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ARTICLE

Mechanistic Modeling of Intra-Tumor Spatial Distribution 
of Antibody-Drug Conjugates: Insights into Dosing 
Strategies in Oncology

Jared Weddell1, Manoj S. Chiney1, Sumit Bhatnagar1,*, John P. Gibbs1 and Mohamad Shebley1

Antibody drug conjugates (ADCs) provide targeted delivery of cytotoxic agents directly inside tumor cells. However, many 
ADCs targeting solid tumors have exhibited limited clinical efficacy, in part, due to insufficient penetration within tumors. To 
better understand the relationship between ADC tumor penetration and efficacy, previously applied Krogh cylinder models 
that explore tumor growth dynamics following ADC administration in preclinical species were expanded to a clinical frame-
work by integrating clinical pharmacokinetics, tumor penetration, and tumor growth inhibition. The objective of this frame-
work is to link ADC tumor penetration and distribution to clinical efficacy. The model was validated by comparing virtual 
patient population simulations to observed overall response rates from trastuzumab-DM1 treated patients with metastatic 
breast cancer. To capture clinical outcomes, we expanded upon previous Krogh cylinder models to include the additional 
mechanism of heterogeneous tumor growth inhibition spatially across the tumor. This expansion mechanistically captures 
clinical response rates by describing heterogeneous ADC binding and tumor cell killing; high binding and tumor cell death 
close to capillaries vs. low binding, and high tumor cell proliferation far from capillaries. Sensitivity analyses suggest that 
clinical efficacy could be optimized through dose fractionation, and that clinical efficacy is primarily dependent on the ADC-
target affinity, payload potency, and tumor growth rate. This work offers a mechanistic basis to predict and optimize ADC 
clinical efficacy for solid tumors, allowing dosing strategy optimization to improve patient outcomes.

Antibody drug conjugates (ADCs) provide targeted delivery 
of potent cytotoxic agents to tumor cells by binding to an-
tigens that are specifically expressed and/or upregulated 
on tumor cells. The eight ADCs that are currently approved 
and commercialized as therapeutic agents for treatment of 
multiple solid and hematological malignancies have her-
alded in a new wave of clinical development of ADCs,1 with 
an additional upcoming approval in relapsed/refractory 
myeloma. There are currently > 50 ADCs in clinical devel-
opment for various hematological malignancies and solid 

tumors, and > 200 clinical trials involving ADCs.2 Despite 
the clinical successes with ADCs, designing a successful 
ADC therapy is complex and primarily involves balancing 
efficacy and adverse effects associated with the potent cy-
totoxic agent conjugated to the antibody.

Recent research has identified that increasing ADC pen-
etration of solid tumors increases both treatment efficacy 
and survival.3 Mechanistic Krogh cylinder models have been 
developed previously to capture the relationship between 
ADC tumor penetration and efficacy,4–10 suggesting that 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Antibody drug conjugates (ADCs) provide targeted de-
livery of potent cytotoxic agents to tumor cells via mem-
brane antigen binding and internalization. Although it is 
known that ADC efficacy is diminished by heterogeneous 
disposition and binding within solid tumors, optimal dos-
ing strategies to homogenize disposition across solid tu-
mors remains unclear.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  What is the impact of various dosing regimens on the 
intra-tumoral disposition of ADCs in solid tumors and sub-
sequent impact on tumor volume reduction?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study provides a mechanistic modeling frame-
work that describes ADC pharmacokinetics and tumor 
penetration by incorporating tumor growth inhibition via 
ADC binding radially across solid tumors, mechanistically 
linked to clinical response rates and relapse or resistance 
to ADC therapies.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE?
✔  This work provides a mechanistic basis of ADC efficacy 
in solid tumors, allowing improvements in dosing strategy 
to improve patient outcomes.
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fractionating dosing11 or co-administering ADCs with naked 
antibodies improve solid tumor penetration10 in preclinical 
species. Although these models provide a basis to explore 
ADC mechanisms preclinically, analogous mechanistic 
models for optimizing ADC clinical efficacy in solid tumors 
have not been reported. Additionally, incorporating mecha-
nisms and virtual clinical populations to capture key clinical 
outcomes, such as resistance/relapse and overall response 
rate, may provide insight into properties driving clinical ef-
ficacy while providing a platform to model ADC dosing for 
solid tumors clinically.

In the current work, we have developed a mechanistic 
model framework, composed of three integrated sub-
models for ADCs, that is parameterized with: (i) human 
pharmacokinetics (PKs) using a minimal physiologi-
cally-based pharmacokinetic (PBPK) model, (ii) spatial 
distribution of ADCs across the tumor using a Krogh cyl-
inder model, and (iii) a tumor growth inhibition model. The 
model was extended from previously published models 
by incorporating heterogeneous ADC binding and tumor 
growth inhibition spatially across the tumor, mechanistically 
capturing clinical response rate and relapse/resistance. The 
model was calibrated and verified using reported clinical 
data for Ado-trastuzumab Emtansine (T-DM1) and was used 
to identify the key ADC parameters that impact the spatial 
distribution and tumor growth inhibition properties of T-DM1 
as a case study for ADCs. In addition, the model was used 

to characterize the impact of dose and dosing schedule on 
the intra-tumor spatial distribution of ADCs and the resulting 
impact on tumor volume reduction.

METHODS
Model development
A mechanistic ADC PK/clinical response model was devel-
oped using the Simbiology application in MATLAB version 
2017a (Mathworks, Natick, MA). Representative Model 
Code in Systems Biology Markup Language (SBML) for-
mat is provide in the supplementary information. Figure 1 
provides an overview of the strategy used for the model 
development and application. Three submodels were se-
quentially built and linked to create an integrated model 
that captures ADC PK (Figure 2a), distribution across the 
tumor (Figure 2b), and clinical response (Figure 2c). Model 
parameters were derived from literature or optimized to 
clinical data, as summarized in Table S1.

Minimal PBPK model of T-DM1. A minimal PBPK 
submodel, based on published PBPK models for 
antibodies,12,13 was built to capture T-DM1 PK (Figure 2a). 
The minimal PBPK model consists of plasma, lymph, leaky 
tissue, tight tissue, and tumor vasculature compartments. 
The tumor vasculature compartment estimates ADC 
available to the tumor as input to the Krogh cylinder 
submodel, detailed in the next section. All ADC species 

Figure 1 Model development workflow. First, the ADC model was developed by integrating three submodels: (1) a minimal PBPK 
submodel to capture ADC PK, (2) a Krogh cylinder submodel to capture ADC distribution within the tumor, and (3) a tumor growth 
inhibition submodel to capture ADC PD. The integrated ADC model was next verified with T-DM1 clinical PK/PD in metastatic breast 
cancer as a test case. The verified model was then applied to examine the impact of dosing on PK/PD of a hypothetical ADC. ADC, 
antibody-drug conjugate; PBPK, physiologically-based pharmacokinetic; PD, pharmacodynamic; PK, pharmacokinetic; T-DM1, Ado-
trastuzumab emtansine.
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are assumed to have the same drug antibody ratio (DAR), 
given by the observed average DAR (3.5 for T-DM1). All 
toxin molecules are assumed to deconjugate from the 
antibody simultaneously when the antibody is degraded or 
nonspecific linker deconjugation occurs. The plasma ADC 
concentration ([ADCP]) is determined by:

where Vp is the plasma volume, tt refers to tight tissue, lt 
refers to leaky tissue, tm refers to tumor vasculature, lm 
refers to lymph, and σ are the tissue reflection coefficients. 
Brackets indicate ADC concentration within the specific tis-
sue. Qp_tissue refers to the plasma flow rate to each tissue, 
and Qlm_tissue refers to the lymph flow rate from a tissue, 
where Qlm\_p is the lymph flow rate to plasma. CLdeconj is lin-
ear clearance via nonspecific linker deconjugation, whereas 
Vmax and Km describe nonlinear systemic clearance, chosen 
due to T-DM1 exhibiting nonlinear elimination.14 Dose de-
fines the i.v. dose amount/rate of T-DM1.

The ADC concentration in non-tumorous tissue j (tight 
and leaky) is:

where Vj is the tissue volume.
The unconjugated antibody is formed by ADC clearance 

via nonspecific linker deconjugation (CLdeconj). Furthermore, 

total unconjugated trastuzumab systemic clearance in 
plasma is assumed linear (CLantibody), taken from the tras-
tuzumab population PKs model.15 This assumption allows 
tumor volume reduction (TVR) to be calibrated by the T-DM1 
effect alone, as the relative contributions of T-DM1 and un-
conjugated trastuzumab to TVR cannot be determined due 

to lacking individual patient data. This assumption is sup-
ported by clinical and preclinical data showing that T-DM1 
produces cell death and TVR, whereas single-agent trastu-
zumab induces cytostasis.16,17

Tumor biodistribution model. A Krogh cylinder submodel 
was built to capture the ADC spatial distribution across the 
tumor (Figure 2b), as described in the Supplementary 
Methods. The Krogh submodel was expanded from 
previously published models8,18,19 to incorporate the radial 
tumor mass at each individual spatial point. The radial tumor 
mass dynamically changes based on tumor cell growth and 
death at each spatial point, as described in the next section. 

The radial antigen concentration changes dynamically with 
the radial tumor mass by altering the antigen synthesis rate 
at each spatial point i (ksyni) as follows:

Vp ⋅

d[ADCp]

dt
=Dose− (1−σtt) ⋅ [ADCp] ⋅Qp_tt− (1−σlt) ⋅ [ADCp] ⋅Qp_lt− [ADCp] ⋅Qp_tm

+(Qp_tt−Qlm_tt) ⋅ [ADCtt]+ (Qp_lt−Qlm_lt) ⋅ [ADClt]+ (Qp_tm−Qlm_tm)

⋅[ADCtm]+ [ADClm] ⋅Qlm_p−CLdeconj ⋅ [ADCp]−
Vmax ⋅ [ADCp]

Km+ [ADCp]

Vj ⋅
d[ADCj]

dt
= (1−σj) ⋅ [ADCp] ⋅Qpj

− (1−σlm) ⋅ [ADCj] ⋅Qlmj
− (Qj−Qlmj

) ⋅ [ADCj]−CLdeconj ⋅ [ADCj].

Figure 2 Schematic of the mechanistic ADC model. (a) A minimal PBPK model captures ADC PK and disposition to plasma, lymph, 
tight, leaky, and tumor vasculature compartments. Tight and leaky tissue compartments represent lumped organs as described in 
ref. 13 ADC penetration from the tumor vasculature into and across the tumor is modeled by (b) the Krogh cylinder. The Krogh radius 
(RKrogh) defines the maximal distance the ADC diffuses into the tumor (i.e., RKrogh is half the intercapillary distance within the tumor). 
ADC diffusion (D) across the tumor is modeled at discrete spatial points at distances dR apart. ADC penetration across the capillary 
wall is driven by the capillary radius (Rcap), capillary permeability (Cp), and the ADC concentration in the tumor vasculature (CP), and 
at the spatial point next to the capillary wall in the tumor (CS1). The ADC concentration within the tumor is modified by the tumor void 
volume (ɛ). (c) At each spatial point, the ADC binds to the antigen present on the cell surface and is internalized, where the toxin is 
released via antibody degradation and/or linker cleavage. The released toxin causes cell death which is captured by the Simeoni 
tumor growth inhibition model.20 The tumor growth inhibition is modeled by four transit compartments, labeled here as different cell 
populations for conceptual ease: proliferating, damaged, dying, or nearly dead cells. ADC, antibody-drug conjugate; CL, clearance; 
PBPK, physiologically-based pharmacokinetic; PD, pharmacodynamics.
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where wi is the radial tumor mass for each spatial point, 
and t0 indicates baseline (time = 0). As the ADC spatial dis-
tribution across the tumor cannot be verified with clinical 
data, model predicted treatment efficacy was calibrated to 
clinical overall response rate (ORR) for T-DM1 in metastatic 
breast cancer, as described in the next section.

Tumor volume model. Radial tumor volume is captured 
based on the tumor growth inhibition model by Simeoni 
et al. (Figure 2c),20 as described in the Supplementary 
Methods. The Simeoni model was modified to account 
for radial tumor growth and inhibition as a function of the 
proliferating cells at each spatial point f(proi(t)) as follows:

where L0 is the tumor exponential growth rate, L1 is the 
tumor linear growth rate, Ψ is a constant that allows the 
tumor growth to switch from exponential to linear growth, 
Emax is the maximal tumor cell killing by the toxin, IC50 is the 
toxin potency, and [Toxinint,i] is the radial intracellular toxin 
concentration. Total tumor volume is determined by the 
sum of radial tumor volumes.

Model calibration and verification. This model was 
designed to explore ADC clinical efficacy in solid tumors 
using T-DM1 as a case study. The model was calibrated to 
T-DM1 PK by fitting the clearance parameters CL_deconj 
(nonspecific linker deconjugation) and maximal rate of 
metabolism (Vmax) and Km (ADC systemic clearance; Table 
S1) to observed clinical PK (peak plasma concentration 
(Cmax) and area under the curve (AUC)) of T-DM1 in 
metastatic breast cancer.21 T-DM1 clinical efficacy was 
calibrated to the ORRs from the EMILIA study22 and was 
verified using the ORRs from the MARIANNE study.23 The 

lack of publicly available longitudinal tumor volume data led 
us to use the ORR end point as a measure of verification 
of the model. Clinical efficacy was calibrated by fitting the 
Emax parameter (Table S1) to the reported clinical ORRs 
from monotherapy T-DM1 dosed at 3.6 mg/kg in metastatic 
breast cancer.23 The observed ORR was calculated as the 
percent of responsive patients, those achieving complete 
response (CR; tumor undetectable) or partial response (PR; 
sum of longest diameters reduced > 30% from baseline), 
defined by the RECIST criteria.24 The model was verified by 
predicting the ORR from MARIANNE.23 Predicted ORR was 
determined by simulating 500 patients across 100 trials by 
varying parameters shown in Table S1.

Sensitivity analyses. A generalized ADC and tumor were 
modeled to assess the impact of parameters and dosing 
schedule on TVR. The impact of dosing schedule on TVR 
was simulated while accounting for dose fractionation, such 
that the total dose was maintained constant across dosing 
scenarios of every week (QW), every 2 weeks (Q2W), every 
3  weeks (Q3W), and every 4  weeks (Q4W). Confidence 
intervals for ORR simulations were obtained by simulating 
500 patients across 10 trials. Local sensitivity analysis was 
performed to understand how individual ADC or tumor 
parameters can be manipulated to direct TVR. The impact 
of parameters on TVR was determined by ranging each 
parameter individually across orders of magnitude relative 
to the baseline parameter value (Table S1). Four parameters 
(KD, IC50, antigen expression, and tumor doubling time) were 
chosen for sensitivity analyses as they are the parameters 
most readily tuned by the choice of ADC and tumor type.

RESULTS
Evaluation of minimal PBPK and spatial TVR model 
of ADC using T-DM1 PK and ORR in patients with 
metastatic breast cancer 
The minimal PBPK model accurately captures T-DM1 
clinical PK data (Figure 3a). The model simulated PK pa-
rameters were compared with observed PK parameters of 
T-DM1 in patients with metastatic breast cancer at doses 

ksyni (t)=ksyn(t0)
wi(t)

wi(t0)

f(proi(t))=
L0wi(t)

[

1+
(

L0

L1
wi(t)

)Ψ
]1∕Ψ

−
Emax ⋅

[

Toxinint,i
]

IC50+
[

Toxinint,i
]

Figure 3 ADC model verification with T-DM1 clinical pharmacokinetics (PKs)/pharmacodynamics as a test case. (a) Observed (n = 15) 
vs. predicted plasma PK for total trastuzumab (T-DM1 conjugated and unconjugated antibody) and T-DM1 (conjugated antibody only) 
following a single T-DM1 clinical dose at 3.6 mg/kg.21 (b) The observed clinical objective response rates (ORRs) for monotherapy 
T-DM1 dosed at 3.6 mg/kg is compared to model predicted.22,23 All observed data are given as median ± 95% confidence interval, and 
simulated data is represented as the median ± 95% confidence interval represented by the a shaded region or b error bars. Predicted 
confidence intervals were obtained by simulating 100 virtual patients across 10 groups. AUC, area under the curve; Cmax, maximum 
concentration.



399

www.cts-journal.com

Intra-Tumor Distribution of ADCs
Weddell et al.

ranging from 0.1 mg/kg to 3.6 mg/kg (Table S2). The model 
predicted AUC and Cmax across all the dose levels were 
within 50% prediction error of observed data, resulting in 
acceptance that the PBPK model construct predicts T-DM1 
PK. In particular, the clinical dose (3.6 mg/kg) was well cap-
tured by the model with <  25% prediction error for AUC 
and Cmax (Table S2), and exposures in this cohort (N = 15) 
were representative of exposures in studies conducted in 
larger patient populations (N = 272 total). Overall, the PBPK 
simulated profiles were in agreement with the observed PK 
profile of total trastuzumab and T-DM1 (Figure 3a).

The model construct was also able to predict the clinical 
ORR (Figure 3b) with a prediction error of 30%. The pre-
diction error was mostly attributed to trial-to-trial variability 
that was observed across the clinical trials. In six clinical 
studies with T-DM1, the reported ORR ranged from 26% to 
64% with a mean of 43 ± 13%.25 These ORRs are highly de-
pendent on patient characteristics in the specific study and 
can influence the end points. In the absence of trial specific 
patient characteristics like human epidermal growth factor 
receptor 2 (HER2) expression, the virtual patient populations 
for the calibration and verification simulations were varied 
randomly. Although the model was optimized by calibrat-
ing Emax to overall % ORR, the model accurately predicted 
the relative contribution of CRs (observed: 1.0%; predicted: 
2.0%), PRs (observed: 42.6%; predicted: 40.6%), and 
stable disease or progressive disease (observed: 56.4%; 
predicted: 57.4%), as shown in Figure S1.22 Importantly, 
the addition of modeling radial tumor mass was required to 
accurately predict the relative contribution of complete and 
partial responses (Figure S1a). When Emax was optimized 

to overall % ORR and radial tumor mass was not modeled, 
the model overpredicted complete responses and under-
predicted partial response rates (Figure S1a). Radial tumor 
mass modeling captured response rates as it mechanisti-
cally describes tumor resistance and relapse (Figure S1b), 
resulting from high tumor cell growth far from capillaries 
relative to high tumor cell death close to capillaries (Figure 
S1c). Thus, the model mechanistically represents both PK 
and variability in post-treatment TVR as a clinical outcome 
for ADC therapy.

Influence of ADC properties (target affinity, payload 
potency, and choice of dosing schedule) on TVR and 
clinical outcomes
ADC efficacy, measured by TVR, is highly dependent on 
both the ADC and tumor properties. The impact of key pa-
rameters dictating ADC (KD and IC50) and tumor (antigen 
expression and tumor doubling time) properties on total 
TVR (Figure 4 top row) and spatial TVR (Figure 4 bot-
tom row) were examined via sensitivity analysis and with 
respect to dose fractionation (QW, Q2W, Q3W, or Q4W dos-
ing; Figure 4), whereas keeping the total dose administered 
over the 4  week period constant. These four parameters 
were chosen as they are sensitive to driving TVR (Figure 
S2) and are parameters that are either tunable based on 
the manufactured properties of the ADC (KD and IC50) or 
are clinically measurable properties of the tumor (antigen 
expression and tumor doubling time). Sensitivity analysis 
revealed an optimal KD range to achieve maximal TVR, 
when all other parameters held constant; a KD too low or 
too high is ineffective at inhibiting tumor growth (Figure 4a). 

Figure 4 ADC model sensitivity analysis. Sensitivity analyses were conducted on two key parameters tunable by the ADC properties 
(a) dissociation constant (KD) between the ADC and antigen and (b) toxin potency (IC50), and two parameters based on the tumor 
type (c) antigen expression and (d) tumor doubling time defined by the linear tumor growth parameter. (Top row) The total TVR after 
6 months of treatment was determined by altering each parameter across a range of three orders of magnitude lower and three orders 
of magnitude higher than the model baseline value. (Bottom row) Spatial TVR, the reduction in tumor volume at each spatial point 
across the tumor, was determined after 6 months of treatment for each parameter at baseline and 1 order of magnitude higher and 
lower than baseline. For each sensitivity analysis, the ADC was fractionated to QW, Q2W, Q3W, and Q4W dosing. ADC, antibody-drug 
conjugate; IC50, half maximal inhibitory concentration; KD, dissociation constant; TVR, tumor volume reduction.
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Conversely, IC50 (Figure 4b) values exhibit linear TVR re-
sponses that follow an anticipated distribution. As toxin 
potency increases (lower IC50), the ability to kill tumor 
cells increases (Figure 4b). Similar to the scenario with 
KD, an optimal range for antigen expression is observed 
(Figure 4c) due to the close relationship antigen expression 
and KD have in determining target binding. The tumor dou-
bling time expressed a linear response with TVR (i.e., as the 
tumor doubling time increased, the ability to kill the tumor 
decreased (Figure 4d)), indicating the tumor cell death rate 
by the toxin cannot overcome the tumor cell proliferation 
rate.

This sensitivity analysis also showed that ADC and tumor 
properties impact the ability of the ADC to inhibit growth 
across the tumor (Figure 4 bottom row). Although high tumor 
cell reduction was achieved close to capillaries (< 20 µm) for 
nearly all parameter sets and dosing frequencies, the ADC 
and tumor parameters both drastically alter tumor cell re-
duction far from capillaries (> 55 µm). For example, although 
it may be counterintuitive that increasing KD leads to higher 
efficacy, sensitivity analysis shows that maximal TVR is 
observed with KD = 5 nM (10-fold the baseline value) as it 
allows the ADC to distribute and bind across a tumor with 
antigen expression of 106 receptors/cell (Figure 4a). Thus, 
tumor cells farthest from capillaries (70 µm) are growth in-
hibited at KD = 5 nM (spatial TVR ≈ 0%), whereas with lower 
KD = 0.05 nM (0.1-fold the baseline value) the ADC binds 
so strongly to tumor cells near the capillary that it does 

not distribute across the entire tumor (spatial TVR far from 
capillary ≈ −50%; Figure 4a). Overall, this sensitivity anal-
ysis reveals that the success of an ADC therapy is driven 
by the ability of the ADC to target tumor cells farthest from 
capillaries.

For all parameter sets, increased TVR resulted from dose 
fractionation with more frequent dosing, with QW dos-
ing achieving up to ~ 30% greater TVR than Q4W dosing 
(Figure 4 top). Although dose fractionation results in lower 
maximal receptor occupancy (RO), ~  40% average ROmax 
across the tumor for QW compared with ~ 65% for Q4W, 
fractionated dosing maintains higher average RO across 
time, ~  35% ROmean for QW, and ~  20% for Q4W over 
1 month (Figure 5a,b). This more frequent dosing provides 
near constant RO across the tumor over a 28-day cycle for 
QW dosing (Figure 5c), whereas Q4W dosing loses target 
engagement by the end of the cycle (Figure 5d). Additionally, 
fractionated dosing leads to lower off-target maximum and 
average RO (Figure S3), which indicates fractionated dosing 
is also favorable in terms of safety. Overall, model predic-
tions indicate that sustained RO across the tumor achieved 
by fractionated ADC dosing is safer and more effective than 
less frequent higher doses.

Interactions across multiple parameters can also be 
elucidated with this model construct. Take the interaction 
between payload potency and target expression as a case 
study (Figure 6). Tumor cells with low target expression will 
be virtually unaffected by an ADC with low payload potency 

Figure 5 Impact of fractionated ADC dosing on receptor occupancy. (a, b) Simulated percent receptor occupancy across time and a 
theoretical tumor over 1 month is given for ADC dosing fractionated at (a) 10 mg QW or (b) 40 mg Q4W. RO radially across the tumor 
at day 1 (solid line) and day 21 (dashed line) are given for the (c) QW and (d) Q4W dose schedules.
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(Figure 6 bottom left). Although partial tumor reduction can 
be achieved with the same low potency payload in tumors 
with high target expression, the treatment would be ineffec-
tive overall as deep tumor cells far from capillaries are not 
affected (Figure 6 bottom right). Conversely, high payload 
potency can be effective in tumors with both low and high 
target expression (Figure 6 top). This case study highlights 
the ability for the model to predict efficacy given specific 
ADC and tumor properties of interest.

Extending sensitivity analysis into virtual patient popula-
tions quantifies the relationship between TVR and clinical 
response rates (Figure 7). These population simulations 
provide insight into when dose fractionation may or may not 
be beneficial for efficacy end points. For example, given an 
ADC dosed Q4W, a compromise could be reached to allow 
the ADC to have weaker affinity if the dose is fractionated to 
maintain or increase efficacy (Figure 7a). Such a compro-
mise may not be feasible for the toxin as dose fractionation 
does not increase efficacy if a less potent toxin is used 
(Figure 7b). The model allows a similar argument to be made 
around tumor selection; lower antigen expression is permis-
sible with dose fractionation to increase efficacy (Figure 7c), 
but increased efficacy cannot be achieved without a higher 
dose for fast growing tumors (Figure 7d). This case study 
highlights the potential for the model construct to predict 
probability of success for ADCs and tumor properties.

DISCUSSION

In this work, a quantitative ADC modeling framework that 
mechanistically describes PK, pharmacodynamics, and 

clinical efficacy was developed and verified. The model util-
ity, as described by the example of T-DM1 in metastatic 
breast cancer, provides a mechanistic translational ap-
proach to enable decision making during drug development 
with respect to ADC property design, clinical population 
selection, and dose optimization. The model predictions 
of tumor volume change and clinical efficacy, along with 
recent experimental advances, highlight the importance of 
understanding ADC distribution within tumors and suggests 
greater utility of the modeling and simulation framework as 
described herein.

Extensive studies in preclinical species have shown that 
antibodies and ADCs suffer from poor penetration in solid 
tumors.10 These studies have used antibodies and ADCs 
conjugated with near-infrared fluorophores and confocal 
microscopy of histology slices to show the heterogenous 
distribution of these biologics in tumor xenograft mouse 
models. These findings were compared with predictions 
from a Krogh cylinder model, both showing that these bio-
logics tend to have a perivascular distribution in vivo, thereby 
validating the use of the Krogh cylinder model. Other studies 
included dosing antibodies along with ADCs to improve the 
spatial distribution and efficacy of these ADCs.3 The Krogh 
cylinder model was able to predict these results, increasing 
confidence in the ability of the model to make predictions 
about the spatial distribution of antibodies and ADCs in solid 
tumors.

This model provides a mechanistic basis supporting that 
dose fractionation may be beneficial for clinical efficacy while 
reducing toxicity concerns, consistent with the recent clinical 
learning from gemtuzumab ozogamicin26,27 and additional 

Figure 6 Impact of payload potency and target expression on percent tumor kill. A hypothetical ADC with either high (IC50 = 10 pM) 
or low (IC50 = 0.10 µM) potency targeted a generalized tumor with either high (107 receptors/cell) or low (105 receptors/cell) antigen 
expression. Spatial TVR, the reduction in tumor volume at each spatial point across the tumor, is given as a function of time in each 
scenario. ADC, antibody-drug conjugate; IC50, half maximal inhibitory concentration; RO, receptor occupancy; TVR, tumor volume 
reduction.
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preclinical studies,28,29 along with clinical benefits observed 
from other therapies.30,31 It should be noted that these model 
predictions of potential benefit from dose fractionation 
stems from predicted RO by the ADC in leaky tissue and 
does not account for toxicity concerns by the unconjugated 
toxin,32,33 which is outside the scope of this study. Hinrichs 
et al. have shown that, for ADCs with pyrrolobenzodiazepine 
payloads, dose fractionation results in similar antitumor ac-
tivity in mouse xenograft models, as efficacy closely related 
to ADC exposure.28 Additionally, dose fractionation gave a 
better safety profile in rats and monkeys, as toxicity was 
associated with Cmax.

28 Clinical evidence also showed that 
dose fractionation resulted in better efficacy and safety of 
gemtuzumab ozogamicin in hematological malignancies.34 
Whereas studies such as these provide preclinical and clin-
ical evidence in favor of ADC dose fractionation, no clinical 
evidence of ADC dose fractionation efficacy/safety in solid 
tumors exist to our knowledge. Testing the hypothesis that 
ADC dose fractionation improves clinical efficacy and safety 

profiles in solid tumors may address the question of its ben-
efit over the traditional dosing strategies and will have the 
potential to greatly improve patient outcomes. An important 
consideration for dose fractionation is the potential target 
mediated drug disposition (TMDD) of ADCs. TMDD is highly 
dependent on the target and the specific ADC but can cause 
significant nonlinearity in the PKs of ADCs. For ADCs that 
undergo TMDD, low doses have an increased clearance that 
will lead to reduced efficacy. Therefore, the dose selection of 
fractionated doses will be critical in achieving high efficacy.

Another utility of the modeling framework is in transla-
tional simulation scenarios to evaluate dose fractionation of 
ADC therapies, which may have not been adopted by clini-
cians due to toxicity concerns seen with other therapies.35

The model sensitivity analyses provided mechanistic in-
sight into how ADCs and tumor properties can be stratified 
to predict population responses. For example, sensitivity 
analysis led to a counterintuitive hypothesis that lower ADC 
affinity to the target increases tumor targeting and killing. 

Figure 7 Relationship between dose fractionation and parameters on % ORR. The % ORR after 6 months of treatment was determined 
for patients receiving doses fractionated to QW, Q2W, Q3W, or Q4W using baseline parameter values (Table S1). The effects of four 
key parameters (a) KD, (b) IC50, (c) antigen expression, and (d) tumor doubling time for each dose schedule were determined by 
altering the parameter 10-fold higher and lower than the baseline value. The % ORR given parameter alteration and dose schedule are 
represented as the difference from the % ORR given by Q4W dose scheduling with baseline parameters. A positive % ORR indicates 
higher efficacy, and a negative % ORR indicates lower efficacy, relative to Q4W dose scheduling with baseline parameters. Virtual 
patients were defined by calibrating parameter variability to the clinical response rate observed for T-DM1.22 Variability was estimated 
by simulating 100 random patients 10 times for each treatment condition, and error bars represent the 95% confidence interval. ORR, 
Overall response rate; IC50, half maximal inhibitory concentration; KD, dissociation constant.
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Mechanistically, this appears due to a lower affinity allowing 
the ADC to penetrate deeper into the tumor and bind to the 
target more homogenously across the tumor, a prediction 
verified by recent in vivo findings.36 Another hypothesis de-
rived from sensitivity analysis is that the tumor growth rate 
is a critical parameter affecting the success of the ADC ther-
apy. Clinical evidence supports this hypothesis that higher 
tumor growth rates result in decreased efficacy; the anti-PD1 
antibody toripalimab showed a 83.9% response rate (partial 
response + stable disease) in patients with low pretreatment 
tumor growth rates compared with a 26.5% a response rate 
in patients with high pretreatment tumor growth rates.37 
Tumor growth rates have also been identified as a biomarker 
of clinical survival (progression free and overall) across mul-
tiple cancers.38,39 Overall, this model allows for relationships 
between ADC or tumor properties with clinical outcome to 
be explored and understood mechanistically.

Although this ADC construct provides a mechanistic basis 
to model dosing based on both ADC and tumor properties, 
there are current limitations outside the scope of this study 
that can be addressed in future model extensions to provide 
greater pharmacological relevancy. The major limitation is that 
there is limited clinical data (T-DM1) to verify this model frame-
work. An additional limitation is the model does not describe 
payload PKs and disposition dynamics. Free DM1 disposition 
dynamics was not included in this model because free DM1 
is assumed to not contribute to TVR21 and DM1 has been 
shown to have minimal bystander killing effect in vitro.40,41 
However, applicability to other ADCs may necessitate in-
corporating additional payload considerations, particularly 
applying a DAR range rather than average DAR used here, 
or including payload disposition if there is significant by-
stander effect. Payload release is complicated by multiple 
contribution routes, including release by on-target antigen 
binding, off-target binding to antigen expressed in healthy 
tissues or Fc receptors, and nonspecific deconjugation.42,43 
Understanding payload deconjugation mechanistically can 
help optimize dosing or ADC properties, such as linker type.

Modeling drug-drug interaction potential would also be 
greatly beneficial to clinical trial design. Payloads particularly 
can be victims or perpetrators of enzymes and transporters, 
such as brentuximab vedotin, which uses the monomethyl 
auristatin E payload that is a substrate and inhibitor of 
CYP3A4.44 Currently, the tumor is assumed spatially ho-
mogenous with regard to cell type, antigen expression, and 
perfusion, whereas tumors are known to be highly heteroge-
neous.45,46 Incorporating tumor heterogeneity may improve 
tumor growth and efficacy predictions by allowing the model 
to capture the variability that is seen across trials. It can also 
be useful in extending this framework to other tumor types 
that have varying levels of heterogeneity. This information is 
typically qualitative in nature and is based on tumor biop-
sies from patients but implementation in the model would 
require detailed and robust quantitative data. Model up-
dates to incorporate additional biology will provide greater 
insights into ADC pharmacology and extend model applica-
tions to additional ADC design considerations and clinical 
trial optimization.

This work provides a framework for mechanistic un-
derstanding of the interplay between ADCs and tissue 

heterogeneity to identify optimal dosing strategies and po-
tentially improve patient outcomes.
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