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Abstract
In this study, we analyze the effectiveness of measures aimed at finding and isolating
infected individuals to contain epidemics like COVID-19, as the suppression induced
over the effective reproduction number. We develop a mathematical model to compute
the relative suppression of the effective reproduction number of an epidemic that such
measures produce. This outcome is expressed as a function of a small set of parame-
ters that describe the main features of the epidemic and summarize the effectiveness
of the isolation measures. In particular, we focus on the impact when a fraction of
the population uses a mobile application for epidemic control. Finally, we apply the
model to COVID-19, providing several computations as examples, and a link to a
public repository to run custom calculations. These computations display in a quanti-
tative manner the importance of recognizing infected individuals from symptoms and
contact-tracing information, and isolating them as early as possible. The computations
also assess the impact of each variable on the mitigation of the epidemic.
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1 Introduction

1.1 Main concepts and goals

This study aims to develop a probabilistic model to predict the effectiveness of con-
taining an epidemic such as COVID-19 with measures aimed at finding and isolating
infected individuals. More precisely, we are interested in modeling such “isolation
measures,” by which we mean finding and isolating infected people via their symp-
toms and contact tracing, to predict the impact of these measures on the effective
reproduction number of the epidemic. Special attention is dedicated to the case in
which contact tracing is achieved, for a part of the population, through a mobile appli-
cation.

Studies such as Ferretti et al. (2020) have underlined the role of asymptomatic
and presymptomatic transmission in the COVID-19 outbreak, and the consequent
importance of using a mobile application for efficient contact tracing. This insight
has also led to the development of models to quantitatively assess the impact of a
contact tracing app on the epidemic, primarily through agent-based approaches like
in Pathogen Dynamics Group (2020).

In this paper, we propose an analytical approach to answer the following questions:
How is the effective number Rt of an epidemic impacted when isolation measures are
in place versus when they are not, and what are the main factors contributing to the
reduction in Rt?We take the effective reproduction number in the absence of isolation
measures, denoted by R0

t , as an input of our model, which is thus independent of
any underlying epidemic model. Moreover, our approach is parametric in that we
concentrate the quantitative description of the isolation measures into relatively few,
comprehensible parameters that comprise the input of the model. These parameters
include the share of the population using an app, the share of people who self-isolate
upon testing positive, and more.

Previous studies concerning the impact on the epidemic of isolating infected indi-
viduals include (Müller et al. 2000), which proposes a generative stochastic model of
SIR-type, and Fraser et al. (2004), which uses an analytical method more similar to
our own. The subject has also been addressed recently in Scarabel et al. (2021) using
a deterministic dynamical model.

The starting point of our analysis is the effective reproduction number R0
t in the

absence of isolation measures,1 that we consider as given. When discussing modeling
“isolation measures,” we refer to policies focused on selectively isolating infected
individuals after these individuals have been found through contact tracing or because
they have displayed symptoms. We do not refer to generalized actions like imposing
a lockdown, whose impact on the epidemic is considered already known and encom-
passed in R0

t .
R0

t is defined, for any absolute time t , as the expected number of cases generated
by a random individual who was infected at time t during their lifetime. This quantity
can be written as an integral

1 R0
t must not be confused with the basic reproduction number R0.
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R0
t =

∫
[0,+∞)

β0
t (τ )dτ ,

where β0
t is the infectiousness (also called effective contact rate): β0

t is a function
describing the expected number of cases generated by an individual infected at time
t , per unit of infectious age, that is the period of time (measured in days) elapsed from
the time of infection of the individual. So, for example, the number

∫
[1,3)

β0
t (τ )dτ

is the expected number of people infected between 24 and 72 h from the infector’s
moment of infection. Note that the normalization β0

t /R0
t is the PDF of the generation

time, the time taken by an individual infected at t to infect a different individual.2

In this study, we set up a methodology and a model to analyze changes in the
reproduction number when the population is subject to isolation measures, including
the support of an app for individuals who have tested positive, and depending on some
parameters of simple interpretation. We denote by

Rt =
∫

[0,+∞)

βt (τ )dτ

the effective reproduction number in presence of isolation measures, and we compute
Rt as a function of R0

t ,
3 other epidemiological data such as the symptom onset distri-

bution, and some parameters describing the isolation measures, such as the probability
that an infected, symptomatic individual gets a test, or the probability that a recipient
of the infection gets notifiedwhen their infector receives a positive test.We onlymodel
how isolation measures work and how they affect the epidemic,4 without assuming
anything about how the epidemic itself develops. In particular, our model is agnostic
of any particular form for β0

t and R0
t .

The final goal of themodelwe propose is to understand themost important leverages
that may facilitate optimization to better direct efforts of decision-makers, scientists,
and developers. Such factors include app efficiencies, timeliness of notifications, app
adoption in the population, and others.

2 This is better explained in Sect. A.5.
3 We stress that the time evolution of R0

t , describing how the epidemics would have evolved without the
measures we are modeling, is taken as known—our goal is to study the relative impact of the measures. In
particular, we do not take into account possible second-order effects on R0

t , such as general changes in the
behavior of the population, that may come as a consequence of the measures and their impact.
4 Recall that our model simultaneously includes the effect of isolating infected individuals recognized
either through their symptoms or through contact tracing. However, as becomes apparent in the examples of
Sect. 4, we will immediately be able to single out the additional impact of contact tracing only, for example.
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1.2 The assumptions of themodel and outline of the paper

The model developed in Sect. 2 is the translation into mathematical terms of the
following assumptions, that describe an idealized schema inwhich infected individuals
acknowledge their illness and take measures to avoid infecting others.

• An infected individual who shows symptoms is immediately5 notified that they
should take a test (which does not discount the possibility that they acknowledge
this necessity independent of an external input). This process does not always
necessarily occur, but does so with a probability ss.

• Given a infector–infectee pair, when the infector tests positive after the contagion,
the infectee is immediately notified to take a test, with probability sc.

• In either scenario, after an infected individual is notified to take a test, they take
a test which will return a positive result after a time from the notification, which
is distributed according to a given distribution �A→T (possibly reaching +∞ to
account for the case in which the individual is never tested or never receives the
positive outcome).

• Immediately upon receiving the positive outcome of the test, an average infected
individual will self-isolate with probability ξ . Put differently, the number of indi-
viduals they infect from this moment is reduced by a factor 1− ξ compared to the
scenario in which they do not take any isolation measures.

The equations derived from these hypotheses produce an algorithm that computes
the time evolution of the key quantities. This is summarized in Sect. 2.5.

Note that in our model we are only considering forward contact tracing, i.e.,
infectees are notified of the positive result of their infectors, but not vice-versa. Doing
otherwise would significantly complicate the discussion. This is probably the main
limitation of the model, which may thus underestimate the effectiveness of the iso-
lation measures: While backward contact tracing is in general less effective when
timeliness in isolating infected individuals is key, it must be noted that its effect may
be significant for epidemics for which super-spreaders, i.e. individuals that infect a
large number of people, have a major impact on the contagion. Such individuals may
be identified more easily thanks to backward tracing. A treatment of backward tracing
in the context of a generative model is covered in Müller et al. (2000, §3.1).

Subsequently, in Sect. 3 we consider a more complex model. Instead, we assume
that the population is split into two groups, depending on whether or not they use
a mobile application for epidemic control. The parameters ss and sc are different,
depending on whether they refer to individuals who use the app.

Finally, in Sect. 4, we apply these models by computing the suppression of Rt for
specific choices of the input parameters, particularly to assess the importance of such
parameters. As for the input parameters that describe the epidemic, we use data relative
toCOVID-19.All these data are taken for a single source (Ferretti et al. 2020). It should
be noted that these quantities are still preliminary, have quite large uncertainties, and

5 This and the following assumption of immediate notification simplify the treatment to the extent that
they avoid adding further distributions modeling some delays. In fact, they are not essential hypotheses,
and such real-world delays could be also taken into account in the current setting, by including them in the
distribution of the time �A→T between notification and test, introduced below.
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are not necessarily the most up-to-date. However, we stress that these data are only
used as inputs in all our computations, which can be easily reproduced and extended
by using the code available in the open repository (Maiorana and Meneghelli 2021). It
would be immediate to redo the computations with different inputs, to reflect any new
understandings the scientific community should gain onCOVID-19. In addition to this,
in Sect. 4.2.3 we briefly check the robustness of our results with respect to changes in
some epidemic data, namely the share of infected individuals that are asymptomatic,
the contribution of those individuals to the reproduction number, and the generation
time distribution.

Thepaper includes anAppendixwhere themain steps of themathematicalmodel are
proven rigorously, in a framework where the hypotheses can be formulated precisely
using the language of probability theory.

1.3 Discussion of the results

Summing up, this paper introduces a model of targeted isolation measures—with spe-
cial attention paid to those based on contact tracing—in the context of an epidemic
with given dynamics. It studies the impact of these, measured as the change in the key
indicators of the epidemics (first of all, the reproduction number) with respect to the
situation without measures. It presents a methodology to turn the assumptions defin-
ing the model into mathematical equations, without assuming an underlying model
explaining the time evolution of the epidemic. In particular, the formalism developed
in the Appendix allows a careful and exact development of the theory, in which all the
interdependencies of the involved quantities are clarified. We end up with with a set
of equations that express the relevant quantities in terms of those relative to previous
times, giving a deterministic time evolution.

These equations (summarized in Sect. 2.5 for the “homogeneous” setting) are quite
complex, reflecting the non-triviality of the assumptions about how isolationmeasures
work. This makes it hard to analyze them analytically, for example, to study the
asymptotic behaviour of the solutions, as was done in Fraser et al. (2004). On the
other hand, our treatment allows us to refrain from making strong and unrealistic
independence assumptions about the involved quantities, and leaves us greater freedom
in setting up the hypotheses of how contact tracing works (for example, the isolation of
contact-traced individuals is not assumed to be certain, nor immediate). And, notably,
it allows us to numerically compute, with arbitrary precision, the time evolution of the
reproduction number Rt (and, hence, of the epidemic size) starting from the “default”
reproduction number R0

t , other epidemiological data, and the parameters introduced
in Sect. 1.2 describing the isolation measures.

We stress that, despite our extensive use of the language of probability theory, our
model of the isolation measures is deterministic: It works as if the full history of the
epidemic, with or without isolation measures, is given, and uses some parameters
describing the mean efficacy of the isolation measures on the population. It then
expresses Rt in terms of R0

t and these parameters.
Note also that, in this paper, we always refer to Rt as the case reproduction number.

Sometimes, the instantaneous reproduction number is instead used in the literature
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whenmonitoring the evolutionof an epidemic.6 Our choice is also connected to theway
in which we formulate our mitigation hypotheses in Sect. 2 in terms of parameters ss,
sc, ξ , which we consider depending on absolute infection times rather than notification
and isolation times. An alternative formulation following the latter option would add
some slightly more cumbersome formulae but otherwise no essential complications
of note to the treatment.

A limitation to themodel comes from our homogeneous-mixing hypotheses regard-
ing contact tracing and isolation policies: The only heterogeneity taken into account is
the separation between individuals who do or do not use an app in Sect. 3. For exam-
ple, the fact that, in reality, individuals belonging to the same household are more
easily traced (in addition to being more easily infected by each other) is not taken
into account. Besides the absence of backward contact tracing, mentioned in Sect. 1.2,
other limitations may be attributed to the specific form of the hypotheses. However,
many changes to the assumptions could be taken into account within the same math-
ematical framework: Features such as a different delay in testing for symptomatic
or contact-traced individuals, or the existence of a targeted quarantine for potential
infected individuals (even before they get tested) could be modeled without adding
conceptual complications.

By using the model in Sect. 4 to compute the reduction in Rt , we can recognize how
isolation measures, particularly app-mediated isolation measures, can play an impor-
tant role in mitigating epidemics like COVID-19. However, our results show how the
impact of such measures is strongly sensitive to parameters describing their efficiency
and timeliness: For example, the reduction in Rt quickly becomes insignificant as the
time taken to get a positive test result (and then to start isolating) grows past a few
days (see Fig. 2).

The computations relative to the case in which an app is used show the importance
of having an app which is effective at spotting infections, maximizing the fraction of
true-positives.7 Past studies like Bendavid et al. (2021) and Li et al. (2020) suggest
that “standard” contact tracing measures used by healthcare systems may be less
efficient (fewer truly infected individuals are recognized) and slower when compared
to an app (usually, several days elapse between symptom onset, the first medical visit,
and the test outcome). In the computations, we model this fact by setting different
parameters for people using an app and people who don’t, with the latter parameters
left to reasonably low values. We analyze how the impact on the epidemics depends
on these parameters and the app adoption rate (Fig. 9), showing how these are all key
factors in reaching satisfactory epidemic mitigation levels.

2 Themathematical model in the homogeneous population setting

In this section, we develop the core mathematical model of the paper. We do so with a
simplified scenario inwhich the same isolationmeasures apply to the entire population,

6 This typically involves modeling the generation time distribution as constant in time, which is an assump-
tion we do not make. See Cori et al. (2013) for a detailed account of this matter.
7 To be trusted by its users, the app should also aim at reducing the fraction of false-positives. This is
something that our study does not consider.

123



Effectiveness of isolation measures to contain epidemics Page 7 of 39 46

thus eliminating the need to distinguish between those who do and who do not use
an app. Some mathematical derivations require extra care, and their complete proofs
have been moved to the Appendix to prevent this section from being loaded with many
formulae and a heavier formalism.

2.1 Notations and conventions

We consider random variables on the sample space of all infected individuals, describ-
ing (absolute) times at which certain events happen: t I (time of infection), tS (time of
symptom onset), tA (time of infection notification), tT (time of positive test). These
variables can take +∞ as a value to express the cases in which an event never takes
place (this is useful when writing relations between them).

Aswewant to relate these variables to the reproduction number Rt , whichmeasures
the average number of people infected by an individual infected at a given time t , it
is logical that all these variables refer to the infectious age (that is, the time from the
infection) of the average individual infected at t : so we have, for example, the relative
time of symptom onset, which is the [0,+∞]-valued random variable

τSt = (tS − t I)|t I=t = tS|t I=t − t .

We can assume that this variable is independent of the contagion time t . Hence, we
denote it by τS. Analogously, we have the random variables τAt (time of notification
for an individual infected at t , measured since t), τ T

t (time of positive test for an
individual infected at t , measured since t).

In this section we need to understand how to describe the random variables τS, τAt ,
τTt , and their relation to the reproduction number

Rt =
∫

[0,+∞)

βt (τ )dτ ,

based on the assumptions of Sect. 1.2. The finite parts of these random variables are
described using improper CDFs, denoted by FS, FA

t , and FT
t respectively, whose limit

for τ → +∞ (representing the probability that each time is less than infinite) may be
less than 1. So, for example, FT

t (τ ) denotes the probability that an individual infected
at t tests positive within a time τ from the time of infection. limτ→+∞ FT

t (τ ) is the
probability that the same individual eventually tests positive.

Further auxiliary variables are introduced later on.

2.2 The suppressionmodel for Rt

Recall fromSect. 1.2 howwe assume that self-isolationworks: If an infected individual
tests positive, then they immediately self-isolate, resulting in a reduction, on average,
of the number of people they subsequently infect by a multiplicative factor 1 − ξt ,
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which we assume given, and possibly depending on the time t at which the individual
was infected.8

Wecan thendetermine a relationbetween the “default” reproductionnumber density
β0

t , its correction βt as a result of the isolation measures, and the distribution of the
relative time τTt at which individuals infected at t receive a positive test result. This
relation holds for any t greater or equal to the time t0 at which the isolation measures
are enacted.

For simplicity, let’s assume for a moment that receiving a positive test and infecting
someone (assuming no isolation measures) at a given infectious age τ are independent
events. By τ , an individual who was infected at t has already received a test with
probability P(τTt < τ) = FT

t (τ ). In such a case, the number of people they infect per
unit time is (1 − ξt )β

0
t (τ ). Alternatively, if the individual has not received a test by τ

(which happens with probability 1− FT
t (τ )), they do not self-isolate, and the average

number of people they infect per unit time is just β0
t (τ ). In summary, we have, for any

τ ∈ [0,+∞),

βt (τ ) = FT
t (τ )(1 − ξt )β

0
t (τ ) +

(
1 − FT

t (τ )
)

β0
t (τ )

= β0
t (τ )

(
1 − ξt FT

t (τ )
)

. (1)

This is analogous to Eq. 6 in Fraser et al. (2004). To illustrate further, suppose that
all infected individuals test positive at the same infectious age τT, i.e. FT

t (τ ) is a
Heaviside function with step at τT: then we have βt (τ ) = β0

t (τ ) for τ < τT and
βt (τ ) = (1 − ξt ) β0

t (τ ) for τ ≥ τT.
However, the above result relies on the assumption of independence between testing

positive and the number of people the individual would infect without isolation. In
practice, this is not an adequate reflection of what occurs. For example, with COVID-
19, it is known that a significant proportion of the infected population is asymptomatic,
and less contagious—see e.g. Mizumoto et al. (2020) and Ferretti et al. (2020). Given
the lack of symptoms, this population has a lower probability of self-isolating. To
overcome this factor, we introduce a new random variable G, which has a finite range
{g1, ..., gn} that describes the severity of symptoms of an infected individual. It is
assumed to be independent of the time τS of symptom onset, but it is related to the
number of infected people and the probability of the individual recognizing their own
symptoms. Then, towrite a relation between FT

t and Rt , we restrict the relevant random
variables to each possible value of G: for any g = g1, ..., gN we denote by

8 Equivalently, this hypothesis could be viewed as the assumption that an individual who tests positive either
self-isolates completely, without infecting anyone else from that moment, or, alternatively, does nothing,
with the first circumstance happening with probability ξt .
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FT
t,g(τ )

the probability that an individual infected at time t and with severity g has tested
positive by τ . Similarly, we denote by

Rt,g =
∫

[0,+∞)

βt,g(τ )dτ

the average number of people infected by an individual infected at t and with severity
g, and by R0

t,g the analogous quantity in absence of isolation measures. Assuming
now that for a given g the number of people infected (without isolation) and the event
of being tested are independent, we write our “suppression formula” as

βt,g(τ ) = β0
t,g(τ )

(
1 − ξt FT

t,g(τ )
)

. (2)

In Sect. A.3 we include a careful derivation of this formula. Note that the relations
with the aggregate variables are

FT
t =

∑
g

pg FT
t,g , Rt =

∑
g

pg Rt,g ,

where pg = P(G = g) is the probability that an infected individual has symptoms
with severity g.9

Also, in Sect. 4 we always take G to assume the values 0 and 1 only, to describe
asymptomatic versus symptomatic infected individuals. However, this formalism
allows for a greater diversification of R0

t , according to the severity of the illness.
We end this subsection with an example of an application of (2) in a simplified

scenario. Suppose that G only takes the values 0 and 1, describing asymptomatic and
symptomatic infected individuals, and that each constitutes half of the population.
Suppose also that ξt = 1, and that asymptomatic individuals are never tested, so that
FT

t,0 = 0, while symptomatic individuals are tested immediately after infection, so

that FT
t,1(τ ) = θ(τ ), where θ is the Heaviside function. Then, we have Rt,0 = R0

t,0

and Rt,1 = 0, so that Rt = R0
t,0/2. Had we used Eq. (1) instead, we would have

ended up with Rt = R0
t /2, which does not take into account the fact that isolating

symptomatic individuals has a greater impact on the reduction of Rt than isolating the
same proportion of randomly chosen individuals.

9 Note that, according to our convention, Rt is the weighted average of its components Rt,g . Often, in the
literature (e.g. in Ferretti et al. 2020) a different convention is used, according to which the components
sum to Rt . To switch to the latter convention, each Rt,g should be divided by the respective probability pg .
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2.3 First considerations on the variables �S, �At , and �Tt

The distribution of the time τ S of symptom onset is independent of the isolation policy
and is considered as given throughout the paper, although its specific shape is irrelevant
in this section.10

The description of τAt is addressed in the next subsection. Here, we only consider
its relation with τTt : Having assumed that the time between notification and testing
positive is described by a given random variable �A→T, which is independent from
τAt and for simplicity constant in absolute time, we have

τTt = τAt + �A→T .

The relation still holds if we restrict it to individuals with a given severity g, and hence

FT
t,g(τ ) =

∫
[0,+∞)

FA
t,g(τ − τ ′)dFA→T(τ ′) , (3)

where FA→T is the improper CDF of �A→T.

2.4 Describing �At

In this subsection, we consider the random variable τAt and study the relations with it
that formalize the assumptions of Sect. 1.2, namely:

• When an infected individual shows symptoms, they receive an immediate notifi-
cation to get tested, with probability sst,g depending on the severity g of symptoms,
and possibly on the infection time t .

• Immediately after an infector tests positive, each infectee is notified of the risk,
with probability sct . If the contagion takes place after the positive test, then the
infectee is never notified.

We introduce two new random variables relative to individuals infected at a given
time t , describing the receiving of a notification for either cause:

• We denote by τ
A,s
t,g the time from infection at which an individual infected at t

and with severity g is notified because of symptoms. We assume that this happens
with probability sst,g at the time τ S of the symptom onset, so its improper CDF is
simply11

FA,s
t,g = sst,g FS . (4)

• We denote by τ
A,c
t the time from infection at which an individual infected at t

receives a notification resulting from the positive test of their infector. Below, we
see how to describe this.

10 In Sect. 4 we take FS to be a log-normal distribution, following the literature.
11 For simplicity, we use a unique distribution FS for all degrees of severity. For asymptomatic individuals,
sst,g would be equal to 0.
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The relation between these new variables and τAt,g is

τAt,g = min
(
τ
A,s
t,g , τ

A,c
t

)
.

In terms of improper CDFs, and assuming independence of the two notification times,
this gives

FA
t,g = FA,s

t,g + FA,c
t − FA,s

t,g FA,c
t . (5)

Describing τ
A,c
t requires the introduction of an additional random variable τσ

t , that
gives, for any individual infected at t , the time elapsed between the the infection time
of their infector and t . In particular, we need the joint distribution of τσ

t and the severity
G, that can be described in terms of improper CDFs Fσ,g

t : Let

Fσ,g
t (τ )

denote the probability that, given an individual infected at t , their infector has severity
g and was infected at a time t ′ ≥ t − τ . Note that these improper CDFs satisfy a
normalization condition

lim
τ→+∞

∑
g

Fσ,g
t (τ ) = 1 ,

and they are completely determined by quantities relative to times preceding t , namely
the number of infected people and the infectiousness (more details on how they are
computed are deferred to Sect. A.5).

Now, the notification time τ
A,c
t of an individual infected at t is by hypothesis

equal to the testing time τTt ′ of the infector minus the generation time τσ
t , but only if

the notification actually occurs, which happens with probability sct provided that the
contagion took place before τTt ′ . Hence, to get the improper CDF FA,c

t we should first
average FT

t−τ , translated to the left by τ = τσ
t , over all possible values of τ > 0, each

weighted by the probability of the generation time being τ . In doing this we should
also treat separately the different severity levels that the infector may have, as these
impact the testing time distribution. So FA,c

t (ρ) should look like a sum

sct
∑

g

∫
(0,+∞)

FT
t−τ,g(ρ + τ)dFσ,g

t (τ ) .

This formula doesn’t take into account that by assumption the notification can only
occur after the contagion time, meaning that FA,c

t must be supported on positive
numbers. This is considered by replacing the integrand with the probability

P
(
τ < τTt−τ,g ≤ ρ + τ

)
= FT

t−τ,g(ρ + τ) − FT
t−τ,g(τ ) .
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Also, in averaging the CDFs FT
t−τ we should take into account the fact that the testing

time of the infector is not distributed like the testing time of an arbitrary individual:
Having infected someone at the infectious age τ , the infector is more likely than
average to be tested after τ , or to never receive a test. As we will show carefully in
the Appendix, to take this into account we need to divide the integrand by the same
suppression factor 1−ξt FT

t,g(τ ) that appears in Eq. (2), evaluated at t−τ .We conclude
that, for any ρ ≥ 0, we have

FA,c
t (ρ) = sct

∑
g

∫
(0,+∞)

FT
t−τ,g(ρ + τ) − FT

t−τ,g(τ )

1 − ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ ) . (6)

This result is proven rigorously in Sect. A.6.

2.5 Summary and discrete-time algorithm

In this section, we have translated the hypotheses made in Sect. 1.2 into mathemat-
ical equations describing a dynamical system. In doing this, we added a few natural
assumptions of independence between the variables under considerations, namely:

• the assumption in Sect. 2.2 that the testing time of an individual with given severity
is independent from their default infectiousness

• the assumption of independence between notification times τ
A,s
t,g and τ

A,c
t and the

testing delay �A→T

Putting all the equations together, we see that we can compute, at any time t , the
suppressed infectiousness βt,g in terms of the parameters sst,g , sct , ξt , �A→T of the
model, the default infectiousness β0

t,g and the other known epidemiological quantities,
and the distributions relative to previous times t ′ < t .

To add an initial condition to the dynamical system, we assume that the isolation
measures start at a given absolute time t0, so that sst = sct = ξt = 0 for t < t0.12

Hence, all individuals infected at t < t0 will never take a test (even after t0) and never
self-isolate. As a consequence, the effective reproduction number is R0

t for t < t0,
while it gets reduced according to Eq. (2) for t ≥ t0. In particular, individuals infected
at t = t0 can only be notified of the need to take a test through symptoms, so that
FA,c

t0 = 0.
Our set of equations can be approximated with arbitrary precision to a discrete-time

algorithm that computes how the epidemic evolves, given the above data.13 This is the
algorithm used in the calculations of Sect. 4.

Summing up, for each time t ≥ t0, the algorithm works as follows:

1. Compute the number νt of individuals infected at t and the improper CDFs Fσ,g
t ,

from νt ′ and βt ′,g for t ′ < t (as detailed in Sect. A.5).

12 Note that this doesn’t prevent us from modeling isolation measures gradually put into place, which can
be done simply by taking these parameters to be continuous in t .
13 In this discrete setting, all the integrals appearing in the equations reduce to finite sums. In fact, our
approach in the Appendix is to derive the same equations starting from a discrete probabilistic model.
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2. Compute the distribution of τ
A,s
t,g as in Eq. (4):

FA,s
t,g = sst,g FS .

3. Compute the distribution of τ
A,c
t from Fσ,g

t and the distribution of τTt ′,g , for t ′ < t ,

using Eq. (6). If t = t0, just take FA,c
t = 0.

4. Compute the distribution of τAt,g using Eq. (5), that is

FA
t,g = FA,s

t,g + FA,c
t − FA,s

t,g FA,c
t ,

and then the distribution of τTt,g from FA
t,g via Eq. (3).

5. Compute βt,g using the distribution of τTt,g , via Eq. (2):

βt,g(τ ) = β0
t,g(τ )

(
1 − ξt FT

t,g(τ )
)

.

3 The extendedmodel including the use of an app for epidemic
suppression

So far, we have operated under the hypothesis that the ability to inform infected
people that their source has been infected can be described by a single (possibly
time-dependent) parameter sct . Now, let’s suppose that the population is divided into
people who use an app for epidemic control and people who do not. This forces us
to complicate the model of Sect. 2 because, when we analyze the distribution of the
notification time τ

A,c
t for people with the app, we need to apply different weights to

the cases in which the source of the contagion has the app or does not. We also leave
open the possibility that people using the app may have a different probability sst of
requiring a test because of their symptoms.

Thegeneralizationof thehomogeneous scenario to this case is quite straightforward.
In any case, some more mathematical detail has been added in Sect. A.7.

3.1 Parameters and random variables in the two-component model

A share εt,app of the infected population, perhaps depending on the absolute time t ,
uses an app that may do the following:

• It gives the users clear instructions on how to behave when they have symptoms
indicative of the disease, assuming that this can increase the probability that an
infected individual asks the health authorities to be tested because of their symp-
toms.

• It notifies the users when they have had contact with an infected individual who
also uses the app, assuming that this can increase the probability that an infected
individual asks the health authorities to be testedbecauseof contactwith an infected
person.
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We then distinguish sst,g into ss,appt,g and ss,no appt,g , describing the probability that an
individual infected at t , respectively with or without the app, is notified of the need to
be tested given that they have symptoms with severity g. Note that

sst,g = εt,app ss,appt,g + (1 − εt,app) ss,no app
t,g , (7)

so that this distinction does not complicate the model, and is made only for adding
clarity in the computations.

The increased complexity of this situation lies in the fact that sct now has to be
replaced by two parameters sc,appt and sc,no appt , describing the probabilities that, given
an infector–infectee pair, the positive testing of the infector occurred after the infection
caused a notification to be sent to the infectee, respectively in the cases that both the
infector and the infectee have the app, and that at least one of them does not have the
app. Note that there is no relation between sc,appt and sc,no appt and the general sct as
simple as Eq. (7).

We also distinguish each random variable between people with the app and people
without it. For example, the time of notification due to contact now reads τ

A,c
t,app for

people with the app and τ
A,c
t,no app for people without it. The relation between their

improper CDFs is

FA,c
t = εt,app FA,c

t,app + (1 − εt,app) FA,c
t,no app .

We have analogous formulae for τ T
t and τ

A,s
t , while there is no need to make a dis-

tinction for τ S .
Likewise, we have to separate Rt into two components Rt,app and Rt,no app, namely,

the average number of people infected by someone infected at t who has or does not
have the app, respectively:

Rt = εt,app Rt,app + (1 − εt,app) Rt,no app .

Analogous relations hold when restricted to individuals whose illness has a given
severity g.

It is reasonable to assume that having or not having the app is independent of
symptom severity, so that, for example, the fraction of individuals infected at time t
using the app and with severity g is εt,app pg . Also, while of course having an app does
impact the testing time distribution and the infectiousness, we can safely suppose that
it is independent of the default infectiousness, i.e. the number of people an individual
would have infected in the absence of measures. This is why in this scenario the
suppression formula (2) simply becomes

βt,g,a(τ ) = β0
t,g(τ )

(
1 − ξt FT

t,g,a(τ )
)

, (8)

for a = app, no app.
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3.2 Themathematical relations between the random variables

Now, we can write the new relations between the random variables. Eq. (4) is replaced
by

FA,s
t,g,app = ss,appt,g FS , FA,s

t,g,no app = ss,no app
t,g FS .

The relations (3), (5) immediately extend to each component.
The distributions of τ

A,c
t,app and τ

A,c
t,no app can be computed similarly to as we did in

Sect. 2.4 for the homogeneous case. But now, for each of them Eq. (6) needs to be
split into two parts, accounting for the cases in which the source of the infection has
or doesn’t have the app:

FA,c
t,app(ρ) = sc,appt

∑
g

∫
(0,+∞)

FT
t−τ,g,app(ρ+τ)−FT

t−τ,g,app(τ )

1−ξt−τ FT
t−τ,g,app(τ )

dFσ,g,app
t (τ )

+sc,no appt
∑

g

∫
(0,+∞)

FT
t−τ,g,no app(ρ+τ)−FT

t−τ,g,no app(τ )

1−ξt−τ FT
t−τ,g,no app(τ )

dFσ,g,no app
t (τ ) .

(9)

For FA,c
t,no app we get a similar equation with sc,appt replaced by sc,no appt : In this case,

it doesn’t matter whether or not the infector has the app. The equation simplifies to a
form analogous to Eq. (6), namely

FA,c
t,no app(ρ) = sc,no appt

∑
g

∫
(0,+∞)

FT
t−τ,g(ρ + τ) − FT

t−τ,g(τ )

1 − ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ ) . (10)

Again, we refer to the Appendix for a greater mathematical rigor: The last two equa-
tions are derived in greater detail in Sect. A.7.

4 Scenarios and calculations

In this section, we use the models introduced in Sects. 2 and 3 to numerically compute
the suppression of Rt due to isolation measures in certain scenarios.

The results reported here, as well as new custom calculations, can be obtained by
cloning the public Python repository (Maiorana and Meneghelli 2021).

4.1 General considerations

Some inputs of the algorithm developed are parameters or distributions describing the
features of the epidemic under consideration. In this section, we focus on COVID-19,
and we make the following assumptions, taking all the epidemic data from Ferretti
et al. (2020) (Table 1, in particular) for convenience:

• The incubation period τ S is distributed according to a log-normal distribution:

FS(τ ) = FN0,1 ((log(τ ) − μ)σ)
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where FN0,1 denotes the CDF of the standard normal distribution. The parameters
μ = 1.64 and σ = 0.36 used here imply that the mean incubation period is � 5.5
days.

• The default infectiousness distribution β0
t is assumed to depend on the absolute

time t only via a global factor, so that

β0
t (τ ) = R0

t ρ0(τ ) ,

where ρ0 (which also represents the default generation time distribution) integrates
to 1. It is described by a Weibull distribution with mean 5.00 and variance 3.61:

ρ0(τ ) = k

λ

(τ

λ

)k−1
e−(τ/λ)k

with k = 2.855, λ = 5.611.
• We simplify the severity of symptoms by considering only two levels of severity:

g = sym and g = asy, respectively for symptomatic and asymptomatic individu-
als. We take asymptomatic individuals as 40%, and we assume that they account
for 5% of Rt .14 In formulae, this means that the input parameters of our model
are

psym = 0.6 , pasy = 0.4 ,

β0
t,sym = 0.95

0.6 R0
t ρ0 , β0

t,asy = 0.05
0.4 R0

t ρ0 .

All these assumptions hold throughout the whole section except for Sect. 4.2.3,
where we check how the results change using different epidemic data. The other
parameters of the model, describing the isolation measures, are selected later.

As Key Performance Indicators (KPIs) describing the effectiveness of the isolation
measures, we look at the reduction of Rt compared to the value R0

t it would take in
the absence of measures. We call effectiveness of the isolation measures the relative
reduction in R0

t :

Efft := 1 − Rt

R0
t

. (11)

Thus, Efft = 0 indicates that there is no effect on R0
t , while Efft = 1 describes a

complete suppression of the contagion. We will see in Sect. 4.2.3 that the dependency
of Efft on the default reproduction number R0

t is very weak.15 As such, attempts to
model a realistic profile for R0

t have little relevance to our computations, as any choice
of R0

t leads to almost the same Efft . Thus, in the rest of this section we simply take

R0
t = 1 .

14 Note that this does not include pre-symptomatic transmission, which is taken into account within the
group g = sym.
15 This dependency is due to higher order effects: A higher R0

t means that the distribution of τσ
t is more

concentrated on small values, and hence the most recent testing time distributions have a greater weight in
the time-evolution equation (6).
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Another useful KPI is the probability that an individual infected at a certain time t
is eventually found to be positive, namely the limit

FT
t (∞) := lim

τ→+∞ FT
t (τ ) .

In the remainder of this section, we report the results of some selected calculations,
considering both the “homogeneous” scenario of Sect. 2 and, in greater detail, the
scenario of Sect. 3, in which an app for epidemic control is used. First, we study how
the above KPIs evolve in time for certain input parameter choices. Then, we focus
on the limits for t → +∞ of these KPIs, i.e., their “stable” values after a sufficient
number of iterations, to study how these varywhenwe change certain input parameters,
leaving the others fixed.

4.2 Reduction in Rt with homogeneous isolationmeasures

First, we perform some calculations in the setting of Sect. 2, where the isolation
measures are “homogeneous” within the whole population. We recall the parameters
that describe this situation, some of which remain fixed in all the calculations:16

Parameter Meaning Value

sssym Probability that a symptomatic infected individual is
notified of the infection because of their symptoms

Not fixed

ssasy As above, but for the asymptomatic 0
ξ Probability that someone testing positive self-isolates Not fixed
�A→T Time from notification to positive testing Constant distribution,

whose value is not fixed
at this moment

t0 Time at which isolation measures begin 0

Note that assuming that �A→T is a constant random variable means that we are
modeling that all individuals notified of the risk test positive, and take the same time
to do so. Although unrealistic, this assumption makes little difference to the results. It
is made here for simplicity, although it can be easily changed by using a more realistic
�A→T, when this datum is available.

4.2.1 Time evolution with isolation due to both symptoms and contact-tracing

We now choose the following parameters, describing an optimistic situation, with
reasonable efficiencies in spotting infected individuals:

The results are shown in Fig. 1. Note that immediately at t = 0 Rt drops to
around 0.92, as half of the symptomatic individuals are notified as soon as they show
some symptoms, and they then infect a reduced number of people. Subsequently,

16 In all the examples these parameters are constant in time. Hence we remove the subscript t from them.
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Parameter Value

sssym 0.5
sc 0.7
ξ 0.9
�A→T 2

Fig. 1 Rt evolution in the homogeneous model, in an optimistic scenario

Rt continues to decrease due to contact-tracing, quickly approaching its limit value
R∞ � 0.77 (i.e., 84% of the value it would have had with isolation due to symptoms
only).

4.2.2 Dependency on testing timeliness

We now focus on the limit value Eff∞, investigating its dependency on the time�A→T

from a notification to the positive result of the test (recall that we are assuming that
�A→T is a constant random variable).

Like in Sect. 4.2.1, the other parameters are fixed as follows:
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Parameter Value

sssym 0.5
sc 0.7
ξ 0.9

Fig. 2 Eff∞ as a function of the time �A→T from notification to positive testing

The result is plotted in Fig. 2. The effectiveness of the isolation measures improves
dramatically with the ability to test (and then isolate) infected individuals as soon as
possible after their notification of possible infection.

4.2.3 Dependency on the epidemic data used

In this subsection we briefly explore what happens if we change some of the data
describing the epidemic, that were introduced in Sect. 4.1 and used elsewhere in this
section. This is done to see how Eff∞ depends on these data. The other parameters,
describing the isolation measures, are fixed as usual:

First, we let the fraction psym of symptomatic individuals vary, along with their
contribution to R0

t —let us denote it here by κ—that is elsewhere taken as κ = 0.95.
Recall that

R0
t,sym = κ

psym
R0

t , R0
t,asy = 1 − κ

1 − psym
R0

t .
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Parameter Value

sssym 0.5
sc 0.7
ξ 0.9
�A→T 2

Fig. 3 Eff∞ for some values of psym and κ

The value of Eff∞ for a few choices of psym and κ is plotted in Fig. 3, where it is
apparent how the result is robust with respect to changes in these input data. Note that
if we fix psym and let κ vary, then the two components of R0

t (and hence those of Rt )
are linearly rescaled, meaning that Eff∞ also changes linearly.
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Fig. 4 Eff∞ for some rescalings of the distribution of τ0,C

Second, we fix psym = 0.6 and κ = 0.95 as usual, and we modify instead the
density ρ0 of the default generation time, by replacing it with

ρ0
f (τ ) = 1

f
ρ0(τ/ f )

for f > 0. Note that this implies that the expected value of the default generation time
(denoted here by τ 0,C) is multiplied by f :

E(τ 0,C) = f (5 days) .

Figure 4 depicts the relation between E(τ 0,C) and Eff∞, as f varies. As expected,
the isolation measures become more effective as the time taken by the infection to be
transmitted increases.

Finally, Fig. 5 shows how Eff∞ changes slightly as we change the value of R0
t (for

t ≥ 0).

4.3 Reduction in Rt in the case of app usage

Now, we focus on applying the model of Sect. 3 to study how Rt is reduced when a
fraction of the population uses an app for epidemic control.

In this case, we summarize the input parameters in the following table, fixing some
of them to the given values for the rest of the section (unless explicitly mentioned).
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Fig. 5 Eff∞ for some values of R0
t , for t ≥ 0

Parameter Meaning Value

s
s,app
sym Probability that a symptomatic infected individual using

the app is notified of the infection because of their
symptoms

Not fixed

s
s,no app
sym As above, but for individuals without the app 0.2

s
s,app
asy ,

s
s,no app
asy

As with the two parameters above, but for asymptomatic
individuals

0, 0

sc,app Probability that an infected individual with the app is
notified of the infection because of their source having
tested positive

Not fixed

sc,no app Probability that an infected individual without the app is
notified of the infection because of their source having
tested positive

0.2

ξ Probability that someone testing positive self-isolates Not fixed
�A→T,app,

�A→T,no app
Time from notification to positive testing for people
with and without the app, respectively

Constant
distributions, whose
values are not fixed
at this moment

εt,app Fraction of the population adopting the app at time t Not fixed
t0 Time at which isolation measures begin 0

4.3.1 Time evolution in an optimistic scenario

We start with an optimistic scenario, where the app is effective at recognizing infected
individuals from symptoms and contact-tracing information. The internal predictive
models that estimate the probability of an individual being infected have high efficien-
cies (a situation likely bound to the possibility of training the predictive models on
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real data, in practice). The app is adopted by a large fraction (60%) of the population,
and is trusted, so that most of the people notified take a test and self-isolate. The app
also helps a notified individual to get tested more quickly.17

Parameter Value

s
s,app
sym 0.8

sc,app 0.8
ξ 0.9
εapp 0.6
�A→T,app 2
�A→T,no app 4

As we start from R0
t = 1, we reach a limit value of R∞ � 0.84 for an effectiveness

of 0.16. Note also that R∞,app � 0.75, while R∞,no app � 0.97. The time evolution
of Rt , along with the other main quantities of interest, is shown in Fig. 6.

4.3.2 Time evolution in a pessimistic scenario

We now run an analogous computation in a “pessimistic” scenario. The app can only
recognize infected individuals from contact-tracing information, and not from symp-
toms (ss,appsym consequently defaults to the no-app value). In addition, we assume a low
efficiency sc,app = 0.5, perhaps due to poor predictive models. Also, only 70% of
those testing positive self-isolate.

Parameter Value

s
s,app
sym 0.2

sc,app 0.5
ξ 0.7
εapp 0.6
�A→T,app 2
�A→T,no app 4

Even with a high app adoption rate (60% of the population), the effectiveness drops
dramatically. We get R∞ � 0.96 and Eff∞ � 0.06. Most notably, the app does not

17 Studies such as Li et al. (2020) report that the time from symptom onset to testing through the “conven-
tional” channels (health care system) is in the order of several days. An app is expected to have substantial
chances to improve this performance, being a prompt-instrument by construction (for example, when com-
pared with the friction of calling a doctor, inserting symptom descriptions into the app is likely easier), so
that

�A→T,app < �A→T,no app .
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Fig. 6 KPIs evolution in the optimistic scenario

change things much with respect to “standard” isolation measures: R∞,app � 0.95
and R∞,no app � 0.99.

4.3.3 Time evolution in the case of gradual adoption of the app

Now, we study the evolution of Rt in a scenario whereby the fraction εt,app of people
using the app is not constant, but increasing in a linear fashion until it reaches 60% in
30 days:

εt,app = 0.6t/30 for 0 ≤ t < 30, εt,app = 0.6 for t ≥ 30 .

The other parameters are chosen as in the optimistic scenario of Sect. 4.3.1:

Parameter Value

s
s,app
sym 0.8

sc,app 0.8
ξ 0.9
�A→T,app 2
�A→T,no app 4
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Fig. 7 KPIs evolution in case of gradual adoption of the app

As shown in Fig. 7, Rt decreases until stabilizing again to the same value obtained
in Sect. 4.3.1, although it takes more time to do so. The limit values of the KPIs are
not changed by a gradual adoption of the app, compared with a prompt adoption.

4.3.4 Dependency of effectiveness on the efficiencies ss and sc

We now focus on the study of how the limit values of the KPIs change when we vary
certain parameters, starting with the app efficiencies ss,appsym and sc,app. In Fig. 8, we plot
Eff∞ as a function of these two parameters, while the others are fixed to the following
values:

Parameter Value

ξ 0.9
εapp 0.6
�A→T,app 2
�A→T,no app 4
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Fig. 8 Eff∞ as a function of the efficiencies s
s,app
sym and sc,app

Fig. 9 Eff∞ as a function of app adoption εapp

4.3.5 Dependency on the app adoption

In Fig. 9, we can observe the dependency of the effectiveness Eff∞ on the share εapp
of the population using the app. The remaining parameters are fixed to these values:
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Parameter Value

s
s,app
sym 0.5

sc,app 0.7
ξ 0.9
�A→T,app 2
�A→T,no app 4
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A Appendix: formalism and detailed derivations of mathematical
results

The goal of this Appendix is to introduce a mathematical framework in which the
hypotheses of our model can be formulated precisely and their consequences proven
rigorously. In particular, we will derive the formula (2) describing the suppression of
Rt due to the testing and isolation policies, and the time evolution equation (6). Some
more details about the two-component scenario of Sect. 3 are added.

A.1 Modeling a deterministic epidemics with a probability space

In this subsection,we define the fundamental components of our framework. denotes
the set of all the individuals infected during the epidemic. It is endowed with two
functions. First,

t I :  → [0,+∞)

associates to each individual ω ∈  the absolute time of their infection. Note that we
take 0 as the initial time of the epidemics. t I partitions  into a foliation

 = ∪t∈Rt := ∪t∈R{ω ∈  | t I(ω) = t} .

We also write

>0 := ∪t∈R+t

123



46 Page 28 of 39 A. Maiorana et al.

Fig. 10 Schematic
representation of , t I, and σ .
Dots represent individuals
ω ∈ 

for the set of individuals infected at a positive time.
Second, for any individual ω ∈ >0 we denote by σ(ω) ∈  their infector. This

defines a map

σ : >0 →  .

It is natural to assume that, for all ω ∈ >0,

t I(σ (ω)) < t I(ω) .

As is the case in the rest of the paper, we will consider other quantities referring to
infected individuals and study the mathematical relations between them, with special
attention to their average properties over all individuals infected at a given time t .
Hence, we will study functions defined over , and to talk about their averages over
each set t we will introduce a probability measure P on . Since  is finite and we
want to weight all individuals equally, P is the uniform discrete probability measure:

P(E) = #E

#
,

where #E denotes the cardinality of a set E ⊂ . Relevant quantities then become
random variables, and we are interested in studying their distributions. This always
reduces to solving certain counting problems, and introducing P is largely a way to
conveniently write formulas using the language of probability theory. Let us stress that
our methodology does not involve any simulation of random processes: The history
of the epidemic is completely determined by the triple (, t I, σ ), and our study of
its evolution consists of writing deterministic relations that express random variables
restricted to a time slice t in terms of random variables restricted to slices t ′ , for
times t ′ < t .

The probability measure P “disintegrates” along tI , giving a uniform probability
measure Pt on each t . Also, for any random variable X :  → Rwe will denote by

Xt := X�t
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its restriction to t . We will be mostly interested in studying the distributions of such
restrictions of random variables. In considering quantities like the expected value

EPt (Xt ) =
∫

t

X dPt = 1

#t

∑
ω∈t

X(ω)

of Xt , we will always make the relevant probability measure Pt explicit to avoid
confusion.

A.2 Infector–infectee pairs, generation time and the reproduction number

Let us introduce some additional notation, for future convenience: First, we define the
set

̃ = {(ω′, ω) ∈  × >0 | σ(ω) = ω′}

of infector–infectee pairs. This is the graph of the map σ , which thus determines a
bijection >0 → ̃. We also consider two functions describing the generation time:
a function τC : ̃ → R

+, given by

τC(ω′, ω) := t I(ω) − t I(ω′) ,

and a function τσ : >0 → R
+ given by

τσ (ω) := τC(σ (ω)) .

Consider, for all τ ∈ R
+, the random variable nτ :  → N such that nτ (ω) is the

number of people infected by ω at ω’s infectious age τ (that is, at the absolute time
t I(ω) + τ ):

nτ (ω) := #{ω′ ∈ >0 | σ(ω′) = ω , τσ (ω′) = τ } .

Also, for τ ∈ [0,+∞], we denote by N τ :  → N the random variable that counts
all individuals infected within the infectious age τ :

N τ (ω) :=
∑
τ ′≤τ

nτ ′
(ω) = #{ω′ ∈ >0 | σ(ω′) = ω , τσ (ω′) ≤ τ } .

In particular, N∞(ω) is the total number of people infected by ω. The average values
of these variables are key indicators of the speed of propagation of the epidemics. In
particular, restricting to an absolute time t , we let

Rt := EPt (N∞
t )
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be the effective reproduction number at t . Note that averaging on all infected individ-
uals simply gives EP (N∞) = 1. We also consider the average values of N τ

t , for finite
τ :

Bt (τ ) := EPt (N τ
t ) .

Notice that Bt is an improperCDFsupportedonR+, andbecause of thefiniteness oft ,
it is a sum of finitely many step functions. It represents the cumulative infectiousness
of individuals infected at t , and tends to Rt for τ → +∞.

For practical reasons, it is common to tacitly consider a continuum limit in which
each #t tends to infinity and all random variables become continuous. Bt is then
approximated by a smooth function, whose derivative is denoted by βt (as is the case
in the rest of the paper):

Bt (τ ) �
∫ τ

0
βt (τ

′)dτ ′ ,

However, in this Appendix we always work in the discrete setting discussed so far,
and then we consider the continuum limit only to get formulas for βt , for consistency
with the standard terminology and notation. Using the formalism ofmeasure theory, or
simply writing the relations between random variables in terms of their CDFs, allows
us to treat both the discrete scenario and the continuum limit in a unified notation.

A.3 The suppression formula

Here, we discuss in greater mathematical detail the content of Sect. 2.2. In particular,
wewill derive the suppression formula (Eq. 2) relating the reproduction number Rt and
the distribution of the random variable τT :  → [0,+∞] describing the infectious
age (possibly infinite) at which each individual is tested positive.

To do this, we introduce two additional random variables n0,τ , N 0,τ :  → N

which are analogues to nτ and N τ , but which instead count the number of individuals
that each ω ∈  would have infected without isolation measures. Similarly, we denote
by

B0
t (τ ) := EPt (N 0,τ

t ) , R0
t := EPt (N 0,∞

t ) ,

and β0
t the analogues of Bt , Rt and βt in the absence of isolation measures.

Recall that we assumed the average number of people infected by each individual
ω is reduced by a factor 1−ξt (possibly depending on the infection time t := t I(ω)) at
times τ greater or equal than the testing time τT(ω). This is encoded by the following
relation between the expected values of nτ

t and n0,τ
t conditioned by τTt : For all τ, ρ ∈
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[0,+∞], we postulate that

EPt (n
τ
t |τTt = ρ) = (1 − ξt δτ≥ρ)EPt (n

0,τ
t |τTt = ρ)

=
{

EPt (n
0,τ
t |τTt = ρ) for τ < ρ

(1 − ξt )EPt (n
0,τ
t |τTt = ρ) for τ ≥ ρ

,
(12)

where δτ≥ρ := χ[ρ,+∞](τ ) is 1 when τ ≥ ρ and 0 otherwise. Now we would like to
remove the conditioning on τTt from the expected values of n0,τ

t to get an expression
in terms of known quantities only. If, for simplicity, we supposed that τT and n0,τ

t are
independent, then Eq. (12) would reduce to (1− ξ δτ≥ρ)EPt (n

0,τ
t ). But, as discussed

in Sect. 2.2, this is not a realistic hypothesis. Instead, we only assume that τT and
n0,τ

t are independent when restricted to individuals having the same severity of illness,
which we describe through a random variable

G :  → R .

In other words, we take τTt and n0,τ
t to be conditionally independent with respect to

G.18 We assume now that the suppression formula applies equally to individuals of
all degrees of severity:

EPt,g (n
τ
t,g|τTt,g = ρ) = (1 − ξt δτ≥ρ)EPt,g (n

0,τ
t,g |τTt,g = ρ) , (13)

having introduced

t,g := {ω ∈ t | G(ω) = g}

and the obvious notation for restrictions of randomvariables tot,g and for the uniform
probability measure Pt,g on it. The assumption of conditional independence implies

EPt,g (n
τ
t,g|τTt,g = ρ) = (1 − ξt δτ≥ρ)EPt,g (n

0,τ
t,g ) . (14)

Summing over ρ ∈ [0,+∞] we find

EPt,g (n
τ
t,g) = ∑

ρ∈[0,+∞] Pt,g(τ
T
t,g = ρ)EPt,g (n

τ
t,g|τTt,g = ρ)

= EPt,g (n
0,τ
t,g )

∑
ρ∈[0,+∞](1 − ξt δτ≥ρ) Pt,g(τ

T
t,g = ρ)

= EPt,g (n
0,τ
t,g )(1 − ξt FT

t,g(τ )) ,

having denoted the improper CDF of τTt,g by FT
t,g , as usual.

Finally, to average over all t , we simply notice that

EPt (n
τ
t ) =

∑
g

pt,g EPt,g (n
τ
t,g) ,

18 Remember that in this work, the joint distribution of n0,τt and G is assumed known, and we want to
study how our assumptions on the isolation measures determine the distribution of nτ

t , and hence Rt .
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where pt,g := Pt (Gt = g).19 On the other hand, summing over τ gives a relation
between Bt and B0

t,g = EPt,g (N 0,τ
t,g ):

Bt (τ ) = ∑
g pt,g

∑
τ ′≤τEPt,g (n

τ
t,g)

= ∑
g pt,g

∫
(0,τ ](1 − ξt FT

t,g(τ
′)) dB0

t,g(τ
′) .

Then, we can sum up the content of this subsection as follows:

Proposition 1 Take t ∈ [0,+∞). Assuming the suppression hypothesis (13) and the
conditional independence of τT and n0,τ

t with respect to G, we have

EPt (n
τ
t ) = ∑

g pt,g EPt,g (n
τ
t,g)

= ∑
g pt,g EPt,g (n

0,τ
t,g )(1 − ξt FT

t,g(τ )) ,
(15)

where pt,g := Pt (Gt = g). Moreover,

Rt =
∑
g∈R

pt,g Rt,g =
∑

g

pt,g

∫
R+

(1 − ξt FT
t,g(τ )) dB0

t,g(τ ) .

Note that taking the continuum limit of Eq. (15) we retrieve Eq. (2):

βt (τ ) =
∑

g

pt,gβt,g(τ ) =
∑

g

pt,g (1 − ξt FT
t,g(τ )) β0

t,g(τ ) .

We conclude this subsection by noting, for future convenience, that we can rewrite
the suppression hypothesis without referring to n0,τ :

EPt,g (n
τ
t,g|τTt,g = ρ) = 1 − ξt δτ≥ρ

1 − ξt FT
t,g(τ )

EPt,g (n
τ
t,g) . (16)

A.4 Random variables technology

Given a random variable X :  → R, it is natural to consider the composition

X̂ := X ◦ σ .

The main use case of this is when X represents the time at which some event related
to an individual happens. For example, the infectious age τT at which they get tested.
In this case, Pt (τ̂

T
t = τ) is the probability that, given an individual infected at t , their

infector is tested at the infector’s infectious age τ .

19 Note that, for simplicity, in the rest of the paper we took the distribution of G independent of absolute
time, and wrote pg = pt,g .
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In fact, we are often more interested in a slightly different distribution, namely that
of the random variable X̌ defined by

X̌(ω) := X(σ (ω)) − τσ (ω) .

When X = τT, then Pt (τ̌
T
t = τ) is now the probability that, given an individual

infected at t , their source is tested at the individual’s infectious age τ .
The next Proposition relates the distributions of X̂t , X̌t , and Xt :

Proposition 2 Take X :  → R. For all x ∈ R, we have

Pt (X̂t = x) = ∑
τ∈R+ Pt−τ (Xt−τ = x)EPt−τ (n

τ
t−τ |Xt−τ = x)

#t−τ

#t
,

Pt (X̌t = x) = ∑
τ∈R+ Pt−τ (Xt−τ = x + τ)EPt−τ (n

τ
t−τ |Xt−τ = x + τ)

#t−τ

#t
.

Proof We prove both formulas at once by defining Xα :  → R as

Xα(ω) := X(σ (ω)) − α τσ (ω)

for α ∈ {0, 1}, so that X0 = X̂ and X1 = X̌ .

#t Pt (Xα
t = x) = #{ω ∈ t | X(σ (ω)) = x + α τσ (ω)}

= #{(ω′, ω) ∈ ̃ | ω ∈ t , X(ω′) = x + α τC (ω′, ω)}
=

∑
τ∈R+#{(ω′, ω) ∈ ̃ | ω′ ∈ t−τ , X(ω′) = x + α τ , ω ∈ t }

=
∑

τ∈R+
∑

ω′∈t−τ |X(ω′)=x+α τ
nτ

t−τ (ω′)

=
∑

τ∈R+EPt−τ
(nτ

t−τ |Xt−τ =x+α τ)#{ω′ ∈ t−τ | X(ω′)=x+α τ }
=

∑
τ∈R+EPt−τ

(nτ
t−τ |Xt−τ = x + α τ)Pt−τ (Xt−τ = x + α τ)#t−τ .

�
Notice that we can also break down the right hand side of the formulae of Prop. 2

by the values of G. In particular, the second equation can be rewritten as

Pt (X̌t = x) =
∑

τ∈R+

∑
g∈R

Pt−τ,g(Xt−τ,g = x + α τ)EPt−τ,g (n
τ
t−τ,g|Xt−τ,g

= x + α τ)
#t−τ,g

#t
. (17)

A.5 Remarks on generation time and numbers of infected individuals

In this subsection, we study the distribution of the generation time. First, we do this
considering it as a function τC : ̃ → R

+ of infector–infectee pairs, and in particular
taking its restriction τ̃Ct to the set

̃t := {(ω′, ω) ∈ ̃ | ω′ ∈ t } .
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As usual, on ̃t we put the uniform probabilitymeasure, denoted by P̃t . In this way, we
find the intuitive fact that the distribution of τC restricted to ̃t is just the normalization
of the infectiousness:

Proposition 3 The CDF of the random variable τ̃C
t : ̃t → R

+ is given by

F̃C
t (τ ) = Bt (τ )

Rt
.

Proof

F̃C
t (τ ) = P̃t (τ̃

C
t ≤ τ)

= 1
#̃t

#{(ω′, ω) ∈ ̃t | τC(ω′, ω) ≤ τ }
= 1

#̃t

∑
ω′∈t

N τ
t (ω′)

= #t

#̃t
EPt (N τ

t )

= #t

#̃t
Bt (τ ) .

The limit τ → +∞ gives

#̃t = #t EPt (N∞
t ) = #t Rt ,

and the claim immediately follows. �
Next, we focus on the generation time as a function τσ

t : t → R
+ of the infectee.

Its probability distribution is given by the formula

Pt (τ
σ
t = τ) = #t−τ

#t
EPt−τ (n

τ
t−τ ) ,

which follows from the definitions. Summing the left-hand side over all τ > 0 gives
1, from which we find how to compute #t in terms of quantities relative to previous
times:

#t =
∑

τ∈R+
#t−τEPt−τ (n

τ
t−τ ) .

The last two formulae are easily proven, and the first is an immediate consequence
of the next Proposition, which describes the joint probability distribution of τσ

t and
Ĝt = (G ◦ σ)t :

Proposition 4

Pt (τ
σ
t = τ, Ĝt = g) = EPt−τ,g (n

τ
t−τ,g)

#t−τ,g

#t
.

This is the probability that the infector of someone infected at t was infected at
t − τ and had severity g.
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Proof

#t Pt (τ
σ
t = τ, Ĝt = g) = #{ω ∈ t | τσ (ω) = τ , Ĝ(ω) = g}

= #{(ω′, ω) ∈ ̃ | ω ∈ t , ω′ ∈ t−τ , G(ω′) = g)}
= ∑

ω′∈t−τ,g
nτ (ω′)

= #t−τ,g EPt−τ,g (n
τ
t−τ,g) .

�

This formula for the joint probability measure will be used in the next subsection,
where we will often use it in integrals. Given that in this paper we always consider G
to have a given discrete range, while τσ becomes continuous in the continuum limit,
we will preferably write these integrals with respect to the improper CDFs

Fσ,g
t (τ ) := Pt (τ

σ
t ≤ τ, Ĝt = g) =

∑
τ ′≤τ

EPt−τ ′,g (n
τ ′
t−τ ′,g)

#t−τ ′,g
#t

. (18)

A.6 Time evolution

As we saw in Sect. 2.3, the key step to determining the time evolution of the system
is writing the distribution of the notification time τ

A,c
t in terms of that of the testing

time τTt ′ , for t ′ < t . Our assumption is that any infected individual ω ∈ t is notified
precisely at the testing timeof their infectorσ(ω)with a certain probability sct , provided
that such testing time follows the infection time of ω (otherwise, ω is never notified).
Referring these instants to the infectee’s infectious age, we get that τA,c(ω) is equal
to

τ̌T(ω) = τT(σ (ω)) − τσ (ω)

with probability sct in case it is a positive number, and τA,c(ω) = +∞ in the remaining
cases. This can be written synthetically as

FA,c
t (τ ) = sct Pt (τ̌

T
t ∈ R

+) = sct (F̌T
t (τ ) − F̌T

t (0)) , (19)

where FA,c
t and F̌T

t are the improper CDFs of τ
A,c
t and τ̌Tt , respectively.

Thus, our goal reduces to computing the distribution of τ̌T, the (possibly negative)
time elapsed from the infectee’s contagion to the infector’s testing. Applying Eq. (17)
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to X = τT and using the suppression formula (16) we get, for any ρ ∈ (−∞,+∞],

Pt (τ̌
T
t = ρ) =

∑
τ∈R+

∑
g∈RPt−τ,g(τ

T
t−τ,g = ρ + τ)EPt−τ,g (n

τ
t−τ,g|τT

= ρ + τ)
#t−τ,g

#t

=
∑

g∈R
∑

τ∈R+ Pt−τ,g(τ
T
t−τ,g

= ρ + τ)
1 − ξt−τ δτ≥ρ+τ

1 − ξt−τ FT
t−τ,g(τ )

EPt−τ,g (n
τ
t−τ,g)

#t−τ,g

#t

=
∑

g∈R

∫
R+

Pt−τ,g(τ
T
t−τ,g = ρ + τ)

1 − ξt−τ δρ≤0

1 − ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ ) .

Notice that in the last line we used the improper CDFs Fσ,g
t introduced in Eq. (18).

Let us try to interpret this formula. The probability distribution of τ̌T is obtained by
averaging the distributions of τTt ′,g for all t ′ = t − τ < t and all g, each shifted by τ to
the left to account for the switch from the infector’s to the infectee’s infectious age. This
averaging is done by integrating over all t ′ and g with respect to the joint distribution
of the generation time τσ and the infector’s severity Ĝ. But a correction factor (the
fraction) appears in the integral, as the fact that the infector infects at relative time τ

and has severity g conditions the distribution of τTt−τ,g , by shifting it toward values
greater than τ . Indeed, the correction factor is greater than 1 for ρ > 0 and less than 1
otherwise. This means that, compared to a hypothetical case in which the testing time
and the infectiousness are independent (which happens when ξ is constantly zero),
the probability Pt (τ̌

T
t = ρ) is higher after the contagion time (i.e., when ρ > 0) and

lower before.
It follows now that the improper CDF of τ̌Tt reads

F̌T
t (ρ) =

⎧⎨
⎩

∑
g∈R

∫
R+ FT

t−τ,g(ρ + τ)
1−ξt−τ

1−ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ ) for ρ ≤ 0 ,

F̌T
t (0) + ∑

g∈R
∫
R+

FT
t−τ,g(ρ+τ)−FT

t−τ,g(τ )

1−ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ ) for 0 < ρ < +∞ .

We only have to replace this equation in (19) to get the time evolution formula:

Proposition 5 Assuming the suppression hypothesis (13), the conditional indepen-
dence of τT and n0,τ

t with respect to G, and the notification hypothesis (19), we have

FA,c
t (ρ) = sc

t

∑
g∈R

∫
R+

FT
t−τ,g(ρ + τ) − FT

t−τ,g(τ )

1 − ξt−τ FT
t−τ,g(τ )

dFσ,g
t (τ )

for ρ > 0 and FA,c
t (ρ) = 0 otherwise.
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A.7 Modifications in the case of use of a contact tracing app

The inhomogeneity in the population due to the use of a contact tracing app by a part
of it can be partly addressed in an analogous way to the inhomogeneity due to different
degrees of severity of the illness. Namely, we introduce a new random variable

A :  → {app, no app}

whose value determines whether or not an individual ω ∈  has the app. We assume
that whether or not an individual has the app is independent of both their severity and
their infectiousness in the absence of measures. In other words, A is independent of
G and n0,τ , for all τ . On the other hand, the infectiousness (in presence of measures)
and the testing time of an individual will be different depending on whether or not
they use the app.

A further partitions : we write

t,g,a := {ω ∈ t | G(ω) = g , A(ω) = a} , nτ
t,g,a := nτ �t,g,a ,

and so on. The content of Sect. A.3 fully applies to this scenario, but we want now to
have formulae conditioned on A. As A and n0,τ are independent, the previous formulae
simply become

EPt,g,a (n
τ
t,g,a) = EPt,g (n

0,τ
t,g )(1 − ξt FT

t,g,a(τ ))

and

EPt,g,a (n
τ
t,g,a |τTt,g,a = ρ) = (1 − ξt δτ≥ρ)EPt,g (n

0,τ
t,g )

= 1−ξt δτ≥ρ

1−ξt FT
t,g,a(τ )

EPt,g,a (n
τ
t,g,a) .

(20)

The suppression formula for Rt can be broken down to

Rt = ∑
g∈R

∑
a pt,gεt,a Rt,g,a

= ∑
g
∑

a pt,gεt,a
∫
R+(1 − ξt FT

t,g,a(τ )) dB0
t,g(τ ) ,

where εt,a := Pt (At = a).
The time evolution equation has to be treated differently, as the receipt of the

notification depends on whether both the infector and the infectee use the app.
Let F̌T,a

t (τ ) denote the probability that, given an individual ω ∈ t , the infector
σ(ω) is tested at a time ≤ t + τ and we have Â(ω) = A(σ (ω)) = a.

According to our assumptions, given an infection occurred at t , the probability that
the infector notifies the infectee when they test positive (provided that this happens
after the infection) is sc,appt in the case that both individuals have the app, and is
sc,no appt otherwise. Therefore, the contact tracing hypothesis (19) is now replaced by
the following expressions for the CDFs of the time of the notification received by an
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individual with or without the app, respectively:

FA,c
t,app(ρ) = sc,appt (F̌T,app

t (ρ) − F̌T,app
t (0)) + sc,no appt (F̌T,no app

t (ρ) − F̌T,no app
t (0)) ,

FA,c
t,no app(ρ) = sc,no appt (F̌T,app

t (ρ) − F̌T,app
t (0) + F̌T,no app

t (ρ) − F̌T,no app
t (0))

= sc,no appt (F̌T
t (ρ) − F̌T

t (0)) .

(21)

Now, the improper CDFs F̌T,a
t can be computed just as before, simply treating the

conditioning on Â as we treated the conditioning on Ĝ:

Pt (τ̌
T
t = ρ, Ĝt = g, Ât = a)

= ∑
τ>0Pt−τ,g,a(τTt−τ,g,a = ρ + τ)EPt−τ,g,a (n

τ
t−τ,g,a |τT = ρ + τ)

#t−τ,g,a
#t= ∫

R+ Pt−τ,g,a(τTt−τ,g,a = ρ + τ)EPt−τ,g,a (n
τ
t−τ,g,a |τT = ρ + τ) dFσ,g,a

t (τ ) ,

(22)

where we defined Fσ,g,a
t as follows, proceeding like in Sect. A.5 to compute the joint

distribution of τσ
t , Ĝt , and Ât :

Fσ,g,a
t (τ ) := Pt (τ

σ
t ≤ τ, Ĝt = g, Ât = a) =

∑
τ ′≤τ

EPt−τ ′,g,a
(nτ ′

t−τ ′,g,a)
#t−τ ′,g,a

#t
.

(23)

It is worth noting that comparing this equation with (18) we get

dFσ,g,a
t (τ )

1 − ξt−τ FT
t−τ,g,a

= εt,a
dFσ,g

t (τ )

1 − ξt−τ FT
t−τ,g

. (24)

Replacing the suppression formula (20) in (22) and summing over ρ, we end up
with

F̌T,a
t (ρ) − F̌T,a

t (0) =
∑

g

∫
R+

FT
t−τ,g,a(ρ + τ) − FT

t−τ,g,a(τ )

1 − ξt−τ FT
t−τ,g,a(τ )

dFσ,g,a
t (τ )

for ρ > 0. Plugging this into (21) gives us FA,c
t,a in terms of Fσ,g,a

t and FT
t ′,g,a for t ′ < t ,

that is the time evolution equation for the scenario with app usage. For a = app, this is
Eq. (9), while for a = no app it simplifies to Eq. (10), since when the infectee doesn’t
have the app it is irrelevant whether or not the infector has the app. This is evident
from the last line of Eq. (21), which in fact could also have been used, together with
the expression for F̌T

t derived in Sect. A.6, to get Eq. (10). Using Eq. (24), it can be
checked immediately that the two approaches give the same result.
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