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ABSTRACT 
 

Recent genome-wide association studies (GWASs) of several individual sleep traits have 
identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are 
moderately correlated, and together may provide a more complete picture of sleep health, while 
also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) 
incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, 
snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-
based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci 
adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci 
(p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-
h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in 
multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover 
novel genetic mechanisms underlying sleep health and reveal connections to behavioral, 
psychological, and cardiometabolic traits. 
 
 
INTRODUCTION  
 

Sleep is an essential biological process, orchestrated by interrelated neurologic and 
physiologic regulatory processes, responding to individual, social, and environmental 
influences1-3. Positive sleep traits have been associated with lower rates of cardiometabolic and 
neuropsychiatric diseases, as well as higher productivity and well-being4. Moreover, general 
sleep health has come into recent focus as a consequential and modifiable health factor, with the 
combined presence of multiple healthy sleep factors frequently being a stronger predictor of 
positive health outcomes5,6. As a composite, sleep health is recognized to involve multiple 
domains, including regularity, satisfaction, alertness, timing, efficiency, and duration1. 

 
Several recent studies leveraging biobank-scale data have resulted in well-powered 

genome-wide association studies (GWASs) of sleep phenotypes, capturing several aspects of 
sleep health, including self-reported sleep duration7, insomnia8,9, sleepiness10, snoring11, and 
chronotype12. These GWASs have begun to elucidate the genetic architecture of sleep, while 
revealing the presence of widespread genetic correlations across both sleep and related 
neuropsychiatric and cardiometabolic traits2,3. Associated genomic loci and pathways are often 
shared across multiple sleep traits, suggesting a shared genetic basis and co-regulated processes. 
Therefore, a more complete and robust understanding of sleep may be achieved by describing 
patterns across multiple traits, pointing toward underlying domains, highlighting the potential 
utility in analyzing composite sleep health scores (SHSs).  

 
Recently, an additive sleep health score (SHS-ADD) consisting of five self-reported sleep 

behaviors was studied in unrelated individuals in the UK Biobank (UKB), yielding new genetic 
findings13. However, additive scores compress data across multiple domains to a single metric, 
resulting in potential information loss, increased genetic heterogeneity, and weaker signal for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.02.24302211doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302211
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetic analyses. In this study, we expanded the prior UKB SHS-ADD GWAS to a larger UKB 
sample and constructed five novel principal-component (PC)-derived SHSs as linear 
combinations of the same five underlying traits. We conjectured that, when compared with SHS-
ADD, SHS-PCs would create more precisely targeted phenotypes, resulting in potentially greater 
heritability, as well as distinct and interpretable domain-specific associations in secondary 
analyses. 
 
RESULTS  
 
Sleep health score construction in UKB. 
 
The study population consisted of 413,904 UKB participants of European ancestry with 
complete sleep and genomics data (Methods). Sample characteristics are provided in 
Supplementary Table 1. Self-reported sleep traits (sleep duration, insomnia, chronotype, snoring, 
and daytime sleepiness) derived from the baseline questionnaire were used to construct SHS 
traits (Methods). Briefly, SHS-ADD was operationalized as in previous UKB studies13,14, defined 
as the sum of five dichotomized positive sleep health characteristics: sleep duration of 7 to 8 
hours, morning chronotype preference, no snoring, infrequent insomnia symptoms and 
infrequent daytime sleepiness (Methods). SHS-PCs (mean-centered and variance-standardized) 
were extracted from the same underlying sleep traits, treated as linear continuous measures, and 
then oriented to positively correlate with self-assessed overall health.  
 
Several findings emerged from constructing the Sleep Health Score Principal Components (SHS-
PCs) in the UK Biobank, providing context and guiding interpretation. SHS-PCs 1-5 individually 
explained from 25.2% to 14.9% of the phenotypic variation (Fig. 1 and Supplementary Table 2). 
Based on their PC loadings (Fig. 1 and Supplementary Table 2), higher scores on SHS-PCs are 
interpreted as follows – SHS-PC1: longer sleep with less-frequent insomnia symptoms and 
sleepiness; SHS-PC2: healthier sleep with less-frequent sleepiness and without snoring (i.e., 
without symptoms of sleep apnea syndrome); SHS-PC3: morningness chronotype; SHS-PC4: 
snoring with less frequent sleepiness; SHS-PC5: shorter sleep duration with less-frequent 
insomnia symptoms. Substantial non-normality was observed for SHS-PC2, SHS-PC3, and SHS-
PC4 (Supplementary Fig. 1), resulting from the underlying trait distributions (Methods). The 
direction and loadings of the PCs follow from underlying correlations among the self-report 
sleep traits (Supplementary Table 3): SHS-PC1 was driven primarily by correlations between 
sleep duration and insomnia (-0.24) and between insomnia and sleepiness (0.09); SHS-PC2 was 
driven by the correlation between sleepiness and snoring (0.08); SHS-PC3 loaded on chronotype, 
which was independent of the other underlying traits; whereas SHS-PC4 and SHS-PC5 appear to 
be driven largely by the PC independence constraint, such that they loaded on both positive and 
negative sleep attributes, and does not imply these combinations constitute clusters in the data. 
 
The interpretation of the SHSs was further clarified by their correlations with objective traits not 
used in their construction (Supplementary Figs. 2a and 3a). For example, SHS-PC1 was 
positively correlated with accelerometry-based sleep duration and sleep efficiency metrics. SHS-
PC2 was positively correlated with higher sleep efficiency, lower daytime inactivity, lower BMI, 
and being female, features which suggest the absence of sleep apnea. SHS-PC3 correlated with 
earlier accelerometry-based measures of activity and sleep midpoint (measurements of timing). 
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Notably, SHS-PC4 and SHS-PC5 showed weaker correlations with self-assessed overall health 
(p>0.05 for PC4) but were nonetheless correlated with other measures of overall health, 
including lower levels of self-reported disability and lower numbers of treatments/medications 
taken. Notably, SHS-ADD had the strongest association with self-reported overall health, as well 
as with the accelerometry-derived sleep regularity index.  
 
Genome-wide association analysis 
 
We performed GWAS for the six SHS traits using linear mixed regression models, adjusting for 
age, sex, genotyping array, ten genetic PCs and genetic relatedness matrix (Methods). We 
identified 31,188 genome-wide significant (GWS) SNPs (p<5e-8), resulting in 45 loci for SHS-
ADD (SNP-h2=0.094), and 91, 48, 166, 26, and 25 loci for SHS-PC1-5 (SNP-h2=0.117, 0.093, 
0.153, 0.070, and 0.068), respectively (Fig. 2a, Table 1, Supplementary Figs 4-5, and 
Supplementary Tables 4-5; Methods). Function annotation of all SNPs in linkage disequilibrium 
(LD; �� � 0.6) with the lead SNPs in the risk loci were performed using FUMA15 (Methods; 
Fig. 2c-2f).  
 
To determine novelty, we compared the 400 unique GWS loci against those found to be GWS in 
prior biobank GWASs of individual sleep traits and the previously developed SHS-ADD in the 
UKB (Methods; Supplementary Table 5). This identified 59 unreported SHS-associated GWS 
loci with a lead variant at least 500kb away from previously reported sleep variants (Table 1 and 
Supplementary Table 4). Of these unreported loci, 28 passed a stricter significance threshold 
(p<8.3e-9) accounting for multiple testing on six traits, which are defined as novel loci (Table 1). 
Among the 28 novel loci, two were independent (r2<0.1) but within 50kb of one another: 
rs201449027 (associated with SHS-PC1) and rs11494758 (with SHS-PC3), both in the KLRG1 
locus (a gene with reported immune system function16). The other 26 loci were distinctly 
associated with one SHS trait. In addition, there were two functional variants among the lead 
SNPs: First, SHS-PC1 associated with rs8074498, a missense variant in ASPSCR1, a gene 
regulating GLUT4 in glucose sequestration and transportation in response to insulin. Second, 
SHS-PC5 associated with rs138572890 in the 3’ UTR of PAPD5, a non-canonical poly(A) 
polymerase involved in the surveillance and degradation of aberrant RNAs, including the 
glucose transporter GLUT1. Functional annotation for the lead SNPs at the 28 novel and 31 
additional unreported loci is provided in Supplementary Tables 6 and 7. 
 
Among all 400 GWS loci, there were 62 loci colocalizing SHS traits, including 18 loci 
colocalizing multiple SHS-PCs, suggesting the presence of instances of pleiotropy across SHS-
PC traits (Methods; Fig. 2b and Supplementary Table 8). Examples include the established 
MEIS1, PAX8, and FTO loci, as well as a novel locus containing TNFRSF14, a gene involved in 
T-cell activation and signaling. The infrequent colocalization of loci associated with SHS-PC 
traits is consistent with their being largely genetic and phenotypically statistically independent 
�Supplementary Figs. 2b and 3b).  
 
 
Genetic overlap with individual sleep traits. 
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Genetic correlations, between SHS traits with individual sleep and accelerometry traits, were 
qualitatively similar to the analogous phenotypic correlations described above, while often 
stronger (Supplementary Fig. 2). GWS SHS loci and their corresponding genetic risk scores 
(GRS; Methods) were associated with underlying self-reported and accelerometry derived sleep 
traits, largely in keeping with expectation, based on the construction of the SHS traits 
(Supplementary Tables 9 and 10). Conversely, approximately 50% of 1,039 GWS loci 
previously reported for SHS-ADD or individual sleep traits were associated with one or more 
SHS traits (p<5e-8; Supplementary Tables 11 and 12).  
 
Sensitivity analysis. 
 
We performed 22 distinct sensitivity analyses (Methods), for each of the 400 GWS loci across 
the six SHS traits in unrelated individuals (n=308,902), adjusting for various factors or 
restricting to one of three subsets (males-only, n=145,186; females-only, n=163,716; healthy-
only, n=115,297). Specific covariate adjustments led to modest average attenuation (<15%) in 
SHS genetic effects across the GWS loci (Supplementary Table 13 and Supplementary Fig. 8). 
For example, adjustment of adiposity measures in SHS-PC2 (9.3%) and SHS-ADD (7.9%), 
mood variables in SHS-ADD (14.1%) and SHS-PC1 (9.6%), and in a healthy subset without 
chronic diseases in SHS- SHS-PC1 (13.5%). Nearly all individual loci remained GWS with 
similar effect size (standard error [SE] change<2) after additional adjustment. 
 
Replication and validation analyses. 
GWS SHS loci were not replicated in the HCHS/SOL study (n=11,144), with large 
ascertainment, age, population, and sample size differences, after accounting for multiple 
comparisons (Methods; Supplementary Tables 14 and 15). To further validate our findings, for 
each SHS we constructed polygenic risk scores (PRS) using genome-wide summary statistics 
and examined their associations with sleep phecodes in the MGB biobank (Methods; 
Supplementary Table 16). The PRSs of both SHS-ADD and SHS-PC1 were associated with 
lower odds of 6 of the 13 sleep phecodes: insomnia, obstructive sleep apnea, restless legs 
syndrome, sleep disorders (unspecified), organic or persistent insomnia, and sleep apnea 
(unspecified). SHS-PC2, SHS-PC4, and SHS-PC5 were associated with 2 sleep phecodes: 
obstructive sleep apnea and sleep apnea. Whereas the SHS-PC4 PRS was associated with higher 
odds for sleep apnea disorders (likely reflecting its positive association with snoring), increases 
in SHS-PC2 and SHS-PC5 were associated with lower odds for sleep apnea.  
 
Implicated genes. 
 
We prioritized the genes at GWS loci using three mapping methods (position, eQTL, and 
Chromatin Interaction [CI]) as well as MAGMA17 positional gene-based analysis in FUMA15 
(Methods; Supplementary Tables 17-20; for gene-based GWAS Manhattan and QQ plots see 
Supplementary Figs 6-7). Hundreds of genes were implicated, of which we report only those 
with consistent evidence across all mapping methods, due to space considerations. The five 
novel SHS-ADD loci were mapped to 39 genes, with five genes in two loci supported by all four 
mapping methods. The latter included FNIP2, which binds to AMP-activated protein kinase 
(AMPK) and plays a crucial role in mTORC1 signaling and the regulation of heat shock protein-
90 (Hsp90)18, which has been previously linked to sleep homeostasis and behavioral 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.02.24302211doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302211
http://creativecommons.org/licenses/by-nc-nd/4.0/


rhythms19,20; NRBF2, which is involved in circadian rhythm via control of autophagy, and 
nutrient and cellular homeostasis21; and JMJD1C, which plays a role in DNA repair22 and has 
been associated with Rett syndrome (OMIM 312750), which co-occurs with epilepsy and sleep 
disturbance23. Nine novel SHS-PC1 loci were mapped to 140 genes, with five genes in three loci 
mapped by all four methods. Of these, NMB encodes the neuromedin B neuropeptide linked to 
the endocrine and exocrine systems, body temperature, and blood pressure24, while at the same 
locus, WDR73 is highly expressed in cerebellar Purkinje neurons, and ZNF592 has been 
implicated in cerebellar atrophy; ANKFY1 is also involved in the maintenance of cerebellar 
Purkinje cells that play a role in sleep-wake regulation25,26; MAPK1 is part of the mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway 
that is linked to mental health and the circadian system27. Five novel SHS-PC2 loci were mapped 
to 97 genes (nine genes in four loci mapped by all methods). Of these, SEMA3D encodes a 
member of the class III semaphorins that are involved in axon guidance during neuronal 
development28 (two more class III semaphorins at this locus, SEMA3A and SEMA3E, also 
mapped by CI); DRAM1 is a regulator of autophagy in the context of mitochondrial dysfunction, 
implicated in neurodegeneration29; MAPK8IP3 is another MAPK/ERK gene essential for the 
function and maintenance of neurons, with links to neurodevelopmental disorders30; FCHO1 is 
involved in clathrin-coat assembly and clathrin-mediated endocytosis and has been implicated in 
immune deficiency31,32. Three novel SHS-PC3 loci were mapped to 62 genes, with five genes in 
three loci mapped by all four methods. These include PDE1C a phosphodiesterase bound by 
calmodulin that regulates proliferation of vascular smooth muscle cells and may play a 
pathological role in cardiac remodeling and dysfunction33 and TCF20, involved in 
neurodevelopmental diseases and sleep disturbances34,35. One novel SHS-PC4 locus was mapped 
to three genes, including PCDH17 (mapped by position, eQTL and CI in hippocampal and neural 
progenitor cells) involved in forming and maintaining neuronal synapses36. The two novel SHS-
PC5 loci mapped to 71 genes, of which two genes were mapped by all four methods. These 
include SLC27A5, involved in bile acid synthesis and metabolism37, which has also been 
implicated in brain health and neural development38. In addition, fifty genes in 28 novel loci 
have shown drug interactions (Supplementary Table 17). Implicated genes for additional 
unreported and reported variants are summarized in Supplementary Tables 18 and 19. All 
significant genes (p<2.64e-6) in gene-based analysis were reported in Supplementary Table 20. 
Note that genes implicated by fewer mapping methods may also merit prioritization. One 
intriguing example is that two GWS unreported SHS-PC2-associated variants, rs2821226 
(OPTC/ATP2B4; 5.20E-09) and rs1610263 (COL8A1; 4.10E-08) both implicate collagen-
pathway genes. Any definitive conclusions based on mapped genes will require functional 
follow-up. 
 
 
Gene set enrichment analyses. 
 
We performed pathway enrichment analysis, applying PASCAL39 to SHS GWAS summary 
statistics, and identified significant enrichments of SHS-ADD variants in MAPK and NGF 
signaling pathways; SHS-PC1 variants in neuronal system, ubiquitin mediated proteolysis, and 
MAPK signaling pathways; SHS-PC2 in ion transport; SHS-PC3 in circadian, mRNA processing 
and splicing, G-protein, and metabolic pathways; SHS-PC4 in neuronal system, 
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neurotransmission at synapses, GABA receptor, and long term depression pathways; and SHS-
PC5 in the gap junction pathway (Empirical p<5e-4; Fig. 3a and Supplementary Table 21).  
 
We also performed gene-set enrichment analyses17 (tissue, trait, cell type, and pathway) on genes 
mapped by FUMA using MAGMA (Supplementary Tables 22-24). Tissue enrichment analyses 
identified multiple brain tissues for all SHS traits except SHS-PC4, with the highest enrichments 
in cerebellum, hypothalamus, and frontal cortex for SHS-PC1 and frontal cortex, cerebellum, and 
nucleus accumbens for SHS-PC3. The only non-brain tissue enriched was pituitary tissue for 
SHS-PC1 (p<0.05/54/6=1.5e-4; Fig. 3b and Supplementary Table 22). Cell type enrichment 
analysis identified multiple brain cell types for each SHS, and especially for SHS-PC1, including 
GABAergic neurons in the human midbrain (Supplementary Fig. 9).  
 
Enrichment of SHS-associated genes with phenotype-associated gene sets from the GWAS 
catalog (Supplementary Tables 23) revealed associations with psychological traits (intelligence, 
neuroticism, impulsivity/risk-taking, mood, and psychiatric disorders), behavior (e.g., regular 
activity patterns, alcohol consumption), inflammatory markers and diseases (C-reactive protein, 
IgG, and inflammatory bowel diseases), blood pressure, adiposity (especially in SHS-PC2 and 
PC4), and reproductive aging. Gene sets for Alzheimer’s disease and related biomarkers 
(cerebrospinal fluid tau and amyloid β) were enriched in SHS-PC1, SHS-PC4, and most strongly 
SHS-PC5. A hippocampal volume gene set was enriched in SHS-PC2 and SHS-PC5. Dendrite 
gyrus brain volume and kidney disease gene sets were enriched in SHS-PC2. Gene sets 
associated with intracranial and subcortical brain region volumes, craniofacial microsomia, 
idiopathic pulmonary fibrosis, and aortic root size were enriched in SHS-PC4. An iron biomarker 
gene set was enriched in SHS-PC5.  
 
 
 
Genetic and causal relationships between SHS and other common complex traits. 
 
LD score regression (LSDC)40 revealed numerous phenotypes genetically correlated to SHS 
traits. Among 375 phenome-wide representative heritable traits (Methods), 256 traits were 
genetically correlated with at least one SHS (p<0.05/375/6=2.2e-5; Fig. 4 and Supplementary 
Table 25). Genetic correlations with SHS were strongest (magnitude ~0.3-0.5) with physical and 
mental health, and (inversely) with socio-economic status (SES), stress, pain, mental and 
emotional distress, and recognized health conditions and risk factors. However, these genetic 
correlations had discernable patterns, unique to each SHS trait. Compared with the SHS-PCs, 
SHS-ADD had stronger genetic correlations with non-specific health markers, e.g., traits related 
to overall health, physical conditioning, markers of socio-economic status, healthy lifestyle 
factors, as well as stronger inverse genetic relationships with pain, activities interfering with 
sleep, and depression.  
 
Compared with the other SHSs, SHS-PC1 had stronger inverse genetic correlations with anxiety 
traits, alcohol addiction, and self-harm behavior; SHS-PC2 had comparatively stronger genetic 
correlations with daytime napping, diagnosed sleep disorders, and more moderate but, relative to 
other SHSs, still comparatively stronger inverse genetic correlations with metabolic and 
adiposity traits. Association patterns for SHS-PC3 differed markedly from other SHS, having 
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lower correlations with overall health and most individual health conditions, inverse association 
with educational attainment. Compared with the other SHS, genetic correlations involving SHS-
PC4 were often inverted, including a (non-significant) inverse association with overall health 
rating (despite a weak positive phenotypic correlation) as well as positive associations with BMI, 
and cardiovascular traits, congruent with its positive loading on snoring. SHS-PC5 was 
preferentially genetically correlated with fluid intelligence, educational attainment, and mother’s 
age.  
 
We further conducted bidirectional Mendelian randomization (MR) analyses to investigate 
potentially causal links between sleep health and 50 selected traits (Methods). We identified 
potential causal effects of lower SHS-PC1 on codeine or tramadol medication use; lower SHS-
PC5 on Bipolar disorder; and lower SHS-ADD on smoking initiation and years of schooling 
(Supplementary Table 26). In the reverse direction, MR identified potential causal effects of 
greater years of education on higher SHS-ADD and SHS-PC5; lower BMI on higher SHS-PC2; 
and Alzheimer’s disease risk on higher SHS-PC5 (Supplementary Table 27).  
 
 
DISCUSSION 
 
We performed the first large-scale sleep health GWAS investigating five novel PC-based SHSs 
and compared these with an updated GWAS of SHS-ADD by including related individuals in 
UKB. Each SHS was based on five underlying self-reported sleep traits: sleep duration, insomnia 
symptom frequency, daytime sleepiness frequency, chronotype, and snoring, resulting in distinct 
sleep health composites interpretable via their loadings. The SHS approach emphasizes the co-
occurrence of multiple sleep traits, aligning with the multi-dimensional view of sleep health, in 
which individual components of sleep do not confer sleep health in isolation.  
 
We identified 28 novel significant (p<8.3e-9) loci and 31 additional GWS (p<5e-8) loci that 
were not reported by previous sleep GWASs. Our findings were supported by sensitivity analysis 
and PRS associations with clinical sleep outcomes. These loci mapped to genes implicated in 
neurodevelopment, synaptic signaling, ion channel transportation, cellular energy production, 
and metabolic processes. The findings collectively suggest that studying SHSs has advanced 
genetic discovery by linking to plausible biological mechanisms and aligning with established 
sleep health domains, thereby uncovering novel insights. 
 
Findings for SHS-ADD, combining 5 positive binary sleep traits, suggest a phenotype that 
captures global sleep health by integrating multiple independent regulatory signals and sleep 
domains. Notably, SHS-ADD was the SHS most strongly associated with accelerometry-derived 
sleep regularity index, both phenotypically and genetically, suggesting the conjunction of 
multiple independent sleep health traits may be a prerequisite for sleep regularity. Genetic 
correlations were strongest between SHS-ADD and overall health and SES, also correlated 
strongly with traits related to individual SHS-PCs. SHS-ADD was sensitive to several 
adjustment factors, including health behaviors and health status, as well as both psychological 
factors (with SHS-PC1) and BMI (with PC2). Moreover, for SHS-ADD, evidence of 
enrichments, particularly in neuronal tissues and cell types, was not as strong as for other traits 
such as SHS-PC1 and SHS-PC3. Together these findings suggest SHS-ADD to be a broad sleep 
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health phenotype, that retains significant heterogeneity, combining multiple independent sleep 
domains and/or sleep disorders with distinct etiologies. It nevertheless highlights the connections 
between global sleep health, sleep regularity, and overall health and well-being. 
 
SHS-PC1, longer sleep with less frequent insomnia and sleepiness, reflects correlated self-
reported sleep traits across the domains of satisfaction, duration, and alertness, while 
demonstrating higher heritability than SHS-ADD and each of its underlying sleep traits. SHS-
PC1 was the SHS most strongly genetically correlated with accelerometry-based sleep efficiency 
and duration, suggesting shared genetics with both longer and more efficient objective sleep, 
with additional genetic correlations suggesting negative relationships with chronic pain, anxiety, 
and neuroticism. Enrichment analyses identified the ubiquitin proteasome system pathway, 
important for circadian rhythm regulation and sleep homeostasis41, as well as the GABAergic 
neuronal cell-type, central to neural orchestration of sleep. Overall, these findings suggest a 
phenotype capturing neurobiological sleep regulation, and support a bidirectional relationship 
with anxiety42 via shared GABAergic regulation43, while pointing to further mechanisms 
involving presence or perception of distressing stimuli, including chronic pain.  
 
SHS-PC2, interpreted as healthy sleep characterized by absent snoring and sleepiness, cardinal 
symptoms of sleep apnea syndrome, may serve as a surrogate indicating absence of under-
diagnosed and poorly captured clinical sleep disordered breathing conditions. Correspondingly, 
SHS-PC2 showed strong inverse associations, phenotypically and genetically, with adiposity-
related measures like BMI, consistent with the strong association between obstructive sleep 
apnea (OSA) and obesity. Likewise, SHS-PC2 was the SHS most sensitive to BMI adjustment, 
which nevertheless only modestly attenuated estimated GWAS effects. SHS-PC2 had inverse 
genetic correlations with cardiometabolic traits, notably type 2 diabetes, which has previously 
been linked bidirectionally to OSA44. Enrichment analyses also link SHS-PC2 with neuronal 
pathways and hypocampal volume, suggesting neurological involvement in OSA, and with 
connective-tissue genes (collagen pathway) and traits (adolescent idiopathic scoliosis, aortic root 
size), consistent with a role for connective tissue in pharyngeal collapsibility related to sleep-
disordered breathing45. 

SHS-PC3 largely recapitulates chronotype and confirmed known associations with circadian 
genes and pathways. It is notable that chronotype was largely independent not only from other 
SHS-PCs but was also more weakly genetically correlated with phenome-wide health outcomes, 
while being moderately genetically correlated with healthy lifestyle behaviors, such as physical 
activity and time spent outdoors in summer. 

Though SHS-PC4 and SHS-PC5 have more complex interpretations due to both positive and 
negative loadings on healthy sleep traits, they were nonetheless roughly as heritable as the least 
heritable individual trait (sleepiness) and contributed novel genetic findings. SHS-PC4, 
interpreted as snoring without sleepiness, showed genetic enrichment in neurotransmission 
pathways and craniofacial structure, suggesting mechanisms that could lead to sleepiness without 
snoring, and/or snoring without sleepiness. The latter would be consistent with a sleep-
disordered breathing phenotype resulting from reduced craniofacial dimensions that cause 
pharyngeal narrowing and turbulent airflow (or snoring) without the severe airway collapsibility, 
sleep fragmentation, and inflammation characteristic of obstructive sleep apnea syndrome 46,47.  
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SHS-PC5, characterized by short sleep without insomnia, was genetically correlated with later 
objective sleep midpoint and fewer accelerometry-measured sleep episodes, as well as positive 
genetic correlations with markers of cognitive decline, including memory loss, cerebrospinal 
fluid t-tau levels, and Alzheimer’s disease, and with enrichment of genes in the gap junction 
pathway, implicated in amyloid-β clearance by astrocytes in Alzheimer’s disease48. This 
suggests that SHS-PC5 may characterize shorter, delayed sleep, without insomnia symptoms, 
indicative of accelerated brain aging, rather than a natural short sleep or ‘super-sleeper’ 
phenotype3. The low likelihood of insomnia in this subtype is consistent with lack of consistent 
data implicating insomnia in cognitive decline, potentially due to the heterogeneity of conditions 
underlying insomnia. 
 
Colocalization analyses revealed selective cases of shared regulation, but also pointed to 
sometimes differing relationships with underlying components, particularly in the special cases 
of PC2 vs PC4, and PC1 vs PC5, which share underlying traits with opposite loadings. For 
example, DLEU7, proximal to rs592333, colocalized opposite associations with PC2 and PC4, 
consistent with a role in snoring (which loaded positively in PC4 and negatively in PC2) and 
consistent with prior associations of the DLEU7 locus with adiposity49. Conversely, rs1846644 
colocalized positive associations with both PC2 and PC4 at the KSR2 locus, a gene highly 
expressed in cerebellar Purkinje neurons50, suggesting a link to sleepiness regardless of the 
presence of snoring, in keeping with a role for Purkinje neurons in sleep-wake transition51. 
Similarly, for SHS-PC1 and PC5, PAX8 colocalized with opposite directions, in keeping with 
opposite loadings on sleep duration, while MEIS1 colocalized with similar direction in keeping 
with consistent loading on insomnia. 

Several additional findings pointed to mechanisms shared across SHS indicating broad-based 
involvement in sleep health. For example, PC2 and PC4 at the KSR2 locus, a gene highly 
expressed in cerebellar Purkinje neurons, which were again implicated in PC1 by two novel loci, 
ANKFY1 and WDR73/ZNF592, suggesting cerebellar regulation of sleep maintenance efficiency. 
Additional findings consistently reinforced the role of neural development, as well as 
consistently implicating neurotransmitters and synaptic signaling. The association of SHS-PC2 
with FCHO1 at rs12979056 gives further support for a role of clathrin-coat vesicle transport in 
sleep health, presumably in synaptic function, a mechanism previously implicated by the 
STON1-GTF2A1L, TOR1A, TOR1B, AP2B1 (PC3) and AP3B2 (PC1) loci. Pathways and genes 
related to MAPK, GAP-junction, immune signaling, and energy metabolism processes were 
found to associate across multiple SHS. Interestingly, the two identified novel functional 
variants, rs8074498 in PC1 and rs138572890 in PC5, the PC phenotypes loading on 
duration/insomnia, were connected to glucose transporters (respectively GLUT4 and GLUT1). 
Moreover, enrichment analysis for individual SHS all highlighted gene expression in brain 
tissues and cells, and associations with metabolic, inflammatory, and psychiatric traits, which 
reinforce critical roles for central nervous system, metabolic, and immune system function on 
sleep regulation. Multi-trait genetic correlation analyses further suggested more broadly 
interrelatedness of sleep health with overall health, lifestyle, behavioral and psychological traits, 
as well as pain, physical frailty, and deconditioning. However, some caution is warranted as 
some apparent genetic relationships could be induced by factors relating to the subjective rating 
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of sleep health, remaining heterogeneity within SHS traits, or unadjusted confounders, including 
remaining population stratification52. 

This study has several limitations. First, SHS-PCs incorporated sleep traits in a linear fashion, 
which may not reflect the complexity of their contribution to sleep health, e.g., the U-shaped 
contribution of sleep duration as modeled in SHS-ADD. Second, SHS-PCs only focus on five 
self-reported sleep questions to maximize sample size and to be more comparable to SHS-ADD 
as previously published on in UKB by using the same underlying sleep phenotypes. This could 
limit our ability to fully capture a comprehensive sleep health composite, due to limitations of 
subjective assessment or the ability of these questions to fully capture well being in sleep health. 
Third, the data-driven PC approach may limit generalizability across different studies and 
populations. We were able to identify HCHS/SOL as having similar questionnaire data, however, 
generalization to this cohort was challenging due to population and age differences. 
Correspondingly it was not surprising that PC analysis performed in this cohort resulted in 
different loadings. A potentially productive approach to future validation studies would be to 
average PC loadings across different studies in a meta-analysis53. Lastly, we note that the SHS-
PCs were based on phenotypic correlations, which could limit the ability to derive composite 
phenotypes of maximum heritability. However, in a sensitivity analysis (data not shown) we 
constructed sleep scores informed by genetic correlations using the ‘maxH’ maximally heritable 
approach54, for which the loadings and heritability of the derived phenotypes were numerically 
and qualitatively similar. Nonetheless, genetic correlation information could be valuable in 
future research integrating additional objective sleep-related phenotypes.  

In summary, this study introduces a novel approach to understanding sleep genetics using PC-
based SHS, which effectively distinguishes differing mechanisms of distinct, domain-specific 
sleep-related traits. In keeping with the large influence of insomnia (related to SHS-PC1) and 
sleep apnea (related to PC2) on sleep health in the population, along with the independent role of 
chronotype (PC3), our approach appears to have enhanced genetic discovery by separately 
targeting these domain-specific sleep health scales. Future research involving SHSs built from 
objective data may provide enhanced targeting of psychosocial domains and neuroregulatory 
sleep mechanisms, resulting in further genetic discovery. 
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METHODS 
 
Population and study design 
The discovery analysis was conducted on participants of European ancestry from the UK 
Biobank study55. The UK Biobank is a prospective study that has enrolled over 500,000 people 
aged 40-69 living in the United Kingdom. Baseline measures collected between 2006 – 2010, 
including self-reported heath questionnaire and anthropometric assessments, were used in this 
analysis. Participants taking any self-reported sleep medication (described before7,8,10) were 
excluded. The UK Biobank study was approved by the National Health Service National 
Research Ethics Service (ref. 11/NW/0382), and all participants provided written informed 
consent to participate in the UK Biobank study.  
 
Genotype 
DNA samples of 502,631 participants in the UK Biobank were genotyped on two arrays: UK 
BiLEVE (807,411 markers) and UKB Axiom (825,927 markers). 488,377 samples and 805,426 
genotyped markers passed standard QC56 and were available in the full data release. 452,071 
individuals of European ancestry (based on K-means clusters on genomics PCs) were studied 
with available phenotypes and genotyping passing quality control. SNPs were imputed to a 
combined Haplotype Reference Consortium (HRC) and 1000 Genome panel. SNPs with minor 
allele frequency (MAF)>0.001, BGEN imputation score >0.3, maximum per SNP missingness of 
10%, and samples with a per-sample missingness of 40% were kept in the GWAS. 
 
Sleep trait assessment 
The UK Biobank baseline questionnaire assessed chronotype, sleep duration, insomnia 
symptoms, snoring, and excessive daytime sleepiness via self-report responses. Self-reported 
sleep duration was recorded as an integer-valued variable via responses to the question “About 
how many hours sleep do you get in every 24�hours? (please include naps).” The remaining 
questions had ordinal responses, which were assigned to an integer scale as follows. Chronotype 
(morningness): “Do you consider yourself to be:” -2. Definitely an 'evening' person; -1. More an 
'evening' than a 'morning' person; 0. Do not know; 1. More a 'morning' than an 'evening' person; 
2. Definitely a 'morning' person; NA. Prefer not to answer. Insomnia Symptoms: “Do you have 
trouble falling asleep at night, or wake up in the middle of the night?” 1. Never/rarely; 2. 
Sometimes; 3. Usually; NA. Prefer not to answer. Snoring: “Does your partner or a close relative 
or friend complain about your snoring?” 1. Yes; 0. No; NA. Do not know or Prefer not to 
answer. Subjective daytime sleepiness: “How likely are you to doze off or fall asleep during the 
daytime when you don’t mean to? (e.g. when working, reading, or driving?)” 0. Never/rarely; 1. 
Sometimes; 2. Often; 3. All of the time; NA. Do not know or Prefer not to answer. Individuals 
with any missingness (NA) from any sleep questionnaires were excluded from the analysis. 
 
Sleep health score construction 
For the UK Biobank additive sleep health score (SHS-ADD), consistent with previous 
studies13,14 we assigned one point to each of five positive sleep traits, as follows: Chronotype: 
More a 'morning' than an 'evening' person or Definitely a 'morning' person; Sleep Duration: from 
7 to 8 hours (inclusive); Insomnia Symptoms: Never/rarely; Snoring: No; Subjective daytime 
sleepiness: 0. Never/rarely. No subjects were excluded; those who did not report the positive 
attributes were coded as zero for that trait. The final SHS-ADD rating is the total number of 
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positive sleep traits for each individual on a scale of 0-5. We performed principal component 
analysis of the above-described integer-scale self-report sleep question responses, after centering 
and scaling to standardize each response to mean zero, variance one, to compute SHS-PC1 
through SHS-PC5. SHS-PCs were oriented so that they were positively correlated with self-
assessed overall health (UKB Data-Field 2178: Overall health rating).  
 
Covariate measurements 
Covariates used in the sensitivity analyses included potential confounders (depression, socio-
economic deprivation based on residential area, alcohol intake frequency, smoking status, 
caffeine intake, employment status, marital status, neurodegenerative disorders, and use of 
psychiatric medications). Depression was recorded as a binary variable (yes/no) corresponding to 
question “Ever depressed for a whole week?”. Social economic status was measured by the 
Townsend Deprivation Index based on aggregated data from national census output areas in the 
UK. Alcohol intake frequency was coded as a continuous variable corresponding to “daily or 
almost daily”, “three or four times a week”, “once or twice a week”, “once to three times a 
month”, “special occasions only”, and “never” drinking alcohol. Smoking status was categorized 
as “current’, “past”, or “never” smoked. Caffeine intake was coded continuously corresponding 
to self-reported cups of tea/coffee per day. Employment status was categorized as “employed”, 
“retired”, “looking after home and/or family”, “unable to work because of sickness or disability”, 
“unemployed”, “doing unpaid or voluntary work”, or “full or part-time student”. 
Neurodegenerative disorder cases (N=517) were identified as a union of International 
Classification of Diseases (ICD)-10 coded Parkinson’s disease (G20-G21), Alzheimer’s disease 
(G30), and other degenerative diseases of nervous system (G23, G31-G32).  
 
Accelerometry data 
Accelerometry data were collected using Axivity AX3 wrist-worn triaxial accelerometers in 
103,711 individuals from the UK Biobank for up to 7 days, 3-10 years after baseline57.  Sleep 
period time (SPT)-window and activity levels were extracted using a heuristic algorithm using 
the R package GGIR (https://cran.r-project.org/web/packages/GGIR/GGIR.pdf)58. Briefly, for 
each individual, a 5-minute rolling median of the absolute change in z-angle (representing the 
dorsal-ventral direction when the wrist is in the anatomical position) across a 24-hour period. 
The 10th percentile of the output was used to construct an individual’s threshold, distinguishing 
periods with movement from non-movement. Inactivity bouts were defined as inactivity of at 
least 30 minutes duration. Inactivity bouts with gaps of less than 60 minutes were combined into 
blocks. The SPT-window was defined as the longest inactivity block, with sleep onset as the start 
of the block and waking time as the end of the block. This algorithm provides comparable 
estimates of sleep onset time, waking time, SPT-window duration, and sleep duration within the 
SPT-window with polysomnography derived metrics58. After quality control based on 
missingness, wear time, and calibration, eight metrics were generated and analyzed in this study, 
namely: M10 (midpoint of the 10 consecutive hours of maximum activity), L5 (midpoint of the 5 
consecutive hours of minimum activity), sleep midpoint, sleep duration, sleep efficiency, diurnal 
inactivity, number of nocturnal sleep episodes, and sleep regularity index (accounting for wake 
after sleep onset and daytime napping59).   
 
Genome-wide association analysis 
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We performed a genome-wide association analysis (GWAS) of six SHS traits as continuous 
variables using linear mixed regression models adjusting for age, sex, genotyping array, 10 PCs, 
and genetic relatedness matrix in BOLT-LMM. Reference 1000 genome European-ancestry 
(EUR) LD scores and genetic map (hg19) were utilized in this analysis. X-chromosome data 
were imputed and analyzed separately (with males coded as 0/2 and female genotypes coded as 
0/1/2) using the same analytical approach in BOLT-LMM as was done for analysis of 
autosomes. FUMA was used to annotate the genome-wide significant (GWS) risk loci (p<5e-8), 
lead independent SNPs (r2<0.1), and all SNPs in LD with independent SNPs (r2>=0.6) within a 
genomic region (including ANNOVAR functional consequence, CADD score, RegulomeDB 
score, as well as 15 chromatin states, and GWAS Catalog associations). We compared the GWS 
loci to loci reported by biobank-based GWAS of sleep traits published by June 2022, including 
insomnia8,9, sleep duration7, daytime sleepiness10, chronotype12, snoring11, daytime napping60, 
obstructive sleep apnea (OSA)61, restless legs syndrome (RLS)62, and prior SHS-ADD in UKB 
unrelated individuals13. GWS loci at least 500kb from any of the reported loci were noted as 
unreported. To account for performing six simultaneous GWAS, we report significant novel loci 
defined as the unreported loci passing a stricter significant threshold correcting for six traits 
(p<8.3e-9). 

The constructed SHS traits, as sums of ordinal and integer-valued variables, were somewhat non-
normal, which has the potential to affect Type-I error. Consistent with prior UKB-GWAS of 
ordinal sleep phenotypes, conducting GWAS using linear mixed models implemented in BOLT 
is expected to mostly ameliorate this concern. BOLT has previously been shown to preserve 
Type-1 error adequately for non-normal ordinal and binary phenotypes, as long as the sample 
sizes in different groups not markedly imbalanced.63 

Gene mapping and gene-based analysis 
We used FUMA to map SNPs to genes using three methods: positional mapping (<=10kb), cis-
eQTL (<=1Mb) in GTEx v8 tissues (FDR<0.05), and 3D Chromatin interaction (CI) in 127 
tissue/cell types (FDR<1e-6). We also looked up ensemble phenotypes using R biomaRt package 
and drug interaction evidence using DGIdb for mapped genes. We next performed gene-based 
association analysis using genome-wide summary statistics using MAGMA17 in FUMA. Input 
SNPs were mapped to 18,931 protein coding genes. Genome-wide significance level was defined 
as p<0.05/18,931=2.641e-6. 
 
Gene set enrichment analysis 
We performed pathway enrichment analysis using PASCAL, which estimated a combined 
association p-value from the summary statistics of multiple SNPs in a gene39. Significant KEGG, 
Reactome, and BIOCARTA pathways for each SHS trait were identified using empirical p<0.05. 
We also performed gene set enrichment analysis on positional, eQTL and CI mapped genes in 
FUMA MAGMA17 adjusted for gene size. Significant tissues were identified using p<0.05/54/6 
accounting for 54 tissues in GTEx v8 and six traits. Significant pathways (KEGG, Reactome, 
and GO pathways in MSigDB), and GWAS gene set (GWAS Catalog) were identified using 
adjusted p<0.05. PASCAL pathway enrichment incorporates effect sizes and LD at individual 
loci, whereas FUMA MAGMA gene set enrichment is based only on the overlap in sets of 
associated genes and does not account for LD, impacting interpretation. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.02.24302211doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Colocalization analysis 
We performed colocalization analysis across SHS traits using HyPrColoc64 and genome-wide 
summary statistics to assess the shared genetic risk factors. We expected that SHS-PCs had less 
colocalized loci given their independency. Colocalized loci among SHS-PCs should have true 
pleiotropic effect and play a central regulation role.  
 
Sensitivity analyses 
Sensitivity analyses of all GWS loci were performed additionally adjusting for potential 
confounders (including adiposity, socio-economic status, alcohol intake frequency, smoking 
status, caffeine intake, employment status, marital status, and psychiatric problems) individually 
in 308,902 unrelated individuals using PLINK in additional to adjusting for age, sex, genotyping 
array and 10 PCs in PLINK 1.9. We used a hard-call genotype threshold of 0.1, SNP imputation 
quality threshold of 0.80, and a MAF threshold of 0.001. We also performed the analysis 
excluding shift workers and individuals with chronic health or psychiatric illnesses (N=115,297) 
and in males (N=145,196) and females (N=163,716) (without adjusting for sex). 
 
Genetic risk score analysis 
We constructed a weighted GRS comprised of GWS loci for each SHS and tested for 
associations with other self-reported sleep traits (sleep duration, long sleep duration, short sleep 
duration, insomnia, chronotype, and snoring), and 7-day accelerometry traits in the UK Biobank. 
Weighted GRS analyses were performed by summing the products or risk allele count multiplied 
by the effect estimate reported in the SHS GWASs using R package gds (https://cran.r-
project.org/web/packages/gds/gds.pdf). We also tested the GRSs of reported loci for sleep traits 
using the same approach.  
 
Both individual loci and PRS associated with SHS tended to associate with multiple self-reported 
sleep traits from which they were derived, as well as objective accelerometry-derived sleep traits, 
which were not used in SHS construction. For example, the MEIS1 locus (SHS-ADD, SHS-PCs 
1, 3, and 5) was associated with accelerometry-derived circadian/sleep timing, sleep duration, 
efficiency, and regularity, and the PAX8 (SHS-PCs 1, 2, and 5) locus was associated with 
accelerometry sleep duration, efficiency, and daytime inactivity (p<5e-8; Supplementary Table 
9). Similarly, GRSs for SHS-ADD and SHS-PC1 associated with longer accelerometry-derived 
sleep duration, and higher sleep efficiency and regularity, while GRS of SHS-PC2 associated 
with shorter accelerometry-assessed daytime inactivity (p<0.05/15/6=5.6e-4; Supplementary 
Table 10). 
 
Genetic correlation analysis 
We estimated genetic correlations among SHS and with other self-reported and accelerometry 
sleep traits using LDSC40 and genome-wide SNPs mapped to the HapMap3 reference panel. To 
understand the genetic overlap with a range of common health problems, we selected 381 
representative UKB traits by choosing the 232 most heritable traits using UKB hierarchical 
phenotype categories (selecting at most one ‘level’ per phenotype, at most 5 phenotypes per 
phenotype category, and at most 25 phenotypes per category group), as well as all 195 (partly 
overlapping) traits in the PanUKBB maximally independent set of phenotypes 
(https://pan.ukbb.broadinstitute.org/blog/2022/04/11/h2-qc-updated-sumstats/index.html). Of the 
381 selected traits, 375 passed heritability thresholds and were carried on for LDSC analyses. 
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Traits passed heritability QC if stratified LD score regression in the UKB Europeans defined in 
the Pan UKBB GWAS (sldsc_25bin_h2_pval_EUR) was significant with p<0.05/381. Multiple-
testing-corrected significance level for genetic correlation was defined as p<0.05/375/6=2.2e-5. 
 
Mendelian Randomization analysis 
Bidirectional mendelian randomization (MR) analyses, as implemented in the TwoSampleMR R 
package65, were conducted to investigate potentially causal links between sleep health and 50 
representative traits from across the phenome, selected (prior to performing MR) based on their 
relationships with sleep traits, either in prior literature, or based on results of interest from the 
genetic correlation analysis. The final list of traits (below) was also determined by manual 
review of availability of non-UKB GWAS summary statistics in the IEU open GWAS project 
database. We report associations that were significant correcting for testing 50 phenotypes and 6 
sleep health traits (p<0.05/300), under 2-sample inverse variance weighted (IVW) methodology, 
while also requiring effects estimated under MR-Egger to be consistent in direction, and that the 
putative causal direction was not invalidated in a Steiger directionality test, such that the selected 
instruments for the exposure had a greater R2 variance explained in the exposure phenotype than 
the outcome phenotype (neither the MR-Egger nor Steiger tests were required to be statistically 
significant). SNP heterogeneity, for which horizontal pleiotropy is a likely cause, was evaluated 
by Cochran’s Q (for IVW)66 and Rücker’s Q’ (for MR-Egger)67 statistics. Horizontal pleiotropy 
was assessed by MR-Egger intercept.  
 
MR traits: finn-b-R18_COUGH: Cough, finn-b-RX_CODEINE_TRAMADOL: Codeine or 
tramadol medication, ieu-a-73: Waist-to-hip ratio, ieu-b-103: HbA1C, finn-b-F5_NEUROTIC: 
Neurotic, stress-related and somatoform disorders, ieu-a-832: Rheumatoid arthritis, ieu-a-962: 
Ever vs never smoked, finn-b-G6_PARKINSON_EXMORE: Parkinson's disease (more controls 
excluded), ieu-a-44: Asthma, ieu-b-18: multiple sclerosis, ieu-a-89: Height, finn-b-
KRA_PSY_ANXIETY: Anxiety disorders, ebi-a-GCST002216: Triglycerides, finn-b-
R18_PAIN_THROAT_CHEST: Pain in throat and chest, ieu-b-2: Alzheimer's disease, finn-b-
ANTIDEPRESSANTS: Depression medications, finn-b-
Z21_PERSONS_W_POTEN_HEALTH_HAZARDS_RELATED_SOCIO_PSYCHOSO_CIRC
UMSTANC: Persons with potential health hazards related to socioeconomic and psychosocial 
circumstances, finn-b-K11_DIVERTIC: Diverticular disease of intestine, ieu-a-113: Neo-
agreeableness, ieu-a-115: Neo-extraversion, ieu-a-1009: Subjective well-being, finn-b-PAIN: 
Pain (limb, back, neck, head abdominally), finn-b-ALCOHOL_RELATED: Alcohol related 
diseases and deaths, all endpoints, ieu-b-4855: FEV1/FVC, ieu-a-294: Inflammatory bowel 
disease, ieu-a-16: Childhood intelligence, finn-b-F5_SUBSNOALCO: Substance use, excluding 
alcohol, finn-b-F5_PANIC: Panic disorder, ieu-a-114: Neo-conscientiousness, ieu-b-4859: 
Physical activity, ieu-a-116: Neo-neuroticism, finn-b-F5_GAD: Generalized anxiety disorder, 
finn-b-I9_IHD: Ischaemic heart disease, wide definition, finn-b-F5_DEPRESSIO: Depression, 
ieu-b-4820: Age at first birth, ebi-a-GCST002223: HDL cholesterol, ieu-a-1001: Years of 
schooling, finn-b-RX_PARACETAMOL_NSAID: Paracetamol of NSAID medication, ebi-a-
GCST003116: Coronary artery disease, ieu-b-38: systolic blood pressure, ieu-b-41: bipolar 
disorder, finn-b-M13_ENTESOPATHYLOW: Enthesopathies of lower limb, excluding foot, 
ieu-b-73: Alcoholic drinks per week, finn-b-K11_REFLUX: Gastro-oesophageal reflux disease, 
finn-b-E4_DIABETES: Diabetes mellitus, ieu-a-1095: Age at menarche, ieu-a-835: Body mass 
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index, ieu-a-117: Neo-openness to experience, ieu-b-39: diastolic blood pressure, ebi-a-
GCST002222: LDL cholesterol 
 
Replication analysis 
HCHS/SOL is a community-based study in the U.S., which includes 16,415 adults aged 18-74 
with self-identified Hispanic/Latino background68,69. Individuals were recruited from randomly 
selected households near four centers in Miami, San Diego, Chicago and the Bronx area of New 
York. Self-reported sleep duration, insomnia (assessed by Women's Health Initiative Insomnia 
Rating Scale [WHIIRS]), daytime sleepiness (assessed by Epworth Sleepiness Scale [ESS]), and 
snoring were collected in 13,268 individuals at baseline. Chronotype was only available in 1,855 
individuals enrolled in the Sueño sleep ancillary study.  
 
We converted the sleep data in HCHS/SOL to UKB scale. For insomnia, we used two questions 
that were part of the WHIIRS questionnaire in the HCHS/SOL: 1) “Did you have trouble falling 
asleep?” 2) “Did you wake up several times at night?”. Each question provided 5 choices: 1. No, 
not in the past four weeks; 2. Yes, less than once a week; 3. Yes, 1 or 2 times a week; 4. Yes, 3 
or 4 times a week; 5. Yes, 5 or more times a week. We converted the sum score of the two 
questions (2-10) to UKB scale as: 2-4=“Never/rarely”; 5-8=“Sometimes”; 9-10=“Usually”. For 
sleepiness, we converted the ESS score (0-24) to UKB scale as: 0-10=“Never/Rarely”; 11-
14=“Sometimes”; 15-18=“Often”; 19-24=“All the time”. For snoring, we converted the 4-level 
answers for the question “How often do you snore now?” to UKB scale as: 0 if the answer was 
“Never” or “Rarely” and 1 if the answer was “Sometimes” or “Always”. Chronotype was 
collected in Sueño using the same questionnaire to UKB. We performed multiple imputation to 
calculate and impute the missing chronotype in the rest of the samples in HCHS/SOL 
(N=11,413) using chained equations method with linear regression on relevant variables, 
specifically, sex, age, BMI, and four sleep timing questions “What time do you usually go to bed 
in the weekday?”, “What time do you usually go to bed in the weekend?”, “What time do you 
usually wake up in the weekday?”, and “What time do you usually wake up in the weekend?”. 
We found the post-imputation distribution of the chronotype responses matched those observed 
in Sueño. We then constructed SHS in HCHS/SOL using the same loadings from UKB. 
 
Of the 13,268 individuals with imputed phenotype data, 11,144 individuals with genotype data 
and consented to genetic research are available for replication. Genotyping was conducted using 
an Illumina Omni2.5M SNP array with additional customized content, including 2,536,661 SNPs 
and imputed to TOPMed reference panel using TOPMed imputation server. Genetic association 
analysis for the 400 GWS loci were performed using linear mixed model in R Genesis software 
adjusting for age, sex, study center, sampling weights, five principal components of genetics 
representing ancestry, with random effects corresponding to kinship, household, and block unit. 
 
Validation of SHS PRS on clinical phenotypes in a clinical biobank 
The Mass General Brigham (MGB) Biobank is a clinical biobank enriched for disease states 
supplemented with genetic data from the MGB healthcare network in Massachusetts. Since 2009, 
patients have been recruited through online channels or in person from various MGB 
community-based primary care facilities and specialty tertiary care centers. Among the enrolled 
patients, a subset (n = 64,639) provided blood samples for genotyping. DNA extracted from 
samples was genotyped using the Infinium Global Screening Array-24 version 2.0 (Illumina). 
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Imputation was carried out through the Michigan Imputation server with the Trans-Omics for 
Precision Medicine (TOPMed) (version r2) reference panel, and haplotype phasing was 
performed using Eagle version 2.3. Low-quality genetic markers and samples were excluded70. 
Pairs of related individuals (kinship > 0.0625) were identified, and one sample from each related 
pair was excluded70. To correct for the population substructure, principal components of ancestry 
were computed using TRACE and the Human Genome Diversity Project71,72. Individuals with 
non-European ancestry were excluded to limit genetic heterogeneity in the present analysis. 
 
Among 47,082 adult patients included in the present analysis (mean age = 60.4 ± 17.0; 53.8% 
female), 6 polygenic risk scores for the SHS PCs and additive model were generated using 
Polygenic Risk Score–Continuous Shrinkage73. Each score was standardized with a mean of 0 
and a standard deviation (SD) of 1. Case ascertainment for sleep disorders were based on clinical 
phenotypes identified from ICD-9/-10 billing codes and mapped to PheWAS codes (i.e., 
"phecodes") based on clinical similarity generated by the PheWAS R package74. A total of 13 
sleep disorders were considered in the analysis. For each disorder, participants with at least two 
codes were set as cases, and those with no relevant codes were set as controls. Associations 
between the PRSs and each disorder were tested using logistic regressions adjusted for age, sex, 
genotyping array, batch, and PCs of ancestry. Significance was determined using Bonferroni-
adjusted P values for the total number of tests (0.05/(6 PRSs x 13 phenotypes) = 6.4e-4).  
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Tables and Figures  
 
Table 1: Novel loci associated with SHS (p<8.3e-9).  
 

SHS 

Geno
mic 

Locus SNP 
Chr:position 
(GRCh37) Nearest Gene(s) 

Allele
s 

(E/A) EAF INFO BETA SE P 
ADD 1 rs75607302 4:159677732 PPID/FNIP2 A/AT 0.428 0.977 -0.013 0.002 2.80E-09 

  2 rs10808575 8:130062388 
AC068570.1/LINC009

77 T/C 0.733 0.997 0.014 0.002 2.80E-09 
  3 rs12257317 10:19457469 UBE2V2P1/MALRD1 A/G 0.685 0.997 0.013 0.002 5.70E-09 
  4 rs7924036 10:65191645 JMJD1C G/T 0.497 1.000 -0.012 0.002 7.40E-09 
  5 rs72896891 18:42632654 SETBP1 A/T 0.833 0.993 -0.018 0.003 6.80E-10 

PC1 6 rs12759956 1:18432831 
RP11-

174G17.2/IGSF21 T/A 0.713 0.995 0.017 0.003 4.00E-10 
  7 rs12470733 2:200968215 C2orf47/SPATS2L C/A 0.798 0.993 -0.019 0.003 4.60E-10 

  8 rs1571582 9:103663962 
RP11-394D2.1/RP11-

62L10.1 T/C 0.498 0.997 -0.016 0.002 3.40E-11 

  9 rs201449027 12:9142784 
KLRG1/RP11-

259O18.4 TG/T 0.561 0.965 0.016 0.002 1.40E-10 
  10 rs4559781 13:28303803 NPM1P4/GSX1 C/T 0.153 0.994 0.020 0.003 2.10E-09 
  11 rs139221256 15:85357857 ZNF592/ALPK3 T/TA 0.749 0.991 0.016 0.003 5.80E-09 
  12 rs12601771 17:4108822 ANKFY1 G/A 0.433 0.995 0.015 0.002 5.60E-10 
  13 rs8074498* 17:79954544 ASPSCR1 T/A 0.418 0.983 0.016 0.002 1.20E-10 
  14 rs9610500 22:22221167 MAPK1 A/G 0.634 0.983 -0.015 0.003 4.80E-09 

PC2 15 rs2821226 1:203517292 OPTC/ATP2B4 A/G 0.473 0.984 -0.013 0.002 5.20E-09 
  16 rs17559978 7:84677860 SEMA3D G/A 0.688 0.990 0.015 0.002 2.30E-10 
  17 rs11111069 12:102271962 DRAM1 C/G 0.791 0.995 -0.016 0.003 2.40E-09 
  18 rs113851179 16:1733479 LA16c-431H6.6/HN1L C/CT 0.925 0.987 0.026 0.004 8.60E-10 
  19 rs12979056 19:17862131 FCHO1 G/A 0.542 0.992 -0.014 0.002 1.50E-09 
  20 rs3788337 22:23412017 RTDR1 G/A 0.647 0.993 -0.014 0.002 6.50E-09 

PC3 21 rs56049037 7:32947201 AVL9 G/A 0.713 0.988 0.016 0.002 1.30E-11 

  22 
8:11053467_

GA_G 8:11053467 XKR6 GA/G 0.555 0.914 0.014 0.002 1.60E-09 
  23 rs11494758 12:9116542 KLRG1 C/T 0.622 0.997 -0.014 0.002 3.40E-10 
  24 rs71272625 15:78166843 LINGO1/CSPG4P13 C/CT 0.331 0.931 0.014 0.002 8.80E-10 
  25 rs11373181 22:42705672 TCF20 A/AC 0.482 0.990 -0.013 0.002 3.60E-10 

PC4 26 
13:58551593_

GA_G 13:58551593 PCDH17/RNA5SP30 GA/G 0.763 0.993 -0.016 0.002 2.40E-11 

PC5 27 
rs138572890*

* 16:50264953 PAPD5 
C/CT
TTA 0.929 0.968 0.023 0.004 7.70E-10 

  28 
19:59007970_

CA_C 19:59007970 SLC27A5 CA/C 0.366 0.948 -0.013 0.002 7.00E-11 
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Figure 1. PC loadings and variance explained for the five principal component-based sleep 
health scores. a. Radar plots of loading magnitudes (radial distance). Black dots: positive 
loadings; Orange dots: negative loadings. b. Percent of the phenotypic variance explained by 
each sleep health score. c. Interpretations of SHS-PCs based on their loadings. 
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Figure 2: Genome-wide significant SNPs associated with SHS. a, Genome-wide significant 
SNPs and loci. Blue: Number of GWS SNPs (p<5e-08); Yellow: Number of GWS loci; Red: 
Number of loci not reported (at least 500kb away) by previous sleep GWASs in biobanks; 
Green: Number of loci reported (within 500kb) by previous sleep GWASs in biobanks. OSA: 
obstructive sleep apnea; RLS: restless leg syndrome. b, Venn diagram of GWS loci shared across 
SHS traits based on colocalization analysis (Supplementary Table 8). Rs113851554 at MEIS1 
(colocalizing SHS-ADD, SHS-PC1, SHS-PC3, and SHS-PC5) was reported in GWASs of 
insomnia, chronotype, and restless leg syndrome. Rs2863957 at PAX8 (colocalizing SHS-PC1, 
SHS-PC2, and SHS-PC5) was reported for sleep duration and insomnia. Rs1421085 at FTO 
(colocalizing SHS-PC3 and SHS-PC4), a widely recognized obesity gene, was reported for sleep 
duration, chronotype, snoring, and OSA. c, Distribution of Functional consequences of all 
annotated SNPs in LD with independent GWS SNPs by SHS. 3.2% of the annotated SNPs were 
in functional regions (exon, UTR, and splice site). d, Regulome DB score distribution of all 
annotated SNPs in LD with independent GWS SNPs by SHS. 3.4% of the annotated SNPs were 
in regulatory regions with Regulome DB score<2. e, CADD score distribution of all annotated 
SNPs in LD with independent GWS SNPs by SHS. 6.8% of the annotated SNPs likely 
deleterious effect with CADD score>10. f, Chromatin state distribution of all annotated SNPs in 
in LD with independent GWS SNPs by SHS.74% of the annotated SNPs were in open chromatin 
regions with a minimum chromatin state between 1 and 7. 
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Figure 3. Pathway and tissue enrichment analysis. a, Pathway gene sets significantly enriched 
for SHS genes. b, Tissue-specific expression gene sets enriched for SHS genes.  
 

ed 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2024. ; https://doi.org/10.1101/2024.02.02.24302211doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. SHS genetic correlations with selected phenotypes. a, Sleep traits (*: p<0.05/132). 
b, Selected health outcomes (*: p<0.05/2250). 
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