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Differential fecal microbiota are 
retained in broiler chicken lines 
divergently selected for fatness 
traits
Qiangchuan Hou1,*, Lai-Yu Kwok1,*, Yi Zheng1, Lifeng Wang1, Zhuang Guo1, Jiachao Zhang1, 
Weiqiang Huang1, Yuxiang Wang2, Li Leng2, Hui Li2 & Heping Zhang1

Our study combined 16S rRNA-pyrosequencing and whole genome sequencing to analyze the fecal 
metagenomes of the divergently selected lean (LL) and fat (FL) line chickens. Significant structural 
differences existed in both the phylogenic and functional metagenomes between the two chicken lines. 
At phylum level, the FL group had significantly less Bacteroidetes. At genus level, fourteen genera 
of different relative abundance were identified, with some known short-chain fatty acid producers 
(including Subdoligranulum, Butyricicoccus, Eubacterium, Bacteroides, Blautia) and a potentially 
pathogenic genus (Enterococcus). Redundancy analysis identified 190 key responsive operational 
taxonomic units (OTUs) that accounted for the structural differences between the phylogenic 
metagenome of the two groups. Four Cluster of Orthologous Group (COG) categories (Amino acid 
transport and metabolism, E; Nucleotide transport and metabolism, F; Coenzyme transport and 
metabolism, H; and Lipid transport and metabolism, I) were overrepresented in LL samples. Fifteen 
differential metabolic pathways (Biosynthesis of amino acids, Pyruvate metabolism, Nitrotoluene 
degradation, Lipopolysaccharide biosynthesis, Peptidoglycan biosynthesis, Pantothenate and CoA 
biosynthesis, Glycosaminoglycan degradation, Thiamine metabolism, Phosphotransferase system, 
Two-component system, Bacterial secretion system, Flagellar assembly, Bacterial chemotaxis, 
Ribosome, Sulfur relay system) were identified. Our data highlighted interesting variations between the 
gut metagenomes of these two chicken lines.

Host genetic background is a major determinant factor that controls the phenotype. The gut microbiota is recog-
nized as an important environmental factor that interacts with its host through metabolic exchange and contrib-
utes to host energy absorption1. The present work investigated the host gut metagenome of a divergently selected 
chicken model based on fatness traits. Strong reasons have supported us to perform this work in broiler chicken.

Firstly, poultry are important protein sources in human diet and hence they are of enormous economic value; 
and domesticated chickens are the most common domestic animals in the world. The formation of close symbi-
otic relationship between the host-gut microbiota is known to be crucial in sustaining host health. Accumulating 
evidence shows that gut dysbiosis is linked to a variety of diseases, especially metabolic-associated syndromes 
like obesity2, diabetes3, and rheumatoid arthritis4. One vital function of the gut microbiota is to provide 
microbial-based metabolic pathways that are otherwise not indigenously encoded within the host genome; and 
in turn the gut microbiota participates in regulating the host nutritional metabolism, including nutrient assimi-
lation and energy capture. Moreover, they act in protecting the host from pathogens, detoxification, and immune 
development5. Taking into account the crucial health-related roles, without any doubt the gut microbiota can be 
regarded as a potential target for improving the general health, growth performance and productivity of broiler 
chickens, which have always been of intense interest to breeders.

Secondly, numerous studies have concluded that the gut microbiota is linked with host obesity and 
energy metabolism1,6,7, potentially via the connection between the gut microbes and body fat absorption and 
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disposition8,9. For instance, the phylum, Firmicutes, is more abundant in obese than lean individuals, and vice 
versa for Bacteroidetes. Moreover, the relative abundance of Bacteroidetes increases, accompanied with a decrease 
in Firmicutes, after a weight loss program for obese individuals1. By transferring the gut microbiota from obese 
or lean mice to germ-free mice, it was shown that a high Firmicutes to Bacteroidetes gut microbial ratio increased 
body fat accumulation10. Apart from bacteria, the dominant human gut archaeon, Methanobrevibacter smithii, 
affects host calorie harvest and adiposity through the digestion of dietary polysaccharides11. In contrast, the 
reduction of some normal gut bacteria along with the enrichment of certain opportunistic pathogens in the gut 
microbiota may raise the risk of weight gain. The opportunistic pathogen, Enterobacter cloacae B29, isolated from 
obese human’s gut is able to induce obesity and insulin resistance in germ-free mice12.

However, most available data in this aspect are based on rodents and human models10,13,14, which may not be 
completely suited in the case of chicken because of its unique anatomy and physiological functioning. Chickens 
swallow food and store it in the crop before digestion and absorption taking part in the gizzard, small intestine 
and cecum. Only a relatively short time of 2.5 hours is required for the food to pass through the upper intestine, 
contrasting to that of 12–20 hours in the ceca5. The prolonged retention of digesta in chicken ceca, where the 
largest quantity and diversity of microbes are hosted along the chicken gastrointestinal tract15, may indicate the 
essential nutritional function of the locality, including nutrient absorption, digestion of non-start polysaccharides 
(often present in high proportion in feed), recycling of nitrogen via uric acid dissimilation, and provision of B 
vitamins and essential amino acids5,16.

Additionally, most currently published studies only described the structure and function of the chicken gut 
microbiota, and the spatial and temporal changes upon specific stimulations15,17–20. Our study compared and con-
trasted the gut metagenome chickens selectively bred based on fatness traits. Selective breeding is a common agri-
cultural method that allows preferential selection of desirable genetic traits. This work has taken the advantage of 
the availability of two broiler lines21, the fat (FL) and lean (LL) chicken, which have been selectively bred for 15 
generations (at the time of this experiment) from the parental Arbor Acres broilers based on the plasma very low 
density lipoprotein (VLDL) concentration and abdominal fat percentage (AFP). The LL chickens are character-
ized by a high efficiency in extracting and incorporating food source energy into lean meat, while the FL chickens 
have a great tendency of abdominal fat deposition. Polymorphisms of several gene loci may be responsible for the 
fatness traits in the divergent chicken lines, including the insulin-like growth factor binding protein 222, adipocyte 
fatty acid-binding protein23, acetyl-CoA carboxylase α 24, and the PC1/PCSK1 region of the Z chromosome25. The 
divergent chicken lines also displayed variations in the preadipocyte microRNA expression profile26 and specific 
genes (namely SLC9A3, GNAL, SPOCK3, ANXA10, HELIOS, MYLK, CCDC14, SPAG9, SOX5, VSNL1, SMC6, 
GEN1, MSGN1 and ZPAX) within the copy number variation regions27.

We hypothesized that, apart from the host genetics, variation of the fatness trait may also link with the com-
position of the gut microbial metagenome. Thus, in this study, we compared the faecal microbial metagenome 
of these two chicken lines by integrating the 16S rRNA-pyrosequencing with whole genome sequencing (WGS). 
We aimed to investigate whether the process of lean and fat chicken selection simultaneous led to colonization of 
different spectra of gut microbiota. Data generated from this study have provided interesting insights into the role 
of environmental factors, e.g. the gut microbiota, in relation to the host phenotype in a genetically-predisposed 
model.

Materials and Methods
Ethics statement. All animal work was conducted according to the guidelines for the care and use of 
experimental animals established by the Ministry of Science and Technology of the People’s Republic of China 
(Approval number: 2006–398) and approved by the Laboratory Animal Management Committee of Northeast 
Agricultural University and the Ethical Committee of the Inner Mongolia Agricultural University.

Animals and sample collection. Two chicken lines, FL and LL, were provided by the Northeast 
Agricultural University. These two chicken lines were both originated from Arbor Acres broiler, which under-
went 15 generations of selection since 1996 based on the VLDL and AFP at 7 weeks of age. Briefly, the VLDL and 
AFP for all the first generation male chickens were measured at 7 weeks of age. The VLDL and AFP of the next 
generation were measured and compared to that of the previous one, and broilers of lower or higher average 
VLDL and AFP were chosen for subsequent breeding, as described previously28. In this way, the chicken lines 
were divergently selected for 15 generations. At 15th generations, the AFP of the FL was on average 4.57 higher 
than that of the LL (Supplementary Fig. S1 and Supplementary Table S1). Each chicken was raised in an individ-
ual cage in order to prevent contamination from uncontrolled particle intake and feathers29. All birds had free 
access to water. Birds and environmental controls were checked twice daily by trained staff. The temperature was 
maintained at 16–18 °C, and the humidity was maintained at 50–60%. At different life stages, the birds were fed 
with different diets, according to the Arbor Acres Plus parent stock breeder management guide and nutrition 
specifications (http://en.aviagen.com/). At the time of sampling (bird age between week 37 to 40), the birds were 
feed-restricted on a standard diet containing 14.2% crude protein and metabolic energy of 2745 kcal/kg. The feed 
nutritive content and digestible amino acid supplementation at the time of sampling are provided in Table 1.

Fecal samples of each chicken (15 lean and 14 fat line chickens) were collected by laying clean papers on 
the cage floor, and the droppings were then transferred to 5 ml tube by 1000 μ L pipette. All of the 29 samples 
were used for bacterial 16S rRNA genes V1-V3 region pyrosequencing and for whole-genome shotgun (WGS) 
sequencing.

DNA extraction. Genomic DNA was extracted from each fecal sample using Qiagen DNA Stool Mini Kit 
(Qiagen, Hilden, Germany) following the instructions of the manufacturer. The quality of extracted DNA was 
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assessed by 0.8% agarose gel electrophoresis and spectrophotometry (optical density at 260 nm/280 nm). All 
extracted DNA samples were stored at − 20 °C for further analysis.

PCR Amplification and 16S rRNA pyrosequencing. The V1-V3 region of the 16S ribosomal RNA 
(rRNA) genes in all the samples was amplified by PCR for barcoded pyrosequencing. For PCR amplifica-
tion, 10 ng of extracted DNA was amplified in a 20 μ L reaction buffer containing 4 μ L 5×  FastPfu Buffer, 2 μ L  
2.5 mM dNTPs, 0.4 μ L FastPfu polymerase, 0.8 μ L of each 5 μ M primer (TransGen Biotech) and double 
deionized water. The primers used to amplify the bacterial V1-V3 region of the 16S rRNA gene were 27 F  
(5′-AGAGTTTGATCCTGGCTCAG-3′ ) and 533 R (5′ -TTACCGCGGCTGCTGGCAC-3′ ). The PCR pro-
gram was as follows: 94 °C for 5 min; 30 cycles of 94 °C for 45 s, 55 °C for 40 s, and 72 °C for 1 min; and a 
final extension of 72 °C for 7 min). The primers used for amplifying archaeal 16S rRNA gene were Arch344F 
(5′-ACGGGGYGCAGCAGGCGCGA-3′ ) and Arch915 (5′ -GTGCTCCCCCGCCAATTCCT-3′ ). The PCR pro-
gram was as follows: 95 °C for 2 min; 30 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s with a final extension  
of 72 °C for 5 min.

The quality of the PCR products was ensured using Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 
Calif.) in accordance with the manufacturer’s instructions. The PCR products were pooled in equimolar ratios 
with a final concentration of 100 nmol/L for pyrosequencing (Roche GS FLX), performed by Shanghai Majorbio 
Bio-pharm Technology Co., Ltd.

Bioinformatics processing of 16S rRNA pyrosequencing data. The extraction of high-quality 
sequences was performed with the QIIME package (Quantitative Insights Into Microbial Ecology) (v1.7). Raw 
sequences were selected based on sequence length, quality, primer and tag, according to the following criteria: the 
length of the raw sequences was more than 300 bp; the variable region was more than 300 bp in length and lying 
between the two primers; the read sequence had a perfect match with the barcode; the high-quality score (> 20) 
for the proportion of bases was larger than 93% in the raw read.

PyNAST and UCLUST were applied to align sequences under 100% clustering of sequence identity in order to 
obtain unique representative sequences. Operational taxonomic units (OTUs) were classified under the threshold 
of 97% identity by using UCLUST. FastTree was applied to construct the de novo phylogenetic tree. Ribosomal 
Database Project (RDP) Classifier (Release 11.4) was applied to assign taxonomic to each OTU representative 
sequence. Owing to the relatively short length of the V1-V3 region of 16S rRNA genes, BLASTN from the NCBI 
website was applied when RDP failed to classify an OTU taxonomically. Differently defined thresholds were set to 
assign the reference sequence into the matching taxonomic group, which were 95%, 92%, 91%, 85%, and 75% for 
genus, family, order, class, and phylum, respectively30.

Whole-genome shotgun (WGS) sequencing and quality control. All samples were sequenced with 
the Illumina HiSeq2000 instrument. Libraries were prepared with a fragment length of approximately 300 bp. 
Paired-end reads were generated with 100 bp in the forward and reverse directions. The length of each read was 
trimmed with Sickle. Reads that aligned to the chicken genome were also removed. This set of high-quality reads 
was then used for further analysis. The sample taxonomic profile was also determined directly from the metage-
nome dataset using two online software, i.e. Parallel-META31 and MetaPhlAn32, following the instructions of the 
two software developers.

Illumina short reads de novo assembly, gene prediction and construction of the non-redundant 
gene catalogue. The microbial Illumina reads were assembled into contigs using IDBA-UD33 with default 
parameters. Genes were predicted on the contigs with MetaGeneMark34. A non-redundant gene catalogue was 
constructed with CD-HIT35 using a sequence identity cut-off of 0.95, with a minimum coverage cut-off of 0.9 for 
the shorter sequences.

Functional annotation. Putative amino acid sequences, translated from the gene catalogue, were aligned 
against the proteins/domains in the Cluster of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases (submit online) using BLASTP (e-value ≤  1e-5 with a bit score higher than 60). Each 
protein was assigned to the KEGG orthologue group (KO) or COG by the highest scoring annotated hit.

Nutritive value

Crude protein (%) 14.2

Metabolic energy (ME) (kcal/kg) 2745

Digestable amino acids (%)

Lysine 0.61

Methionine & cystine 0.45

Methionine 0.57

Threonine 0.27

Valine 0.51

Isoleucine 0.41

Arginine 0.13

Tryptophan 0.48

Table 1. The nutritive value of chicken feed.
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Computation of relative gene abundance. To assess the relative gene abundance, reads were aligned 
against the gene catalogue with Bowtie236 using parameters: -p 12 -x nt -1 R1.fastq -2 R2.fastq -S R.sam. Then, to 
normalize the sequencing coverage, the relative abundance instead of the raw read count was used to quantify the 
gut microbial genes. The calculation process was as follows:
Step 1: Calculation of the copy number of each gene:

=b x
Li

i

i

Step 2: Calculation of the relative abundance of gene i:

=
∑

a b
bi
i

i i

ai: the relative abundance of gene i.
bi: the copy number of gene i from sample N.
Li: the length of gene i.
xi: the number of mapped reads.

The relative gene abundances and other calculation were completed using Python scripts.

Statistical analyses. Statistical analyses were performed mainly using R packages (http://www.r-project.org/),  
together with Python37, Canoco for Windows 4.5 (Microcomputer Power, NY, USA), and PAST38. Rarefaction 
analysis, Shannon diversity index and Simpson’s diversity index were used to estimate the richness and diversity 
of OTUs. Principal coordinate and principal component analyses (PCoA and PCA) were used to assess the gut 
microbiota and metagenome structure of different samples, respectively. Redundancy analysis (RDA) was applied 
to identify bacterial groups which significantly contributed to the structural difference. The relative abundances of 
differential taxonomic groups were visualized by heatmap in R using the “pheatmap” package. Differences in the 
relative abundances of taxonomic groups and at gene level between samples were evaluated with Mann-Whitney 
test. False discovery rate (FDR) values were estimated using the Benjamini–Yekutieli method to control for mul-
tiple testing39. P-values less than 0.05 were considered statistically significant. Differential genes were also tested 
with DESeq240. Significantly differentiating KEGG modules were identified according to the final reporter score 
calculated from the aggregated Z-score of individual KOs with the cut-off level of ≥ 1.6 (90% confidence accord-
ing to normal distribution)41. Whether the significantly differentiating modules were enriched in the FL or LL 
chickens was further determined by comparing the number of individual KOs that was enriched in the specific 
chicken line.

Nucleotide sequence accession numbers. Datasets generated by the shotgun and 16S rRNA amplicon 
sequencing approaches reported in this study have been deposited in the GenBank database (accession number: 
SRP083441) and MG-RAST project (ID: 19742), respectively.

Results
Sequence abundance and diversity of 16S rRNA gene. A total of 263,158 of v1-v3 region of 16S 
rRNA raw sequence reads were generated from 29 chickens (15 LL and 14 FL), with an average of 9074 sequence 
read for each sample. 46,415 sequence reads were delimited through PyNAST alignment and 100% sequence 
identity clustering for further analysis. 7312 OTUs were identified at 97% sequence similarity level with high 
threshold identity and with an average of 788 OTUs for each sample. The lowest level of taxon abundance for 
each OTU was determined by combining homologous sequence alignment method and clustering which based 
on information extracted from RDP and Greengenes (Release 13.5) databases. Results showed that 19.6% of 
sequences were unable to be assigned to the genus level. The Shannon diversity curves for all samples plateaued 
(Supplementary Fig. S2), even though the individual rarefaction curves did not reach saturation phase. This 
suggested that the increasing of sequencing depth would possibly identify more new phylotypes, but the current 
analysis had already captured the majority of the microbial diversity, respectively.

The Shannon and Simpson indices were applied to evaluate the diversity of gut microbiota, while the chao1 
and observed species indices were indicators for species abundance. No significant difference was found between 
lean and fat chickens for all four indices, as assessed by Mann-Whitney test (Supplementary Table S2), and 
p-values for Shannon, Simpson, chao1 and observed species were 0.15, 0.18, 0.39 and 0.47.

Core gut microbiota detected in all samples based on 16S rRNA amplicon sequencing. In this 
study, the ‘core gut microbiota’ in chicken was defined as the taxonomical units (genus and OTUs) that were 
detected in all samples. Nine core genera, including Clostridium (23.44%), Bacteroides (18.78%), Lactobacillus 
(8.77%), Ruminococcus (3.97%), Hallella (1.61%), Subdoligranulum (1.07%), Faecalibacterium (1.04%), Roseburia 
(0.98%), and Eubacterium (0.31%), were identified (Supplementary Table S3).

Comparison of gut bacterial composition between LL and FL at phylum and genus levels based 
on 16S rRNA amplicon sequencing. Nineteen phyla were identified within the complete dataset. The 
4 most dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) accounted for 99.11% of 
the total sequence, contributing to 53.44%, 41.09%, 3.22% and 1.33% for LL and 71.36%, 23.40%, 3.43% and 
0.98% for FL, respectively. The proportion of Bacteroidetes, but not the other 3 dominant phyla, were significantly 
different between the LL and FL samples (LL> FL, 41.09% versus 23.40%, p =  0.034). Minor phyla, including 
Thermotogae, Verrucomicrobia, Cyanobacteria, Acidobacteria, Fibrobacteres, Chloroflexi, Gemmatimonadetes, 
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Synergistetes, Fusobacteria, TM7, Deinococcus-Thermus, Tenericutes, Deferribacteres, Lentisphaerae, Spirochaetes, 
together contributed to 0.1% of the total sequence.

The dominant gut microbiota genera mainly belonged to the phyla, Firmicutes and Bacteroidetes (Fig. 1). 
However, considerable difference was noted between the fecal microbiota of the two chicken lines. In the gut 
microbiota of lean chickens, the relatively abundant genera (> 1%) of Firmicutes included Clostridium (19.06%), 
Ruminococcus (5.50%), Lactobacillus (3.09%), Streptococcus (2.39%), Oscillibacter (1.52%), Subdoligranulum 
(1.30%), Faecalibacterium (1.18%), Enterococcus (1.14%), Roseburia (1.03%), whereas the Bacteroidetes was 
comprised with a wider diversity of relatively abundant genera, namely Bacteroides (23.45%), Hallella (2.36%), 
Parabacteroides (1.79%), Alistipes (1.23%), Paraprevotella (1.21%) (Fig. 1A). For FL chickens, the dominant 
and subdominant genera of over 1% relative abundance included members of the Firmicutes (Clostridium, 
Lactobacillus, Enterococcus, Turicibacter, Ruminococcus, Oscillibacter, Streptococcus, Megamonas) of 28.14%, 
14.86%, 4.26%, 3.30%, 2.32%, 1.68%, 1.40%, and 1.02%, respectively) and Bacteroidetes (Bacteroides and 
Parabacteroides of 13.77% and 1.13%, respectively) (Fig. 1B).

Moreover, the proportions of 5 out of the 9 identified core genera were significantly higher in LL as compared 
to FL, including Ruminococcus, Subdoligranulum, Eubacterium, Bacteroides, Hallella (p values ranged from 0.001 
to 0.047). Other genera which were also significantly enriched in LL included Alistipes, Butyricicoccus, Hespellia, 
Anaerosporobacter, Odoribacter, Prevotella, Collinsella and Blautia (p values ranged from 0.003 to 0.05). In con-
trast, the proportions of Enterococcus and Corynebacterium were lower in LL (p =  0.022, 0.045, respectively) 
(Supplementary Table S4).

Multivariate analysis of the gut microbiota structure of LL and FL chickens based on 16S rRNA 
amplicon sequencing. In order to compare the overall difference of the gut microbiota of LL and FL 
chickens, PCoA was performed. The PCoA score plots based on weighted and unweighted UniFrac are shown 
in Fig. 2. Although sample overlapping occurred between the two samples groups, clustering tendencies were 

Figure 1. The dominant and subdominant phyla and genera (i.e. >1% relative abundance) in lean (A) and 
fat (B) line chickens. ‘*’ Represents the significant differing phyla and genera between the two groups (P-values 
of less than 0.05).

Figure 2. Principal coordinate analysis based on (A) weighted and (B) unweighted UniFrac metric distance.
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observed, suggesting a moderate difference existed in the gut microbiota structure between the LL and FL chick-
ens. Results from the multivariate analysis of variance (MANOVA) revealed the significant difference of gut 
microbiota between LL and FL (p <  0.05). Moreover, clustering analysis based on the weighted (p =  0.0024), but 
not unweighted (p =  0.7767), UniFrac distances revealed significant difference between the two chicken lines 
(Supplementary Fig. S3), indicating that the difference lied on the more prevalent lineages rather than the rare 
taxonomical groups.

To further identify the specific bacterial groups principally accounting for the difference observed between 
the LL and FL gut microbiota, RDA was carried out. In this case, the LL and FL chickens were the “nominal envi-
ronmental variables”, and the relative abundances of all OTUs (at 97% similarity) were the response variables. 
Monte Carlo Permutation Test showed that the constrained ordination model by lean or obese was statistically 
significant (p =  0.002) and the first canonical axis was able to explain 9.8% of the variability of response variables. 
Moreover, a total of 190 OTUs were identified as key variables which had good correlation with sample scores 
on the RDA canonical axis. Among them, 109 and 81 OTUs were enriched in the gut microbiota of LL and FL 
chickens, respectively (Fig. 3). The heatmap constructed by the relative abundance of these 190 OTUs is shown 
in Fig. 4.

As assessed by Mann-Whitney test, 49 (18 Bacteroidaceae, 6 Ruminococcaceae, 6 Prevotellaceae, 5 
Lachnospiraceae, 3 Clostridiaceae, 11 from other or unidentified families) out of the 190 key OTUs were sig-
nificantly more abundant in lean chickens (p =  0.048–0.002), whereas the relative abundance of 47 OTUs (14 
Clostridiaceae, 5 Lactobacillaceae, 4 Ruminococcaceae, 3 Micrococcaceae, 3 Erysipelotrichaceae, 18 from other or 
unidentified families) were significantly enriched in obese chickens (p =  0.046–0.002) (Supplementary Table S5).

Comparison of the gut archaeal composition between LL and FL. Archaeal members were 
also identified in the gut microbiota of both LL and FL chickens (Table 2). All archaeal sequences could be 
assigned to the phylum Euryarchaeota. At the genus level, most sequences belonged to Methanobrevibacter and 
Methanocorpusculum, and a few of the sequences correspond to Methanosarcina. Each of the 3 genera occupied 
less than 0.1% of the total sequences. No significant difference was found in the archeal composition between the 
two sample groups.

To investigate the archaea in the gut of both LL and FL, two steps UCLUST method combining with multivar-
iate statistics were applied to conduct OTUs. By PCoA, the first two principal coordinates for weighted UniFrac 
were 86.09% and 5.78%, and 35.57% and 37.30% for unweighted UniFrac. Furthemore, the two groups over-
lapped each other; thus, no obvious difference in the gut archaea profile existed between the two groups (p >  0.05) 
(Supplementary Fig. S4).

Figure 3. Biplot of redundancy analysis (RDA) on the basis of OTU relative abundance at 98% similarity 
level. ‘ ’ and ‘ ’ represent the constrained explanatory variables, fat (F) and lean (L) lines. Blue arrows 
represent response variables with the first ordination axis explaining for at least 9.8% of the variability. A p-value 
of 0.002 was generated from Monte Carlo Permutation Test.
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Figure 4. Heatmap showing the relative abundances of the 190 key variables differentiating the microbiota 
of lean and obese chickens. Significantly different bacterial groups are shown at the right side of the heatmap. 
Phylogenetic tree built based on the 190 OTUs is at the left side.

Genus p-value

Average (%) Median, range (%)

LL FL LL FL

Methanobrevibacter 0.255 25.19 47.82 6.82, 0.12–73.43 56.58, 0.04–97.41

Methanocorpusculum 0.310 71.88 48.64 89.46, 24.57–97.96 37.91, 2.30–99.72

Table 2.  The relative abundance of archaea of the two chicken lines.
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Coverage of WGS sequencing. To profile the gut microbial metagenome of the chickens, WGS sequencing 
was performed on all 29 samples. However, one of them failed the quality test (data not shown); thus, no data 
was included in the metagenome analysis from this sample. The 28 samples yielded a total of 234.4 Gb of pair-end 
reads (an average of 52,485,882 high-quality reads and 239,690 genes per sample) that were of high-quality and 
were free of chicken DNA and adaptor contaminants (Supplementary Table S6).

Structures and functions of the chicken gut microbial metagenome. The structure and function 
of the LL and FL gut microbial metagenome were analyzed based on the COG and KEGG functions. The relative 
abundances of all the COG functional groups in the LL and FL chickens are represented by box plots (Fig. 5). Four 
of the functional categories were significantly different between the two chicken lines (all with relative abundance 
of lean >  fat line), which were Amino acid transport and metabolism (E) (p =  0.0350), Nucleotide transport and 
metabolism (F) (p =  0.0042), Coenzyme transport and metabolism (H) (p =  0.0186), and Lipid transport and 
metabolism (I) (p =  0.0079), respectively. To visualize the functional difference between the two sample groups, 
PCA analysis was performed based on all detected KO (Fig. 6A) (with PC1 and PC2 representing 57.01% and 
18.03% of the total variance). Although only a weak clustering pattern was observed on the score plot with mild 
overlap of symbols representing the two groups, further analysis by MANOVA revealed that they were signifi-
cantly different (p =  0.0012) (Fig. 6B).

Figure 5. Comparison of the structure of lean and fat chicken gut metagenomes. (A) Differential 
abundance of COG functional categories of the two chicken lines. COG category codes are as follows: A, RNA 
processing and modification; B, Chromatin structure and dynamics; C, Energy production and conversion; 
D, Cell cycle control, cell division, chromosome partitioning; E, Amino acid transport and metabolism; F, 
Nucleotide transport and metabolism; G, Carbohydrate transport and metabolism; H, Coenzyme transport 
and metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal structure and biogenesis; K, 
Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, 
Cell motility; O, Posttranslational modification, protein turnover, chaperones; P, Inorganic ion transport and 
metabolism; Q, Secondary metabolites biosynthesis, transport and catabolism; R, General function prediction 
only; S, Function unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, Cytoskeleton. 
P-values of < 0.01 and < 0.05 are represented by ‘**’ and ‘*’, respectively.

Figure 6. Principal component analysis (A) and multivariate analysis of variance (B) of the gut metagenomes 
of lean and fat line chickens based on KEGG orthology distribution.
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Differential chicken gut microbial KEGG genes, modules and pathways. A total of 6739 
KEGG genes could be assigned from the whole dataset, among which 320 genes (179 and 141, representing 
2.66% and 2.09%, overrepresented in lean and fat line chickens with p-values ranging from 0.0003 to 0.0491 
and 0.0010 to 0.0499, respectively) were differentially enriched, as detected by pairwise Mann-Whitney test 
(Supplementary Table S7).

To understand the biological meaning of such gene abundance differences, all the detected genes were further 
assigned to KEGG module and pathway levels. The detected genes could be assigned to 579 different KEGG mod-
ules. Forty (6.91%) of the modules had a final reporter score of over 1.6 (cutoff limit for significantly differentiating 
pathway). By comparing the number of individual KOs that was enriched in the specific chicken line, 31 (5.35%) 
and 8 (1.38%) modules were found to be more abundant in the lean and fat line chickens, respectively, while 
1 (0.12%) module displayed similar level of activity between the two chicken lines (Supplementary Table S8). 
Table 3 includes only the modules with a high (≥  80%) or a low (≤  20%) proportion of KO that had higher relative 
gene abundance in lean line.

Similarly, based on the same level of final reporter score cutoff, a total of 15 differential pathways could be 
identified; most of them were relating to the category of Metabolism (namely Biosynthesis of amino acids, 
Pyruvate metabolism, Nitrotoluene degradation, Lipopolysaccharide biosynthesis, Peptidoglycan biosynthe-
sis, Pantothenate and CoA biosynthesis, Glycosaminoglycan degradation, Thiamine metabolism), followed 
by Environmental Information Processing (namely Phosphotransferase system (PTS), Two-component sys-
tem, Bacterial secretion system), Cellular Processes associated with Cell motility (Flagellar assembly, Bacterial 
chemotaxis), and Genetic Information Processing (Ribosome, Sulfur relay system) (Supplementary Table S9). 
To verify the profiles of differential pathways and modules, a second method, DESeq2, was used to compare 
the functional metagenomes of the two sample groups. Comparing to the results generated by Mann-Whitney 
test, highly similar results were obtained at both KEGG pathway (Supplementary Table S10) and module levels 
(Supplementary Table S11).

Discussion
Our study analyzed the gut microbiome of the divergently selected lean and fat broiler chicken lines. We asked 
whether different spectra of gut microbiota will be retained in these two chicken lines; and if so, whether the two 
spectra of gut microbiota potentially carry genomes that confer different metabolic capacity.

To answer our first question, we comparatively analyzed the fecal microbiota profiles of the two chicken lines 
mainly based on the 16S rRNA amplicon sequencing. Our MANOVA analysis revealed a significant difference 
between the LL and FL chicken fecal microbiota structure. At phylum level, significantly more Bacteroidetes 
(p =  0.0343) was found in the LL samples. Bacteroidetes is known to be associated with fat accumulation in chick-
ens42 and less of these bacteria are present in obese human individuals1,43.

At genus level, some of the 14 identified differential genera are known short-chain fatty acid (SCFA)-producers. 
The butyrate-producers (Subdoligranulum, Butyricicoccus, Eubacterium)44,45, propionate-producers (Bacteroides)46 
and acetate-producers (Blautia)47,48 were diminished in the FL samples. Subdoligranulum and Butyricicoccus can 
stimulate the growth of intestinal epithelial cells and thus reduce the invasion and colonization of Salmonella in 
veterinary medicine49. Eubacterium is a possible butyrate-producer in animal guts44. Low grade inflammation is 
involved actively in obesity development; and butyrate is anti-inflammatory and protects the intestinal barrier 
function50,51. Thus, fewer gut butyrate-producers in the FL group may contribute to its fat accumulation.

Meanwhile, Enterococcus sequences were approximately 4-fold more abundant in the FL samples. Enterococcus 
is reported to be associated with colorectal cancer52,53; and Enterococcus faecalis can damage eukaryotic cellular 
DNA in colonic epithelial cells by producing extracellular superoxides and hydroperoxides54,55. The local cellular 
damages and reactive oxygen species caused by these bacteria may alter intestinal permeability, lead to cell death, 
and hence act as triggers for inflammation and obesity.

No significant difference existed in the relative abundance of Lactobacillus between LL and FL samples, 
but an apparent variation existed (3.09% ±  0.92% versus 14.86% ±  6.82% in LL and FL samples, respectively). 
Moreover, ten fatness traits correlated key responsive OTUs identified by RDA belonged to Lactobacillus. In 
all cases, more were present in the FL samples, with OTUs 7838, 9029, and 8615 exhibiting significant differ-
ences (p-values =  0.003–0.014; 16.64-, 12.65-, and 4.31-fold enrichment in FL samples). Probiotics have been 
used in agricultural practices to increase growth rate, improve digestion, nutrient absorption and nutrient diges-
tion. The probiotics-driven weight gain effect is strain-specific. The administration of Lactobacillus fermentum, 
Lactobacillus ingluviei, Lactobacillus agilis and Lactobacillus salvarius was associated with weight gain in chick-
ens56–59, while consuming some other Lactobacillus species resulted in weight loss in rodents or humans60–62. The 
mechanism of Lactobacillus in host weight modification is complex and yet to be elucidated.

Generally, more Methanobrevibacter was found in the FL group, though the difference was not statistically 
significant. Methanogenic archaea, in particular Methanobrevibacter, participate in regulating gut metabolism 
by removing excessive bowel hydrogen. This subsequently improves the efficiency of microbial fermentation and 
enhances host energy capture. In a gnotobiotic mouse model, Methanobrevibacter results in weight gain in the 
presence of Bacteroides thetaiotaomicron12. Methanobrevibacter improve acetate and butyrate production mean-
while eliminate hydrogen and formate63, which are vital carbon sources for colon epithelium cells. This syntroph-
ism between the gut bacteria and archaea may raise energy extraction when indigestible polysaccharide diets are 
given. The higher Methanobrevibacter abundance in the FL group may contribute to its obese phenotype.

Apart from describing the sample microbiota using a more traditional approach based on 16S rRNA amplicon 
sequencing, we also extracted the taxonomic profiles directly from the metagenome dataset by using two publicly 
accessible online tools, Parallel-META and MetaPhlAn (Supplementary Figs S5 and S6). We found some dis-
crepancies between the phylogenic metagenome profiles as determined by the three methods; such discrepancies 
are possibly caused by the differences in the algorithm used in taxonomic assignment in each case64, as well as 
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bias between the metagenomic- and 16S rRNA-based sequencing approaches65–67. The current study detected a 
broader range of bacterial genera with the 16S rRNA amplicon sequencing approach (246 versus 88 and 90 differ-
ent bacterial genera with Parallel-META and MetaPhlAn, respectively) (data not shown), although many of these 
genera comprised only a minute proportion of the entire bacterial microbiota community.

To answer our second question, we analyzed the functional fecal metagenomes of the two chicken lines. Even 
though symbols representing the two groups mildly overlapped in the PCA plot based on KEGG orthology dis-
tribution (Fig. 6A), further MANOVA analysis confirmed that structural difference existed between the two 
KO-annotated functional metagenomes. Sequences encoding for the Amino acid transport and metabolism (E), 
Nucleotide transport and metabolism (F), Coenzyme transport and metabolism (H), and Lipid transport and 
metabolism (I) were overrepresented in the COG annotation of LL dataset.

Modules Final reporter score Proportion of KO with gene abundance of lean>fat line Identity of the differential module

Modules that were enriched in lean line chicken

 M00207 1.64 80%
Environmental information processing | 
Saccharide, polyol, and lipid transport system | 
Putative multiple sugar transport system 

 M00002 1.67 91%
Carbohydrate and lipid metabolism | Central 
carbohydrate metabolism | Glycolysis, core 
module involving three-carbon compounds

 M00050 1.72 83%
Nucleotide and amino acid metabolism | 
Purine metabolism | Guanine ribonucleotide 
biosynthesis IMP =  > GDP, GTP

 M00323 1.73 100%
Environmental information processing | 
Phosphate and amino acid transport system | 
Urea transport system

 M00491 1.74 80%
Environmental information processing | 
Saccharide, polyol, and lipid transport system | 
arabinogalactan oligomer/maltooligosaccharide 
transport system

 M00237 1.76 100%
Environmental information processing | 
Phosphate and amino acid transport system | 
Branched-chain amino acid transport system 

 M00061 1.81 86%
Carbohydrate and lipid metabolism | Other 
carbohydrate metabolism | D-Glucuronate 
degradation 

 M00260 1.86 80%
Genetic information processing | DNA 
polymerase | DNA polymerase III complex, 
bacteria

 M00016 1.94 83%
Nucleotide and amino acid metabolism | Lysine 
metabolism | Lysine biosynthesis, succinyl-
DAP pathway, aspartate = >  lysine

 M00096 2.10 89%
Carbohydrate and lipid metabolism | Terpenoid 
backbone biosynthesis | C5 isoprenoid 
biosynthesis, non-mevalonate pathway 

 M00525 2.10 100%
Nucleotide and amino acid metabolism | Lysine 
metabolism | Lysine biosynthesis, acetyl-DAP 
pathway, aspartate  =  > lysine

 M00360 3.39 90% Metabolism | Aminoacyl tRNA | Aminoacyl-
tRNA biosynthesis, prokaryotes 

 M00359 3.54 100% Metabolism | Aminoacyl tRNA | Aminoacyl-
tRNA biosynthesis, eukaryotes 

 M00178 5.22 96% Genetic information processing | Ribosome | 
Ribosome, bacteria 

Modules that were enriched in fat line chicken

 M00210 1.63 20%
Environmental information processing | 
Saccharide, polyol, and lipid transport system | 
Phospholipid transport system

 M00194 1.76 20%
Environmental information processing | 
Saccharide, polyol, and lipid transport system | 
Maltose/maltodextrin transport system 

 M00331 1.80 20%
Environmental information processing | 
Bacterial secretion system | Type II general 
secretion system 

 M00357 2.15 16% Energy metabolism | Methane metabolism | 
Methanogenesis, acetate =  > methane 

 M00567 2.49 4% Energy metabolism | Methane metabolism | 
Methanogenesis, CO2 =  > methane

Table 3.  Significant differential KEGG modules in lean or fat chicken lines. Remarks: The table only 
includes modules that have a high (≥  80%) or a low (≤  20%) proportion of KO of gene abundance of lean> fat 
line, indicating that these modules are either enriched in the lean or fat line chickens, respectively. The complete 
list of significant differential modules is provided in Supplementary Table 8.
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Annotation of KEGG KO revealed a total of 15 differential pathways. Many of these KEGG pathways poten-
tially relate to obesity, adiposity and energy balance regulation. For example, Lipopolysaccharide biosynthesis and 
Flagellar assembly are indirectly involved in host adiposity. Obesity is considered to be connected with chronic 
low-grade inflammation. Obesity causes noticeable structural alterations at the gut lining, resulting in elevated intes-
tinal permeability that favors the gut microbiota-derived lipopolysaccharide translocation to the bloodstream. The 
endotoxemia may activate toll-like receptor 4 to proinflammatory status68. Flagellin is the major flagellar structural 
protein, which is specifically detected by the host toll-like receptor 5. Mice deficient of toll-like receptor become 
hyperphagic and develop obesity; and the transfer of gut microbiota from these mice to wild type germ-free mice 
confer metabolic syndrome features to the recipients, suggesting that the Flagellar assembly plays a role in obesity 
development69. On the other hand, peptidoglycan exerts an anti-inflammatory effect via the peptidoglycan recog-
nition protein 370, which may counter the low-grade inflammation in obesity status. Some other pathways associate 
with nutrient absorption (including Biosynthesis of amino acids, Pyruvate metabolism and Phosphotransferase sys-
tem (PTS)) and bacterial colonization and proliferation (including Two-component system, Bacterial chemotaxis, 
Bacterial secretion system). These pathways are required for substrate sensing and foraging, as well as carbohydrate 
substrate transporting and utilizing; thus, they are crucial for energy extraction and provision.

Only few reports have discussed the roles of vitamin metabolism in obesity development. The administra-
tion of thiamine prevents from obesity and metabolic disorders in Otsuka Long-Evans Tokushima Fatty rats 
that resemble human metabolic syndrome and obesity71, while pantothenic acid derivatives were found to exert 
hypolipidemic effect to hypothalamic obesity mice induced by aurothioglucose, potentially by the mechanisms 
of insulin resistance reduction and lipolysis in serum and adipose tissue72. The functions of other differential 
pathways in obesity development are less clear (e.g. Ribosome, Sulfur relay system, Nitrotoluene degradation, 
Glycosaminoglycan degradation).

Microbiome-derived SCFAs are considered as key players in regulating host obesity. Generally, butyrate and 
propionate are antiobesogenic, while acetate is obesogenic73. At KEGG module level, of particular interest is the 
higher abundance of lysine and isoleucine biosynthesis pathways of the LL group. Some gut commensal bacteria 
(including members of Eubacterium) are able to produce butyrate from lysine, although no gut microbe is known 
to contain the complete pathway74. Several amino acids, including both lysine and isoleucine, can serve as pre-
cursors for gut butyrogenesis75. Thus, we speculate that the gut microbiota of LL chicken may produce butyrate 
using amino acids as substrates.

At KEGG module level, two methanogenesis (M00357 and M00567) and the Pyridoxal biosynthesis (M00124) 
modules were enriched in the FL group, which may contribute to fat accumulation. The higher activity of meth-
anogenesis is in line with the higher relative abundances of methanogenic archaea in the FL samples. A recent 
study found that the active form of vitamin B6 (pyridoxal 5-phosphate) is linked with adipogenesis using a com-
parative metabolomic approach76.

On the other hand, the ascorbate biosynthesis module (M00129) is enriched in the LL sample. Ascorbic acid 
supplementation may suppress adiposity and insulin resistance gene expression in high-fat diet induced obese 
rats77. Such effect may due to the intrinsic ascorbate anti-oxidative activity that ameliorates free radical-induced 
oxidative stress and thus lessens inflammation.

To sum up, we highlighted the overall structural differences between the fecal phylogenic and functional 
metagenomes of the LL and FL chickens. Between the two groups, significant differences were found in the rela-
tive abundances of some energy metabolite-related bacteria (especially the SCFA-producers) and potential patho-
gens (e.g. Enterococcus), and in numerous biochemical pathways relating to obesity, adiposity and energy balance. 
Our experimental design does not allow us to draw a concrete conclusion on whether the microbiota residing 
in the FL or LL chicken gut significantly or at least partially contributed to obesity or, alternatively, the modified 
metabolism driven by the host fatness traits selection resulted in modulated intestinal tract environment and thus 
the shift of microbiota composition to adapt to host obesity. Nevertheless, this study has provided a deeper insight 
into the possible contribution of gut microbiota in modulating obesity.
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