence, the numerical scheme should be fast, resource-friendly, yet reliable and
precise enough.

In addition, numerical calculations face three frequent challenges: instability (exponential blow-up
of the solution), dissipation error (artificial decrease of amplitudes and energies), and dispersion error
(artificial oscillations near fast changes). A good scheme keeps these artefacts under control.

Being driven by (primarily rock mechanical) applications in scope, we have tried to use
commercial finite element softwares for wave phenomena in PTZ models. What we found—already
for the Hookean case (but also for non-Fourier heat conduction [7])—was disappointing: the solutions
ran very slowly, with large memory and CPU demand, and they were burdened by considerable
numerical artefacts of the mentioned kinds.

Now, if a numerical scheme exhibits dissipation error for conservative systems, then it is expected
to behave similarly for nonconservative ones, so that one cannot separate the real dissipation of
mechanical energy from the dissipation artefact of the scheme. Additionally, similarly, a real wavy
behaviour cannot be distinguished from the dispersion/wavy artefact.

These have motivated us to develop our own numerical scheme, which performs better [8].
Similarly to that the PTZ model can be obtained in a thermodynamical approach as an internal variable
extension of Hooke elasticity [9], our starting point was a symplectic scheme for Hooke elasticity.
Symplectic numerical schemes (see, e.g., [10]) provide much better large-time approximations, thanks to
the fact that a symplectic numerical integrator of a conservative system is actually the exact integrator
of a ‘nearby’ (coinciding in the zeroth order of the time step) conservative system.

In recent years, numerous works have been born in order to develop extensions of symplectic
schemes to nonconservative systems [11–20]. We also took this path, and devised such an extension,
on the example of the PTZ model, in one space dimension [8], with the novelties that some of the
discretized field values reside with half space and time steps with respect to some other field values.
This made the symplectic Euler method—an originally order-one accurate scheme—accurate to a
second order, and the spatial accuracy was also second order.

Indeed, our scheme has performed well: produced, in a much faster and resource-friendlier
way, much more artefact-free solutions, as demonstrated in Figure 1. We note that, although the PTZ
model allows for an exact integrator in the nonconservative part of the model, along analogous lines,
as in [12], we have refrained from using it, since, in the future, we also wish to use the same scheme
for more general nonconservative systems, so we intended to test robustness in the dissipative aspect.

In addition to comparison to finite-element solutions, in [8], we analytically derived the criteria
for stability, and showed how dissipation and dispersion error can be kept small.

The first study done while using our scheme was numerically measuring wave propagation speed
in one space dimensional samples, and finding good agreement with the corresponding analytical
result [4].

The next step is reported here, with two novelties. The first is the generalization of the scheme to
three space dimensions (3D), and the other is exploiting the whole thermodynamical theory around
the PTZ model for diagnostics regarding the credibility of the numerical solution, since stability,
dissipation, and dispersion error are much harder to investigate in the case of a 3D model, with its
numerous vectorial and tensorial degrees of freedom.

The 3D scheme is designed in order to keep the nice, second-order, behaviour of the discretization
in both the spatial and in temporal direction. Achieving this is not so trivial—different components of
vectors and tensors are placed at different discretized positions in order to fulfil the aim. In parallel,
the boundaries also pose a challenge: quantities must be placed in such a way that the set of equations
becomes closed. We succeed in finding a rule for this that is general enough to hold for both stress and
displacment boundary conditions, where these two may differ at different sides of the 3D sample.

In finding the arrangement of discretized quantities suggested here, the spacetime perspective
has helped us a lot. Specifically, on one side, thermodynamical balances in their differential form are
four-divergences from the spacetime aspect, and they have an integral counterpart, which, via Gauss’
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theorem, helps one to find where to represent which flux-type quantity. Additionally, knowing that,
from the spacetime point of view, velocity is a timelike four-vector, [21,22] gives the information that
velocity should be shifted not only spatially, but also temporally. Oppositely, stress is a spacelike tensor,
so no temporal shift is needed.

Figure 1. An excitation pulse, generated at the left endpoint of a finite-size one space dimensional
Hookean sample, regularly arrives at the right endpoint. First row: the results from the scheme that
was introduced in [8] for two different pulse lengths. Second and third rows: the corresponding results
obtained by the finite element software COMSOL [8], at various settings: left column second row:
Backward Differentiation Formula (BDF) Maximum order 2, third row: BDF Maximum order 5;
right column second row: Dormand–Prince (DP) 5, third row: Runge–Kutta (RK) 34. In each
finite element solution, dissipation error (decrease of the amplitude) and dispersion error (artificial
oscillations) are both observable, even during the first three bounces. Meanwhile, the pulses in the first
row keep their shape even after many bounces [8].

In parallel, thermodynamics is not only important from the aspects of balances.
Namely, commercial finite element softwares only focus on the set of equations to solve,
i.e., on the minimally necessary equations to follow the minimally necessary quantities.
However, knowing, from the spacetime perspective, that momentum and energy form a four-quantity
(also in continuum theory on Galilean spacetime) [22], in addition to the customarily taken balance
of momentum, the balance of energy is also present. This enables one to follow, in addition to the
mechanically considered quantities, internal energy—or, if practice favours so, temperature. The point
in doing so (even in situations where thermomechanical coupling and heat conduction are neglected) is
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that, if, say, temperature is followed via a separate discretized evolution equation, then the conservation
of total energy—at the discretized level—is not built-in, but rather is a property that will hold only
approximately. Subsequently, checking how well this conservation holds along the numerical solution
can provide a diagnostic tool. Thus, one may check the degree of dissipation error (i.e., the degree of
violation of total energy conservation) and of dispersion error (spurious oscillations on total energy
that should be a constant). This idea is demonstrated below, on the example of the PTZ model
(also equipped with the thermodynamical constituents).

Furthermore, thermodynamics also provides entropy, which is known to serve as a Lyapunov
function, ensuring asymptotic stability (see, e.g., [23]). Now, stability also becomes challenged at
the numerical level. Accordingly, entropy, and the related entropy production, may serve as an aid
for reliable numerical calculations. Certain efforts in this direction have already been made [11,12].
Here, we introduce another way of utilizing this general idea.

Specifically, we focus on entropy production. At the continuum level, it must be positive definite
according to the second law of thermodynamics. However, when discretized, this property may also
become challenged. Naturally, if an explicitly positive definite expression is discretized, then it remains
positive definite. However, alternative forms—which only turn out to be positive definite when the
further thermodynamical equations also hold—are not ab ovo positive definite and, correspondingly,
may fail in being/remaining so along a numerical solution. Such forms are provided in a natural
way, for instance, when the balance of entropy is connected to the balance of internal energy, such as
when rheological models, like the PTZ one, are derived from the internal variable approach [9].
Here, we discretize such an expression of entropy production and show that its value becoming
negative can forecast a loss of stability and blowing-up of the solution.

2. The Continuum PTZ Model and the Thermodynamics Behind

We consider a homogeneous and isotropic solid, in the small-deformation approximation
(with respect to an inertial reference system), due to which we do not have to differentiate
between Eulerian and Lagrangian position or make a distinction between spatial spacetime vectors,
covectors, tensors, etc, as well as material manifold related ones, mass density $ can also be treated as
constant, and the relationship between the symmetric strain tensor ε to the velocity field v is

∂ε

∂t
=

1
2

(→
∇⊗ v + v⊗

←
∇
)

, (1)

with
→
∇ and

←
∇ denoting the spatial derivative operation acting to the right and left, respectively.

The stress tensor σ is also assumed to be symmetric, and it governs the time evolution of v
according to

$
∂v
∂t

= σ ·
←
∇ (2)

With the deviatoric and spherical parts of tensors,

σsph =
1
3
(tr σ) 1, σdev = σ − σsph, εsph =

1
3
(tr ε) 1, εdev = ε− εsph (3)

(1 denoting the unit tensor), the Hooke elasticity can be expressed as

σdev = Edevεdev, σsph = Esphεsph, Edev = 2G, Esph = 3K, (4)

and its PTZ generalization (among its vast literature, see [4,9,24] for its treatment in the irreversible
thermodynamical internal variable approach and [25], for its presentation in the GENERIC
(General Equation for the Non- Equilibrium Reversible–Irreversible Coupling) framework), is
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σdev + τdev ∂σdev

∂t
= Edevεdev + Êdev ∂εdev

∂t
, σsph + τsph ∂σsph

∂t
= Esphεsph + Êsph ∂εsph

∂t
, (5)

the coefficients will be treated as constants hereafter.
In order to make the subsequent formulae more intelligible, we introduce

σ̂dev = σdev − Edevεdev, σ̂sph = σsph − Esphεsph (6)

and the coefficient combinations

Îdev = Êdev − τdevEdev, Îsph = Êsph − τsphEsph, (7)

with the aid of which (5) gets simplified to

σ̂dev + τdev ∂σ̂dev

∂t
= Îdev ∂εdev

∂t
, σ̂sph + τsph ∂σ̂sph

∂t
= Îsph ∂εsph

∂t
. (8)

Taking (also for simplicity) a constant ‘isobaric’ specific heat cσ as well as neglected thermal
expansion and heat conduction, the internal variable approach puts the following thermodynamical
background behind the PTZ model: after eliminating the internal variable, its specific total energy

etotal = ekinetic + ethermal + eelastic + erheological, (9)

ekinetic =
1
2

v2, eelastic =
Edev

2$
tr
(

εdev2)
+

Esph

2$
tr
(

εsph2)
,

ethermal = cσ T, erheological =
τdev

2$ Îdev
tr
(

σ̂dev2)
+

τsph

2$ Îsph tr
(

σ̂sph2)
with absolute temperature T, accompanied with specific entropy s and entropy production rate
density πs

s = cσ ln
T

Tref
, (10)

πs =
1
T

{
1

Îdev
tr

[
σ̂dev

(
Êdev ∂ε

∂t

dev
− τdev ∂σ

∂t

dev
)]

+
1

Îsph tr

[
σ̂sph

(
Êsph ∂ε

∂t

sph
− τsph ∂σ

∂t

dev
)]}

(11)

=
1
T

{
1

Îdev
tr
(

σ̂dev2)
+

1
Îsph tr

(
σ̂sph2)}

, (12)

for which the specific internal energy part etotal − ekinetic fulfils the balance

$
∂(etotal − ekinetic)

∂t
= tr

(
σ

∂ε

∂t

)
(13)

and specific entropy the balance

$
∂s
∂t

= πs, (14)

as can be found along the lines of [9] (including its Appendix B ), and it is straightforward to check.
Because of the second law of thermodynamics,

Îdev > 0, Îsph > 0 (15)

and

πs ≥ 0 (16)
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follow for the PTZ model [9], where (16) is already apparent from the form (12). (Recall that heat
conduction is neglected, so there are no heat and entropy flux terms in the balances. In parallel, there is
no term in etotal that couples T and ε, and—correspondingly—there is no ε dependent term in s, due to
neglected thermal expansion.)

Superficially, it seems redundant to also provide πs in the equivalent form (11). However, it is just
this not-automatically-positive-definite form that will prove to be beneficial in the diagnostics of the
numerical solution.

From either balance (13) or (14), the time derivative of temperature can also be expressed:

∂T
∂t

=
T

$cσ
πs. (17)

As a simple analysis of the PTZ model, for ‘slow’ processes, which is to be understood with
respect to the time scales

τdev, τ̂dev = Êdev/Edev, τsph, τ̂sph = Êsph/Esph, (18)

a rule-of-thumb approximation is to neglect the time derivative terms (to only keep the lowest time
derivative term for each quantity) in (5). The result is nothing but the Hooke model (4), for which the
longitudinal and transversal wave propagation speeds are

clongitudinal =

√
2Edev + Esph

3$
, ctransversal =

√
Edev

2$
. (19)

Now, as opposed to this ‘static’ limit, let us consider the limit of ‘fast’ processes: then, it is the
time derivative terms (the highest time derivative term for each quantity) that we keep. The result is
the time derivative of an effective/‘dynamic’ Hooke model:

σdev = Edev
∞ εdev, σsph = Esph

∞ εsph, E∞
dev = Êdev/τdev > Edev, E∞

sph = Êsph/τsph > Esph, (20)

where the inequalities follow from (15). Accordingly, the wave propagation speeds

ĉlongitudinal =

√
2Êdev

∞ + Êsph
∞

3$
> clongitudinal, ĉtransversal =

√
Êdev

∞
2$

> ctransversal (21)

follow. This, on one side, illustrates how the PTZ model can interpret that the dynamic
elasticity coefficients of rocks are larger than their static counterpart [1–4]. On the other side,
the nontrivial—frequency dependent, therefore, dispersive—wave propagation indicates that the
numerical solution of PTZ wave propagation problems should contain the minimal possible amount
of dispersion error, in order to give account of the dispersive property of the continuum model
itself. In parallel, the dissipative nature of the PTZ model requires the minimal possible amount of
dissipation error to reliably describe the decrease of wave amplitudes.

3. The Numerical Scheme

We take a Cartesian grid with spacings ∆x, ∆y, ∆z, and time step ∆t. Corresponding to the
continuum formula (2), we introduce the finite difference discretization

$
(vx)

j+1/2

l+1/2,m,n−(vx)
j−1/2

l+1/2,m,n
∆t =

(σxx)
j
l+1,m,n−(σxx)

j
l,m,n

∆x +
(σxy)

j
l+1/2,m+1/2,n−(σxy)

j
l+1/2,m−1/2,n

∆y

+
(σxz)

j
l+1/2,m,n+1/2

−(σxz)
j
l+1/2,m,n−1/2

∆z ,
(22)
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$
(vy)

j+1/2

l,m+1/2,n
−(vy)

j−1/2

l,m+1/2,n
∆t =

(σyx)
j
l+1/2,m+1/2,n

−(σyx)
j
l−1/2,m+1/2,n

∆x +
(σyy)

j
l,m+1,n

−(σyy)
j
l,m,n

∆y

+
(σyz)

j
l,m+1/2,n+1/2

−(σyz)
j
l,m+1/2,n−1/2

∆z ,
(23)

$
(vz)

j+1/2

l,m,n+1/2
−(vz)

j−1/2

l,m,n+1/2

∆t =
(σzx)

j
l+1/2,m,n+1/2

−(σzx)
j
l−1/2,m,n+1/2

∆x

+
(σzy)

j
l,m+1/2,n+1/2

−(σzy)
j
l,m−1/2,n+1/2

∆y +
(σzz)

j
l,m,n+1−(σzz)

j
l,m,n

∆z ,
(24)

where the time index j refers to a value at tj = j ·∆t, j + 1/2 to a value at tj+1/2 = (j + 1/2) ·∆t, the space
index l refers to a value at xl = l · ∆x, m is the space index in the y direction, and n in the z direction.
Accordingly, stress (and strain) values reside at integer time instants, while the velocity ones are shifted
in time by half; diagonal stress (and strain) components reside at integer positions, off-diagonal ones
are shifted in the two directions that match with the two Cartesian indices; and, velocity components
are only shifted in the direction matching with their Cartesian index (see Figure 2). From these
formulae, the j + 1/2 indexed velocities can be expressed explicitly (as functions of earlier quantities).

Figure 2. Spatial arrangement of the discretized quantities (two-dimensional projection). The circles
stand for diagonal tensor components, squares for offdiagonal ones, and triangles for vector
components, different components with differently oriented triangles. Void quantities are prescribed
by boundary condition (in the case stress boundary conditions are considered, like here.)

This same pattern—distribution of quantities—is used for the discretization of (2):

(εxx)
j+1
l,m,n − (εxx)

j
l,m,n

∆t
=

(vx)
j+1/2

l+1/2,m,n − (vx)
j+1/2

l−1/2,m,n

∆x
, (25)(

εyy
)j+1

l,m,n −
(
εyy
)j

l,m,n

∆t
=

(
vy
)j+1/2

l,m+1/2,n −
(
vy
)j+1/2

l,m−1/2,n

∆x
, (26)

(εzz)
j+1
l,m,n − (εzz)

j
l,m,n

∆t
=

(vz)
j+1/2

l,m,n+1/2
− (vz)

j+1/2

l,m,n−1/2

∆x
, (27)

(εxy)
j+1
l+1/2,m+1/2,n−(εxy)

j
l+1/2,m+1/2,n

∆t

= 1
2

{
(vx)

j+1/2

l+1/2,m+1,n−(vx)
j+1/2

l+1/2,m,n
∆y +

(vy)
j+1/2

l+1,m+1/2,n−(vy)
j+1/2

l,m+1/2,n
∆x

}
,

(28)

(εxz)
j+1
l+1/2,m,n+1/2

−(εxz)
j
l+1/2,m,n+1/2

∆t

= 1
2

{
(vx)

j+1/2

l+1/2,m,n+1−(vx)
j+1/2

l+1/2,m,n
∆z +

(vz)
j+1/2

l+1,m,n+1/2
−(vz)

j+1/2

l,m,n+1/2

∆x

}
,

(29)
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(εyz)
j+1
l,m+1/2,n+1/2

−(εyz)
j
l,m+1/2,n+1/2

∆t

= 1
2

{
(vy)

j+1/2

l,m+1/2,n+1−(vy)
j+1/2

l,m+1/2,n
∆z +

(vz)
j+1/2

l,m+1,n+1/2
−(vz)

j+1/2

l,m,n+1/2

∆y

}
,

(30)

from which formulae the j + 1 indexed strains can be explicitly expressed, and for the discretized
version of (5),

α
(

σdev
pq

)j

l′ ,m′ ,n′
+(1− α)

(
σdev

pq

)j+1

l′ ,m′ ,n′
+

(σdev
pq )

j+1

l′ ,m′ ,n′−(σdev
pq )

j

l′ ,m′ ,n′
∆t

= Edev
[

α
(

εdev
pq

)j

l′ ,m′ ,n′
+ (1− α)

(
εdev

pq

)j+1

l′ ,m′ ,n′

]
+ Êdev (εdev

pq )
j+1

l′ ,m′ ,n′−(εdev
pq )

j

l′ ,m′ ,n′
∆t ,

(31)

α
(

σ
sph
pq

)j

l′ ,m′ ,n′
+(1− α)

(
σ

sph
pq

)j+1

l′ ,m′ ,n′
+

(
σ

sph
pq

)j+1

l′ ,m′ ,n′
−
(

σ
sph
pq

)j

l′ ,m′ ,n′
∆t

= Esph
[

α
(

ε
sph
pq

)j

l′ ,m′ ,n′
+ (1− α)

(
ε
sph
pq

)j+1

l′ ,m′ ,n′

]
+ Êsph

(
ε

sph
pq

)j+1

l′ ,m′ ,n′
−
(

ε
sph
pq

)j

l′ ,m′ ,n′
∆t ,

p, q = x, y, z, l′, m′, n′ = integers or half-integers depending on p, q,

(32)

where α = 1/2 ensures second-order accuracy of the whole scheme (the proof is analogous to the one
in [8]), from which— together with (3)—the j+ 1 indexed stresses can be explicitly expressed, except for
stress boundary locations, where we express strain (and know stress from the boundary condition).

Actually, regarding boundary conditions, the rule we found for both stress boundary condition
and velocity (or displacement) boundary condition is that, if a quantity is missing for determining
another boundary quantity, then that missing quantity is to be added outside the boundary. This also
works for mixed boundary conditions, with different ones meeting at edges of a rectangular sample,
for example. In what follows, we present stress boundary condition examples (relevant, e.g., for a
wide class of rock mechanical applications).

The pattern of which quantity to reside where—at integer or half-integer space and time
indices—could also be conjectured from the structure of the equations, but, as said in the Introduction,
the spacetime viewpoint helps a lot to find this arrangement a geometrically—spacetime geometrically—
natural one.

In the reversible special case of the Hooke system, this scheme is symplectic. It is actually
the symplectic Euler method (in words: ‘new1 from old1 and old2, new2 from new1 and old2’).
The interpretation is the improvement: here, new1 and new2 are shifted in time with respect to each
other, so second-order accuracy is achieved, while the conventional interpretation of the symplectic
Euler method is first-order only. In parallel, since mechanical energy (the Hamiltonian) is a velocity
dependent term plus a strain dependent term (stress becomes a simple linear function of strain),
our scheme is explicit. This also remains true at the PTZ level, so one can expect—and find,
actually—a fast-running program code.

For the aspects of thermodynamics, we also discretize (17) [here using the form (12)],
explicitly expressing the j + 1/2 indexed temperature values from

T j+1/2

l,m,n − T j−1/2

l,m,n

∆t
=

1
$cσ

{
1

Îdev
tr
(

σ̂dev2)j

l,m,n
+

1
Îsph tr

(
σ̂sph2)j

l,m,n

}
, (33)

where the notation (6) is utilized, and the traces are to be expanded in Cartesian components and
the terms containing offdiagonal components—that reside at half space-shifted locations in two
indices—are averaged around the location l, m, n, first neighbours only.

4. Solution for a Rectangular Beam, and the Role of Total Energy

The first example on which we demonstrate the scheme is a square cross-sectioned long beam,
being thus treated as a plane-strain problem. Initially, the beam is in relaxed/equilibrium state
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(zero stress, strain and velocity, and homogeneous temperature). Subsequently, on one of its sides,
a single normal stress pulse is applied, with profile

σyy(t, x, 0, z) =


σb

{
1
2

[
1− cos

(
2π t

τb

)]
· 1

2

[
1− cos

(
2π x−X/2

Wb

)]}
if 0 ≤ t ≤ τb and
X−Wb

2 ≤ x ≤ X+Wb
2 ,

0 otherwise

(34)

(see Figure 3), where τb is the duration of the pulse, σb is its amplitude, Wb is its spatial width, and X
is the width of the beam. On the other sides, normal stress is constantly zero (free surfaces).

Figure 3. The spatial distribution of normal stress as the boundary condition on one side of a square
cross-sectioned beam that is infinitely long in the z direction. The excitation is a single cosine-shaped
‘bump’ in time, too.

A 50× 50 grid is considered in the x–y plane, for 240 time steps, where the time step is the largest
at which stability is maintained. Notably, stability investigation is fairly involved for this problem
and it requires a separate whole study. Further settings (in appropriate units) are $ = 1, Edev = 4,
Esph = 10, τb = 0.3, σb = 5, Wb/X = 0.6.

4.1. Hooke Case

Figures 4 and 5 show snapshots of a stress component distribution and a velocity component.
In a movie format, it is more spectacular how reliably the simulation performs.
Furthermore, it is not only the eye that could judge the reliability: with the help of thermodynamics,

energy—in the Hooke case, mechanical energy— proves to be a useful diagnostic tool:

• if it explodes then there is instability;
• if it deviates from a constant then there is dissipation error; and,
• if it is wavy/oscillating then there is dispersion error.

The scheme presented here also functions satisfactorily in this aspect, as displayed in Figure 6.
For energy, we perform summation, over the integer centred discrete cells, of the energy terms
discretized along the above lines, including that averages, like for (33), are taken wherever necessary,
also in the time direction (for kinetic energy).
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Figure 4. Distribution of a stress component (left column) and of a velocity component (right column)
at various instants, in the Hooke case. From top to bottom: snapshots at instants (1/2)τb, τb, (3/2)τb,
2τb, respectively.

Figure 5. Cont.
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Figure 5. Continuation of Figure 4: distribution of a stress component (left column) and of a velocity
component (right column) at various instants, in the Hooke case. From top to bottom: snapshots at
instants (5/2)τb, 3τb, (7/2)τb, 4τb, respectively.

Figure 6. Mechanical energy types as functions of time, for the Hooke case.

4.2. PTZ Case

In a PTZ medium, the solution of the analogous problem is similarly good. Figures 7–10

present snapshots, where Figures 9–10 display two further quantities:
√

tr
(

σ̂dev2
)

(essentially the

Huber–Mises–Hencky or von Mises equivalent stress) and temperature. Dissipation is nicely indicated
via temperature. Settings (in addition to the above ones for the Hooke case) are Êdev = 1.4, τdev = 0.2,
cσ = 0.001, T0 = 0.1, α = 1/2.
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Figure 7. Distribution of a stress component (left column) and of a velocity component (right column)
at various instants, in the Poynting–Thomson–Zener (PTZ) case. From top to bottom: snapshots at
instants (1/2)τb, τb, (3/2)τb, 2τb, respectively.

Figure 8. Cont.
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Figure 8. Continuation of Figure 7: distribution of a stress component (left column) and of a velocity
component (right column) at various instants, in the PTZ case. From top to bottom: snapshots at
instants (5/2)τb, 3τb, (7/2)τb, 4τb, respectively.

Figure 9. Cont.
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Figure 9. Snapshots of the distribution of the stress invariant
√

tr(σ̂dev2
) (left column) and of

temperature (right column) at various instants, in the PTZ case. From top to bottom: snapshots
at instants (1/2)τb, τb, (3/2)τb, 2τb, respectively.

Figure 10. Cont.
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Figure 10. Continuation of Figure 9: Snapshots of the distribution of the stress invariant
√

tr(σ̂dev2
)

(left column) and of temperature (right column) at various instants, in the PTZ case. From top to
bottom: snapshots at instants (5/2)τb, 3τb, (7/2)τb, 4τb, respectively.

The diagnostic role of the various energies, and especially their sum, is a great help again for
checking whether the simulation performs acceptably. Figure 11 illustrates how the scheme that is
introduced above behaves in this respect.

Figure 11. Total energy and the various energy types as functions of time, for the PTZ case.

5. Solution for a Cube, and the Role of Entropy Production

In the second example treated, a cube is considered, initially relaxed, as in the previous example,
and then one of its sides being pressed by a cosine ‘bump’ in time, as well as in both spatial directions:

σyy(t, x, 0, z) =



σb

{
1
2

[
1− cos

(
2π t

τb

)]
· 1

2

[
1− cos

(
2π x−X/2

Wb

)]
· 1

2

[
1− cos

(
2π z−X/2

Wb

)]}
if 0 ≤ t ≤ τb and
X−Wb

2 ≤ x, z ≤ X+Wb
2 ,

0 otherwise

(35)
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(see Figure 12), where the notations are analogous to the ones of the previous case: τb is the duration
of the pulse, σb is its amplitude, Wb is its spatial width, and X is the length of the edges of the cube.
On the other sides, normal stress is constantly zero (free surfaces), like in the previous example.

Figure 12. The spatial distribution of normal stress as the boundary condition on one side of a cube.
The excitation is also a single cosine-shaped ‘bump’ in time.

Here, we only present the PTZ model, on a 25× 25× 25 grid, with all other settings being the
same as in the previous example.

The solution proves similarly satisfatory, as in the former case. Figures 13 and 14 show snapshots
of the distribution of the von Mises stress invariant on two mid-planes of the cubes.

Figure 13. Cont.
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Figure 13. Snapshots of the distribution of the stress invariant
√

tr(σ̂dev2
) at the mid-plane parallel to

the excited side (left column) and at a mid-plane orthogonal to it (right column) at various instants,
in the PTZ case. From top to bottom: snapshots at instants (1/2)τb, τb, (3/2)τb, 2τb, respectively.

Figure 14. Continuation of Figure 13: snapshots of the distribution of the stress invariant
√

tr(σ̂dev2
)

at the mid-plane parallel to the excited side (left column) and at a mid-plane orthogonal to it (right
column) at various instants, in the PTZ case. From top to bottom: snapshots at instants (5/2)τb,
3τb, (7/2)τb, 8τb, respectively.
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Next, in this example, we demonstrate the usefulness of another thermodynamical quantity,
entropy production rate density.

It is instructive to start with showing how the idea works in the simpler, one space dimensional,
setting (the rod discussed in [8]). The one space dimensional analogue of (11) is

πs =
1
T

1
Î

σ̂ ·
(

Ê
∂ε

∂t
− τ

∂σ

∂t

)
(36)

Let us introduce four different discretizations of this product, embodying the patterns

• old · (new− old),
• old · (new− older),
• new · (new− old), and
• new · (new− older):

1

T j
n

1
Î

σ̂
j
n ·
(

Ê
ε

j+1
n − ε

j
n

∆t
− τ

σ
j+1
n − σ

j
n

∆t

)
, (37)

1

T j
n

1
Î

σ̂
j
n ·
(

Ê
ε

j+1
n − ε

j−1
n

2∆t
− τ

σ
j+1
n − σ

j−1
n

2∆t

)
, (38)

1

T j
n

1
Î

σ̂
j+1
n ·

(
Ê

ε
j+1
n − ε

j
n

∆t
− τ

σ
j+1
n − σ

j
n

∆t

)
, (39)

1

T j
n

1
Î

σ̂
j+1
n ·

(
Ê

ε
j+1
n − ε

j−1
n

2∆t
− τ

σ
j+1
n − σ

j−1
n

2∆t

)
, (40)

where T j
n denotes the time average

(
T j−1/2

n + T j+1/2
n

)
/2.

These four versions are integrated in space and plotted in Figure 15, the left column for a stable
setting and the right column for an unstable one. The energies are also displayed. Only 25 space cells
have been chosen to enhance artefacts.

Figure 15. Cont.
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Figure 15. Entropy production rate according to the four discretized versions (37)–(40),
respectively, for a time step resulting in a stable run (left column) (namely, when the rheological

Courant number ĉ∆t/∆x is 1, where ĉ =
√

Ê/(τ$) is the high-frequency rheological wave propagation
speed) and for a choice leading to an unstable outcome (right column) (rheological Courant number
ĉ∆t/∆x = 1.003). PTZ model with τE/Ê = 0.25; the sample length X is such that Ê/E = 5X/c with
the low-frequency/elastic wave propagation speed c =

√
E/$. See [8] for further details.

Visibly, certain versions become negative when instability gets exposed. Moreover, some become
negative even before that, showing, at an early stage, that there is a problem to come.

Next, let us see how the three space dimensional generalizations behave for the problem of the
pressed cube: the outcomes can be seen in Figure 16. An intentionally rude 10× 10× 10 grid is taken,
the time unit is divided to 125 time steps in order to lead to a stable solution and to 100 time steps
producing an unstable one. Further settings are $ = 1, Edev = 3, Esph = 5, Êdev = 20, τdev = 0.391,
cσ = 0.001, T0 = 0.1, τb = 0.25, and σb = 3, Wb/X = 0.6, α = 1/2.
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Figure 16. Entropy production rate according to the four discretized versions (37)–(40) generalized to
three space dimensions, respectively, computed for a PTZ cube, with a time step resulting in a stable
run (left column) and for a choice leading to an unstable outcome (right column).

One can see that an appropriately chosen discretization diagnoses instability.
Such numerical comparisons between stable and unstable parameter domains, which are probably

enhanced by some analytical considerations, can help in the future in deciding which discretized
entropy production rate is useful for diagnosing what.

6. Two-Dimensional Wave Propagation According to the Finite Element Software COMSOL

In [8], a comparison of solutions via the one space dimensional scheme with corresponding finite
element solutions was presented. Repeating it for the present three space dimensional scheme would
be informative. We found it advisable to start investigating the higher dimensional wave propagation
describing the possibilities of finite element softwares in a much simpler setting than the one treated
above, based on the (discouraging) experience that is gained with the one-dimensional case, and since
a rheological model like PTZ in the deviatoric–spherical formulation is difficult to translate to the
capabilities of classic finite element softwares.
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Namely, we consider the wave equation in two spatial dimensions, for a single scalar degree of
freedom u = u(t, x, y), with constant (unit) coefficients and no source term in the equation:

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 . (41)

A rectangular sample is taken with ‘flux’ (Neumann) boundary condition (normal spatial
derivative component is prescribed): on one of the edges, one cosine-type pulse of the kind (34)
is applied, while the other edges are kept ‘free’ (zero normal derivative). Initially, both u and ∂u/∂t are
set to zero (‘relaxed initial state’).

To stay similar to the numerical calculations that are presented here, a 50× 50 spatial grid is taken.
The software that we use is COMSOL v5.3a, where this wave equation problem is a built-in possibility.
The pulse duration is 0.3 time unit. Figure 17 displays the resulting spatial distribution of the scalar
degree of freedom after two units of time, obtained with various available settings of COMSOL v5.3a.

Figure 17. Cont.
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Figure 17. u(2, x, y) with various COMSOL settings (cf. Figure 1). Left column, from top to bottom:
BDF Max. order 5 & min. order 2, BDF Max. order 3 & min. order 2, BDF Max. order 1 & min.
order 1, BDF Max. order 5 & min. order 3 Strict time stepping, RK34 Default. Right column,
from top to bottom: DP5 PI-Smooth, DP5 PI-Standard, DP5 PI-Quick, Generalized-α (GA), GA Predictor
Constant. Not shown (failed like DP5 PI-Standard or GA Predictor Constant): DP5 Pi-Off, RK34 Manual,
Cash-Karp 5 Free or Strict (Manual with a small time step gives a result similar to that of RK Default).

One can see that the solution depends on the settings very seriously. There are large-scale
differences and fine-structured irregularities. Moreover, one has no means of validation which outcome
is correct to what extent.

When taking into account that our full problem has 16 coupled degrees of freedom in three spatial
dimensions and with further time derivatives (in the PTZ model), it does not seem to be reasonable to
try to represent it via any commercial finite element software as long as such a much simpler problem
cannot be confidently treated.

7. Discussion

The numerical scheme presented here, due to its symplectic root, second-order accuracy, and the
equation-friendly and spacetime geometry friendly arrangement of discretized quantities, has been
found to provide reliable results in a fast and resource-friendly way. Being a finite difference scheme,
it is not very flexible to simulate arbitrary shaped samples, but, already, the extension of the Cartesian
formulae to cylindrical and spherical geometries promises useful applications, including the various
wave-based measurement methods that are used in rock mechanics (see, e.g., [26]), many of which rely
on simple and easily treatable sample shapes. Fitting a rheological model on experimental data may
require many runs so good finite difference schemes find their applicability.

The investigation of stability and dissipative and dispersion error is expected to be much more
involved than in the corresponding one space dimensional situation, where the analysis was done
in [8]. Nevertheless, it is an important task for the future, because the outcomes support efficient
applications of the scheme.

It is an interesting challenge to apply the presented scheme for other dissipative situations
(like [27], just to mention one example).

A systematic and general framework could be obtained, which is also beneficial for other purposes,
if the spacetime background is strengthened further, by using four-quantities, four-equations on them,
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and formulating discretization in a fully four-geometrical way. It would, for example, help in building
connection to a finite element—spacetime finite element—approach, along which way objects of
general shape could also be treated. Notably, the current finite element paradigm has deficiencies and
probably needs to be renewed, as indicated by results found here and earlier works [7,8].

In addition, the use the thermodynamical full description of a system for monitoring and
controlling numerical artefacts during a computer simulation is a promising perspective. The steps
made here: recognizing the usefulness of total energy and its various parts, and of entropy
production rate density, are hoped to contribute to a future routine in numerical environments,
where thermodynamics could be utilized.
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