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We present a computational workflow based on quantum chemical calculations and
generative models based on deep neural networks for the discovery of novel materials. We
apply the developed workflow to search for molecules suitable for the fusion of triplet-triplet
excitations (triplet-triplet fusion, TTF) in blue OLED devices. By applying generative
machine learning models, we have been able to pinpoint the most promising regions
of the chemical space for further exploration. Another neural network based on graph
convolutions was trained to predict excitation energies; with this network, we estimate the
alignment of energy levels and filter molecules before running time-consuming quantum
chemical calculations. We present a comprehensive computational evaluation of several
generative models, choosing a modification of the Junction Tree VAE (JT-VAE) as the best
one in this application. The proposed approach can be useful for computer-aided design of
materials with energy level alignment favorable for efficient energy transfer, triplet
harvesting, and exciton fusion processes, which are crucial for the development of the
next generation OLED materials.
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1 INTRODUCTION

Operation of organic light emitting and photovoltaic devices can be greatly improved by utilizing the
triplet–triplet fusion (TTF) process, when two triplet excitons of low energy merge into one singlet
exciton of higher energy (Gray et al., 2014). Despite some successes in the discovery of TTF materials
(Kondakov, 2015), their number is still limited, the main reason being strict requirements on the
alignment of the lowest singlet and triplet energy levels that is difficult to satisfy by randomly picking
a compound (Gómez-Bombarelli et al., 2016; Wang et al., 2020).

Compounds with TTF activity often contain a “core”, a fused heterocyclic fragment
responsible for their basic properties, as shown in Figure 1; then redox potentials and
excitation energies of the compound can be further modified by adding side groups. A
convenient way of designing new materials is to start from an already known prototype and
modulate its properties by varying functional groups. Moreover, any core requires certain
chemical modifications to become a real-life TTF material due to technology-related reasons;
these modifications may be needed to increase solubility, prevent undesired aggregation, or
reduce photochemical degradation. In such cases, one should be careful not to spoil a promising

Edited by:
Paul Winget,

Schrodinger, United States

Reviewed by:
Pedro Henrique De Oliveira Neto,

University of Brasilia, Brazil
Ablikim Obolda,

Xinjiang Agricultural University, China

*Correspondence:
Alexander Yakubovich

a.yakubovich@samsung.com
Yongsik Jung

ys327.jung@samsung.com

Specialty section:
This article was submitted to

Physical Chemistry and Chemical
Physics,

a section of the journal
Frontiers in Chemistry

Received: 22 October 2021
Accepted: 30 November 2021
Published: 23 December 2021

Citation:
Yakubovich A, Odinokov A,

Nikolenko S, Jung Y and Choi H (2021)
Computational Discovery of TTF

Molecules with Deep
Generative Models.

Front. Chem. 9:800133.
doi: 10.3389/fchem.2021.800133

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 8001331

ORIGINAL RESEARCH
published: 23 December 2021

doi: 10.3389/fchem.2021.800133

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.800133&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/articles/10.3389/fchem.2021.800133/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.800133/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.800133/full
http://creativecommons.org/licenses/by/4.0/
mailto:a.yakubovich@samsung.com
mailto:ys327.jung@samsung.com
https://doi.org/10.3389/fchem.2021.800133
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.800133


core by inappropriate substitutions. Moreover, another strict
constraint appears in the case of deep blue OLED emitters,
namely high singlet excitation energy S1, which makes it
extremely difficult to perform concise chemical
modifications. Under these circumstances, it becomes
especially important to find new original cores with
favorable arrangements of energy levels. An efficient search
strategy should be able to sample the space of functionalized
heterocyclic compounds and suggest candidates based both on
the core structure and nature of the side groups.

In this work, we demonstrate a general and computationally
efficient approach for the search for novel TTF materials. The
approach is based on three steps. First, we generate all possible
polycyclic molecular graphs within predefined limits and then
decorate them with heteroatoms and side groups, allowing for
dense coverage of large regions in the chemical space. Second,
we apply a fast semiempirical (SE) method to calculate low-
lying singlet and triplet energy levels, allowing for high-
throughput screening of molecular databases. Third, we use
a generative machine learning (ML) model based on deep
neural networks to suggest new compounds with the
distribution of generated molecules biased towards blue
TTF emitters. In particular, we compare several different
generative models and choose the best one for further
discovery of leads in a larger chemical space.

Modification of cores with side groups greatly expands the
considered areas of chemical space and makes it necessary to
apply ML-based models to perform guided search for
promising candidates. For a comprehensive validation of
ML-based models, we have conducted a complete screening
of a subset of the relevant “core” chemical space, which has
allowed us to choose the best deep generative model for the
task. Design of novel TTF materials is based on a multi-step
workflow that begins with the generation of training datasets
and repeatedly provides lead compounds in a batch-wise
manner, aiming to provide leads for further expert-based
selection and experimental trials.

2 METHODS

2.1 Target Properties of TTF Candidates
The triplet-triplet fusion process occurs when two T1 excitations
transform into one excited singlet state. To ensure high internal
conversion efficiency, it is important to suppress the formation of
higher triplet states. Therefore, a criterion for a molecule to be an
appropriate candidate for the design of a TTF material is usually
expressed in terms of the lowest singlet (S1) and two lowest triplet
(T1 and T2) energy levels as follows:

2T1 > S1, 2T1 <T2, (1)

where the first inequality ensures that there is enough energy in
two triplet states to form a singlet excitation, and the second
inequality prohibits the formation of higher excited triplet states,
thus favoring only singlet excitation formation. Large splitting
between S1 and T1 implies that both states originate from ππ*
excitations. Under this assumption, it makes sense to focus the
methodology on accurate prediction of ππ* states, and tolerate
lower performance for nπ* states. For example, ππ* excitations
are relatively unaffected by the solvent polarity, so vacuum
calculations should be sufficient and allow for faster
computations.

The present work is focused on blue OLED light-emitting
materials that require a certain threshold for S1 energy. In
particular, we can define three numerical criteria to filter
compounds appropriate for TTF applications as follows:

S1 > δa,
T2 − 2T1 > δb,
2T1 − S1 > δc,

(2)

where numerical values of the threshold parameters δa, δb, and δc
can be adjusted to find a better tradeoff between the number and
quality of final candidates. In the ideal case, we should set δa �
2.8 eV, δb � δc � 0 eV, but in practice we use less restrictive values
to allow for intrinsic inaccuracies of simulation approaches and
finite width of excitation energy levels of the molecules in the
OLED emission layer.

2.2 Algorithm for the Generation of
Molecular Topology
In this section, we present our algorithm for the generation of
molecular structures. It includes several consecutive steps,
illustrated in Figure 2 with Roman numerals. The procedure
can be subdivided into two parts. First, we generate a skeleton
frame, that is, a graph of connected points, that does not yet
specify the atomic types or bond orders (steps I-III in Figure 2).
Second, the frame needs to be populated with heteroatoms,
double bonds, and side groups that correspond to the correct
Kekulé structure of a specific molecule (steps IV-VI in Figure 2).

Figure 2 presents a branch of the structure generation tree that
starts from a single frame made of three 6-membered rings (step
I). On step II we need to mark the places where a new ring can be
attached. All possible pairs of connected atoms located on the
perimeter of the frame should be considered. On step III, 5 and 6-

FIGURE 1 | Typical TTF materials, tetra-tert-butylperylene (Ravetz et al.,
2019) and rubrene (Cheng et al., 2010), and the scheme of energy levels
favorable for the TTF process. Cores of the compounds are highlighted in red.
For efficient TTF, energy differences δb and δc should be positive.

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 8001332

Yakubovich et al. Discovery of TTF Molecules

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


membered rings are attached to the marked places. Duplicates
already stored in the database are removed, and some simple
heuristics are applied to filter out structures with steric
hindrances. After processing all frames consisting of N-
membered rings, we obtain the next “generation” of frames
consisting of (N + 1)-membered rings.

On step IV, heteroatoms are placed in the frame according to
the following rules: at most 4 heteroatoms in the frame; only
nitrogen and oxygen are considered; even number of π electrons
is required; no pair of heteroatoms can be connected by a covalent
bond except for two nitrogens. The last rule is introduced to
exclude extremely exotic compounds with peculiar distributions
of heteroatoms in the molecule that a priori have a very little
chance to be synthesizable and photostable.

If the resulting labeled graph can be successfully kekulized
with openbabel (O’Boyle et al., 2011), it is considered to be a valid

molecule, and its SMILES string is stored in the database. Again,
all duplicates are removed. The resulting molecules comprise the
set of “cores”, compact polycyclic fragments without side groups
that can serve as building blocks to make more complex TTF
materials. The chemical space of cores made of 4 or less rings
consists of 472, 505 structures, and all of them can be enumerated
with the above algorithm.

To make the resulting materials more likely to be applicable in
real-life OLEDs, the cores should be modified further. First of all,
the N-H bond in secondary amines should be capped with some
residue because of low photochemical stability of the N-H bond.
We replaced hydrogens with phenyls to simulate adjacent
(presumably aromatic) parts of the complex TTF material (see
step V in Figure 2). On step VI, the required number of side
groups can be placed at the given positions, leading to the final
compound.

2.3 Experimental Data for Validation
We have collected data from the literature on well-resolved 0–0
transitions of 55 polycyclic molecules with measured absorption
or luminescence from the first singlet or triplet excited states
(Halverson and Hirt, 1949; Sponer and Rush, 1949; Halverson
and Hirt, 1951; Hirt et al., 1954; Evans, 1957; Ito et al., 1957;
Goodman and Kasha, 1958; Goodman, 1961; Shimada, 1961;
Dorr and Gropper, 1963; Gropper and Dorr, 1963; Burgos et al.,
1977; Schmidt, 1977; Schiedt and Weinkauf, 1997; Reineke and
Baldo, 2014; Padula et al., 2019). The structures are presented in
Supplementary Figure S2. The compounds can be clearly
divided into three groups: pure aromatic hydrocarbons
(composition HC), nitrogen-containing compounds
(composition HCN) and oxygen-containing compounds
(composition HCNO). We made no distinction between
absorption and luminescence, since we used data on 0–0
transitions. We also used experiments performed in different
media: gas phase, non-polar solvents, rigid matrix or alcohols.
Water and other highly polar solvents were not present. We
compare this experimental data with calculations performed in
the vacuum; this is a reasonable simplification due to the weak
dependence of ππ* transitions on the solvent polarity. In any case,
data points obtained in different solvents follow the same trend,
and the number of experiments performed in every particular
medium is too low for reliable statistical analysis. Under these
approximations, we were able to collect a dataset suitable for the
validation of the utilized computational approach.

2.4 Calculation of the Excitation Energies
Meeting growing needs of computational chemistry, various
benchmark molecular datasets are being continuously created
nowadays (Wu et al., 2018). A typical dataset contains molecular
structures and properties calculated using density functional
theory (DFT). One of the most famous developments of this
kind in the area of material science has been the Harvard Clean
Energy Project (Hachmann et al., 2011), spanning 2.3 million
candidate organic photovoltaic materials. However, most datasets
do not provide spectral properties since the calculation of excited
states using time-dependent DFT (TDDFT) is more time-
consuming and often less reliable than the calculation of the

FIGURE 2 | Algorithm for the generation of molecular structures.
Numbers show the actual number of descendants that can be obtained from a
given structure (but are not shown in the figure). Blue markers indicate two
neighboring sites chosen for ring fusion. Sites with green markers are
added automatically to the new ring.
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ground state. On the other hand, datasets containing spectral
properties are either not large enough (Abreha et al., 2019) or
have small overlap with compounds relevant for TTF applications
(Wu et al., 2018). This makes it necessary to prepare our own
training dataset in order to search for candidate TTF compounds.

Since our generated structures amount to four hundred
thousands compounds with more than 10 heavy atoms in
average, the use of TDDFT to assess spectral properties is
extremely computationally expensive. We estimate that
TDDFT computations for a dataset of 0.5 million TTF
molecules would require more than 100 CPU-years. Moreover,
the validity of TDDFT as the correct ab initio method is
questionable. One well-known issue is, for instance, the
uneven treatment of excitations of different nature or spin
multiplicity (Parac and Grimme, 2003). Even valence ππ*
excitations of polycyclic compounds can pose substantial
challenges (Grimme and Parac, 2003; Prlj et al., 2016). In
order to combine computational efficiency with accurate
prediction of spectral properties, we used semiempirical
methods of quantum chemistry. Despite them not being ab
initio approaches, many semiempirical methods, including
“spectral” modifications, were initially parametrized on small
aromatic and other flat conjugated organic molecules. The
accuracy of semiempirical methods for the prediction of the
lowest excitation energies is expected to be on par with
TDDFT, while greatly speeding up calculations. One can
compare different approaches and estimate their typical errors
by validating computational approaches against experimental
data. Reference data for a small validation dataset can also be
obtained with high-level ab initio methods. For molecules of
moderate size, such as the TTF cores we consider in this work,
even multiconfiguration calculations can be theoretically feasible.
We have attempted to apply the complete active space self-
consisting field (CASSCF) method supplemented with
multiconfiguration second-order perturbation theory
(MCQDPT). The maximum reasonable size of active space
was (12, 12), which was found to be sufficient for triplet
excitation to converge in almost all cases. Unfortunately, first
singlet excitations converged much more slowly. Even after some
admixture of the ground state, convergence was not achieved. It
appears that the CASSCF/MCQDPT approach cannot be used for
blind screening without manual inspection of every particular
case, so we limited the validation to experimental references.

The first step in the calculation of excitation energies is the
optimization of molecular geometry. For this purpose, we have
used the SE method PM3 as implemented in the Gaussian 16
software package (Frisch et al., 2016). We used the configuration
interaction singles (CIS) approach to compute excitation
energies. We have tested three semiempirical methods: AM1
(Dewar et al., 1985), PM3 (Stewart, 1989), and ZINDO/S
(Ridley and Zerner, 1973) as implemented in the Gaussian 16
software package. For comparison, we also calculated excitation
energies using DFT with the settings optimized for mixed-valence
organic compounds (Renz et al., 2009): BLYP35/def2-TZVP
(Weigend and Ahlrichs, 2005) geometry optimization followed
by TDDFT for S1 and T2 states, or by ΔSCF for T1 state using
M062X exchange-correlation functional (Zhao and Truhlar,

2008) and the same basis set. It important to note here that
our final goal is to develop a method to predict transition energies
within a series of polycyclic organic molecules, so we are not
interested in the absolute accuracy of the method but rather in its
high precision. Bias can be corrected with a linear transformation
applied after the calculation. The performances of different
methods are compared in Table 1. From the perspective of
these results, we can suggest the SE method PM3 as the
optimal choice for all further calculations on large molecular
datasets. After proper linear correction, it outperforms other SE
methods for triplets and is almost on par with ZINDO/S for
singlets. PM3 is also on par with corrected DFT and significantly
improves over DFT without correction. Plots of calculated versus
experimental transition energies for PM3 and DFT can be found
in Supplementary Figure S3.

2.5 Machine Learning-Assisted Design
Although exhaustive enumeration of chemical compounds is
possible for certain restricted areas of the chemical space, it is
always desirable to “soften” the constraints and search for
promising compounds within less restricted regions.
Moreover, it is often not easy to formulate clear and
complete rules on the chemical diversity of all possible
candidate compounds and implement the corresponding
deterministic algorithms for library generation. In such cases,
approaches based on machine learning and, in particular, deep
neural networks can be of great help. The general idea of ML-
assisted design proceeds as follows: first, we construct
computationally (or extract from experiments) a database
with a certain set of molecules that we assume to be relevant
for the considered problem. Then, we train a generative machine
learning model (usually a deep neural network) on that
database, in the hope that the model will capture
fundamental structural and chemical features of the dataset
and will be capable of suggesting new molecules beyond the
training set. If the architecture of the generative model and
learning procedures are organized well, one can expect that a
large fraction of generated molecules will be relevant for the
problem of interest, thus greatly reducing the search space for
subsequent validation. In the particular case of TTF
compounds, we expect that the model will generate chemical
structures featuring excitation energies applicable for the TTF
process (see formula (2) and discussion below for details).

TABLE 1 | Root mean squared error (RMSE, in eV) between the predicted and
experimental excited state energies. Values for singlet and triplet states are
presented separately.

Method State RMSE RMSE,corrected

PM3 S1 0.286 0.184
T1 0.720 0.279

AM1 S1 0.257 0.233
T1 0.751 0.342

ZINDO/S S1 0.276 0.267
T1 0.835 0.381

DFT S1 0.549 0.173
T1 0.858 0.242
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To test the applicability of generative models for
computational discovery of TTF materials, we have utilized
and compared several deep generative models, including
character-level recurrent neural networks, adversarial
autoencoders, and variational autoencoders (see Section 3.2).
The best model that we recommend for practical use is the
junction tree variational autoencoder (JT-VAE) architecture
introduced by Jin et al. (2018). The decoder of JT-VAE
consists of two parts: a graph convolutional neural network
(CNN) and a junction tree convolutional neural network. The
choice of the architecture was motivated by JT-VAE’s superior
ability to encode and decode cyclic fragments of molecules. The
latter is often challenging for conventional molecular graph
CNNs but is of primary importance for TTF molecules that
feature distributed π—electronic orbitals.

2.6 Prediction of Excitation Energies
Apart from the task of molecular generation, neural networks can
also be used to predict excitation energy levels of the molecule.
We have trained the neural network to predict energies of the
singlet and first two triplet states of TTF molecules. Our neural
network for energy prediction is also based on junction tree
convolutions; the high-level architecture of this neural network,
which we call JT-E (Junction Tree Energies), is presented in
Figure 3. JT-E is constructed as follows: the layer of Junction-
Tree encoder preceding the latent space is connected to a network
with several fully connected layers of decreasing dimensionality.
The last layer of that network has three heads that correspond to
S1, T1, and T2 excitation energies. The neural network is trained to
minimize the sum of root mean square errors between predicted
and calculated values of excitation energies. The JT-E model has
allowed us to predict with good accuracy if a molecule might be
suitable for TTF knowing only its SMILES notation (see
Supplementary Table S1 for numerical results on existing
benchmarks).

3 RESULTS

3.1 Brute-Force Screening of the Core
Compounds
The structure generation algorithm shown in Figure 2 has
provided us with 472, 505 non-equivalent compounds with at
most 4 rings, which constitutes an exhaustive sampling of the
chemical space defined by the constraints listed in Section. 2.2.
Applying formula (2), we have selected 5,690 candidates from the
set of 472, 505 compounds that are most promising for deep blue
TTF applications. These candidates should be subjected to more
detailed analysis. An important additional target here is potential
synthesizability. The most robust way to ensure synthesizability is
to search for already known compounds. Among 5,690
candidates, we found 107 compounds contained in the
PubChem (Kim et al., 2021) database. This estimate gives
hope that the exploration of considered regions of chemical
space can provide a sufficient amount of TTF candidates, both
core structures and their derivatives.

Among 107 PubChem hits, several distinct groups of
compounds can be identified. The first group of 16
compounds consists of anthracene and its nitrogen-containing
structural and isoelectronic analogues. Then, one can found 19
analogues of tetracene, 11 analogues of isobenzofurane, as well as
pyrene and two of its analogues. A large and diverse group of 28
compounds contains furane moiety as part of the system of fused
rings. The remaining 30 compounds are not so closely related to
existing TTF materials. The major part of molecules from the set
with 107 elements are analogues of molecules with registered TTF
activity (Wang et al., 2020). Introduction of additional nitrogens
does not change the electronic configuration, but modulates
nuclear charges of chosen atomic sites, which sometimes can
make S1 levels higher (note the cases of tetracene and
isobenzofurane), so the conditions for blue TTF materials are
satisfied. Review of the core compounds produced by the
screening procedure supports the conclusion about the
adequacy of applied methodology and underlying SE
approach. This success can be partially explained by the loose
criteria used in the screening: more than 1% of the original dataset
has passed the filters. This is in line with the general strategy of
filtering out definitely bad compounds and allowing all that have
a chance to prove useful. We believe that the list of PubChem hits
contains some indications useful in the search for novel cores
with TTF activity. In the subsequent sections, we apply the same
computational procedure to prepare training datasets for targeted
design of TTFmaterials based on substituted compounds. The list
of PubChem hits, as well as specific details of the screening
procedure, can be found in the Supplementary Material (see Note
S2.2 and Supplementary Table S2).

3.2 Baselines and Performance of
Generative Models
We have investigated the performance of various generative
models on a dataset of cores defined in the previous
subsection. Well-defined chemical composition of the subspace
allows us to measure consistently if generative models are capable
of suggesting molecules predominantly from the chemical
subspace of interest and whether it is possible to tune
generators to suggest novel molecules from the subspace with
energies satisfying TTF criteria. We have excludedmolecules with
low and negative excitation energies from the dataset using the
following criteria:

S1 > 1.0 eV, T1 > 0.5 eV, T2 > 1.0 eV. (3)

Negative excitation energies are nonphysical and correspond
to situations where methods of quantum chemistry fail for low
lying excitations. Since we focus on the discovery of TTF
molecules suitable for blue OLED applications, we are not
interested in those molecules because they will only introduce
additional noise to the models. The total number of molecules in
the truncated dataset is 341, 433.

Distributions of excitation energies in the dataset are shown in
Figure 4. The figure shows that all energies in the dataset feature
unimodal distributions with the following means and standard
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deviations: S1 � 1.98 ± 0.66 eV, T1 � 1.52 ± 0.51 eV, and T2 �
2.19 ± 0.47 eV. The dataset was split randomly into two parts of
the same size that were used as training and validation sets (see SI
for details).

We have investigated the performance of our implementation
of the JT-VAE model (modified from https://github.com/
wengong-jin/icml18-jtnn) and three well-known baseline
models, namely:

• character-level recurrent neural network (CharRNN)
(Preuer et al., 2018; Segler et al., 2018) that models the
distribution of the next token in a sequence (SMILES string)
with a recurrent neural network; • variational autoencoder
(VAE) (Kingma and Welling, 2014; Kadurin et al., 2017;
Gómez-Bombarelli et al., 2018)it consists of two networks,
encoder and decoder, that learn a mapping of the input into
a low-dimensional latent space by minimizing the
reconstruction loss and regularization in the form of the
Kullback–Leibler divergence between the approximation and

the posterior distribution; • adversarial autoencoder (AAE)
(Makhzani et al., 2016) that replaces the Kullback-Leibler
divergence from VAE with an adversarial objective, training
a discriminator network to distinguish samples from the latent
space and a prior distribution that the model will sample from to
generate new instances.

In all generative models, we use SMILES strings as the input
and output representations. We have used the implementations
of CharRNN, VAE, and AAE models available athttps://github.
com/molecularsets/moses, the benchmarking platform called
MOSES (Polykovskiy et al., 2020). All models were trained on
the training dataset using hyperparameters and protocols as
suggested by Polykovskiy et al. (2020).

We have implemented two different regimes for sampling
from the latent space of autoencoder models (VAE, AAE, and
JT-VAE): random and seeded. The random regime
corresponds to “conventional” sampling of the latent space
from the normal distribution N (0, 1) that was used as prior in
our models. Seeded sampling was carried out as follows. After
training the encoder on the training dataset, a subset of
molecules most promising for deep blue applications was
selected using the criteria from formula (2): δa > 2.7 eV, δb
� δc >—0.1 eV. Only 58 out of 171, 716 molecules in the
training set satisfy these criteria; we will further refer to
molecules satisfying them as leads. Latent representation
vectors ]i were calculated for each of the leads. Then, three
lead vectors ]1, ]2, and ]3 were selected randomly and
multiplied by random positive factors α1, α1 and α3 that
satisfy the following relation: ∑3

i�1αi � 1. The sample vector
] in the latent space was constructed as ] � ∑3

i�1αivi. The
molecular structure was obtained by applying the model’s
decoder to the resulting latent vector ]. This approach has
allowed us to sample the latent space not randomly but mostly
in the vicinity of known leads. This should be beneficial if the
latent space clusters favorably, separating promising TTF
molecules from the rest (see discussion in Section 3.3). We

FIGURE 3 | Architecture of the JT-E network for excitation energies prediction. Latent vectors of the JT-VAE encoder corresponding to the junction tree and
molecular graph are connected to several fully connected layers. The last layer has three heads, corresponding to S1, T1, and T2 excitation energies.

FIGURE 4 | Distributions of S1, T1, and T2 excitation energies in the
dataset of generated molecular structures.
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have modified the implementations of VAE and AAE models
by Polykovskiy et al. (2020) to run sampling in seeded mode.
Note that since CharRNN is not an autoencoder model, it
cannot be “seeded” with leads. Therefore, we do not present
any results for CharRNN in the seeded mode.

Results for random and seeded sampling of the latent space for
different models are presented in Table 2; we have obtained 10,
000 samples from each model. Table 2 clearly shows that all
models were capable of suggesting valid SMILES, as checked with
RDKit (Landrum, 2012).

One of the most important properties of a generative model
is their ability to sample from novel yet not arbitrary regions of
chemical space. Since in the present work we are interested in
regions of chemical space consisting solely of π-conjugated
systems with 5 or 6-membered rings, we measure the
extrapolating ability of generative models by the number of
suggested molecules from the validation set. Note that all
generated molecules should not necessarily satisfy the
constraints applied during dataset creation, since no formal
restrictions on molecular composition were implemented for
the generators. Some generated molecules do not belong to the
above-mentioned chemical space of π-conjugated molecules.
Therefore, the number of unique molecules is larger than the
sum of molecules from the training and validation sets. Table 2
shows that the AAE model was able to suggest the largest
fraction of novel molecules (1992 and 2,155 for random and
seeded implementations respectively). Almost 15% of the
molecules were from the validation set, i.e., novel. Note also
that the size and chemical composition of the training and
validation sets are identical, so an unbiased generator should
suggest a similar number of molecules from both sets.
Autoencoder models indeed demonstrate nearly equal
number of generated molecules from both datasets. On the
contrary, the CharRNN model is extremely biased towards the
training set, which could be an indication of overfitting; here
we do not investigate that question in depth since we used
default suggested values of training parameters from MOSES
(Polykovskiy et al., 2020).

The most interesting and important part for the problem of
the discovery of novel TTF molecules is the number of novel
discovered leads. Recall that a lead is a molecule with

excitation energies suitable for blue OLED applications.
We see that all models performed poorly in the
conventional random sampling mode: CharRNN suggested
one lead from the validations set, while all other models
suggested none. The situation is very different for seeded
generation. The AAE model was capable of suggesting four
leads from the validation set that have not been seen by the
model during training. And this is exactly where the JT-VAE
model shines: it was able to generate 11 TTF candidates from
the validation set, much higher than any other model in the
comparison.

Note also that the number of unique molecules generated by
AAE and VAE is nearly identical to the total number of valid
SMILES both in random and seeded implementations. For JT-
VAE, this holds under random sampling, but not in the seeded
mode, where nearly 65% of generated molecules turned out to
be duplicates. At first glance it might seem to be a drawback,
but in fact this property means that fewer molecules need to be
checked for excitation energies favorable for TTF, and it shows
that the sampling space of JT-VAE in seeded mode is much
more concentrated. Ultimately, we are interested in the
number of suggested leads, not just the number of unique
molecules, and indeed, despite lower number of unique
SMILES, the JT-VAE model suggested by far the most leads
from the training and validation sets. This advantage is
especially striking if we consider the fraction of generated
molecules that need to be checked to find a new lead (shown as
percentages in Table 2): the probability to find a lead with JT-
VAE is ≈ 2.4% for each new suggested SMILES string, which
represents a more than 15 times higher rate than for the VAE
and AAE models and 75 times higher than picking molecules
from the validation set at random.

Note that for all autoencoder models we have observed a
presumably linear dependence between the number of unique
molecules and the number of molecules from the training and
validation sets, as indicated by comparing the random and seeded
generators. This is indicative of the fact that seeded generation
does not alter the fraction of generated molecules belonging to the
desired region of the chemical space, in our case π-conjugated
systems with 4 rings. This observation allows to suggest that
application of seeded sampling does not disturb the predefined

TABLE 2 | Performance of deep generative models for 10, 000 random samples: number of valid molecules, number of unique molecules, number of molecules from the
training set, number of molecules from the validation set, number of leads [defined as δa > 2.7 eV, δb � δc >—0.1 eV in formula (2)] from the train and validation sets and
their percentage among the corresponding generated samples.

Model Sampling Valid Unique From
train

From
valid

Train
Leads

%
Train
Leads

Valid
Leads

%
Valid
Leads

CharRNN random 9,962 9,760 7,487 1886 2 0.026 1 0.053
VAE random 6,312 6,246 1999 1,394 1 0.050 0 0.000
AAE random 7,582 7,400 2,371 1922 1 0.052 0 0.000
JT-VAE random 10 ,000 9,186 1,026 1,036 1 0.097 0 0.000

VAE seeded 5,918 5,781 1,617 1,198 7 0.433 1 0.083
AAE seeded 7,974 7,376 2,643 2,155 3 0.114 4 0.186
JT-VAE seeded 10 ,000 3,472 559 558 16 2.862 11 1.971

Largest entries in each column are presented with bold font.
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constraints on molecular composition, but allows to further
accelerate lead discovery.

Based on the above analysis, we suggest the JT-VAE model
with seeded sampling as the best generative model for the
discovery of realistic candidates for deep blue OLED applications.

3.3 Structure of the Latent Space
To better understand why and how the JT-VAE model generates
an increased number of leads with seeded sampling, we have
investigated the latent space of the model using the t-distributed
Stochastic Neighbor Embedding (t-SNE) to generate a two-
dimensional visual representation (van der Maaten and
Hinton, 2008). The results obtained for 25, 000 molecules
randomly sampled from the dataset are shown in Figure 5.
Color corresponds to the “fitness” of a molecule for TTF
applications: red indicates a better fit, blue, a worse fit. This
means that leads are shown in red.

Figure 5 shows that the distribution of red, blue, and
intermediate points is far from uniform in the latent space:
leads and generally molecules with higher fitness tend to
cluster together. Therefore, if we choose a random linear
combination of latent space vectors for three red points
(leads), it will have an increased chance to end up in the close
vicinity of another red point (especially when all leads are
sampled from the same cluster). This demonstrates that the
JT-VAE model in seeded sampling mode allows to discover
most of the leads in the chemical space with fewer iterations
than other approaches. We note that there are in total only 56
leads in the validation area of the chemical space comprising 170,
716 molecules, and JT-VAE was capable of discovering 11, i.e,.

≈ 20% of those leads in just the first 3,500 unique samples (out of
10, 000 total first samples).

As discussed above, we have analyzed the models’
performance in a relatively small region of chemical space
with up to 4 rings without side chains, a region with less than
0.5 million molecules in total. This has allowed us to assess the
potential of the models to extrapolate beyond the training set
and discover leads in the entire constrained chemical space. In
what follows, we apply our conclusions to the discovery of TTF
candidates in much larger chemical spaces that cannot be
sampled exhaustively.

3.4 Filtering Based on Predicting Excitation
Energies
Table 2 shows that in our restricted subset of the chemical
space, the seeded JT-VAE model generates leads at a rate of (11
+ 16)/(559, +, 558) ≈ 2.4%. Though one could apply quantum
chemistry methods to all generated molecules to discover the
leads, there is a more computationally efficient alternative. We
have trained the JT-E network as discussed in Section 2.6 to
predict excitation energies for molecules supplied as SMILES
strings from the generator. Calculations of excitation energies
for the training dataset were done using PM3 (Stewart, 1989),
the same SE method as we have used above. Mean absolute
errors for the excitation energies for validation set are 0.104,
0.054, and 0.086 eV for the S1, T1, and T2 energies respectively.
Note that this is a remarkable accuracy, comparable to the
accuracy of the PM3 method itself. The JT-E model is trained
independently on the same dataset as the JT-VAE model (see
Supplementary Material for details). Based on predicted
energies, we have filtered generated molecules according to
the same criteria from (Eq. 2): δa > 2.3 eV, δb � δc >—0.4 eV.
Those are looser criteria than for lead selection since we
wanted to give a very safe margin of error for the JT-E
model (exceeding 2σ). Geometries of the molecules
satisfying these criteria are then optimized, and excitation
energies are computed using PM3. In the next section, we
show and discuss the overall workflow for TTF molecules
discovery.

3.5 Workflow for TTF Molecules Discovery
In order to promote the discovery of real TTF materials, we
assembled a multi-step workflow acting in the space of
π—conjugated compounds. The training datasets consisted of
previously used core structures decorated with side groups. We
used two types of side groups: tert-butyl and mesityl moieties, as a
model of different bulky, but chemically inert substituents that
are often used to prevent flat cores from aggregation. We also
replaced all amine hydrogens with phenyls, as required to ensure
operational stability of the material. The size of the chemical
space for compounds with side groups is much larger than for
cores only. Therefore the datasets were not exhaustive and
included ≈ 450, 000 molecules with positions and types of the
side groups selected at random.

We have investigated three different chemical spaces
corresponding to cores: decorated with none, one, and two

FIGURE 5 | Structure of the JT-VAE latent space model obtained by
dimensionality reduction via t-SNE (van der Maaten and Hinton, 2008). Color
corresponds to the “fitness” of a molecule for TTF applications: red denotes a
better fit, blue, a worse fit.
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side chains. We had tried to train a single network on the entire
dataset, but our experiments showed that training separate neural
networks for each number of side chains allows to increase
reconstruction accuracy and accuracy of energies prediction, as
well as to achieve better clustering of leads of each type in the
chemical space, so we have chosen this strategy. For all molecules
from generated chemical spaces, we optimized their geometries
and calculated S1, T1, and T2 excitation energies using the SE PM3
approach. We have excluded molecules with unreasonably low
energies from each dataset, using criteria outlined in (Eq. 3). The
datasets were used to train three JT-VAE generative models and
three JT-E energy predicting models (see Supplementary Material
for additional data on the architecture and accuracy of JT-VAE
and JT-E models). We have selected molecules most suitable for
TTF leads from the datasets and utilized them in seeded sampling
of the latent space of the autoencoders, using procedures
discussed in Section 3.2. The overall discovery workflow for
TTF materials is shown in Figure 6.

We have found 75, 58, and 55 leads directly in the dataset with
0, 1, and 2 side chains respectively. The leads were used to seed the
generator of JT-VAEs. During each discovery loop, we generated
another 100, 000 samples and predicted excitation energies for
them using the JT-E network. The molecules satisfying criteria
discussed in Section 3.4 were selected for quantum chemical
calculation with PM3. Results obtained for each iteration of the
workflow cycle are summarized in Table 3.

Table 3 shows that all three datasets with nearly 1.5 million
molecules initially contained only 188 leads. However, each
iteration of the discovery workflow brings ≈ 400 more new
leads. After just two iterations, we have obtained more than a
thousand compounds that appear promising for deep blue TTF
applications. SMILES notation for those molecules along with
calculated PM3 energies are provided in Supplementary
Material. Although one can easily continue the discovery
cycles, we stopped at the current stage since more than
1,000 leads is already a substantial amount that is not easy
to verify experimentally.

4 DISCUSSION

In this work, we have presented a computational approach for the
discovery of TTF materials, choosing the best deep generative
model on the basis of comprehensive experiments with smaller
molecules, extending the results onto a much larger chemical
space, and producing hundreds of promising leads for new TTF
materials. Let us address several points regarding the applied
computational methodology. First, a key element of the present
study is the use of a very fast approach to quantum chemistry,
based on the PM3method that was not originally designed for the
calculation of excited states. Good accuracy was achieved mainly
due to additional empirical scaling of the excitation energies. We
do not claim that the found scaling factors can be transferred to
other applications or have a general scientific value, their
application area is presumably limited to fused heterocyclic
chromophores. Second, considering the tradeoff between
computational cost and accuracy, our PM3-based method

obviously represents one of the cheapest and fastest
approaches. This was a necessary requirement to perform
calculations for hundreds of thousands of compounds within
acceptable computational resources, and these calculations were
necessary as large datasets were crucial for the successful training
of ML-based models. Accuracy of our calculations and the overall
high quality of the approach have been validated in a comparison
with reliable reference experimental data, both for the excited
states energy levels and registered TTF activity. We believe that
the resulting list of PubChem hits can be considered as a
standalone contribution to the community, providing
candidate compounds for blue OLED materials or, at the very
least, promising patterns for further research.

One of the possible drawbacks of the current approach lies in the
combinatorial nature of the search for all possible valid molecular
structures, regardless of their stability or possible synthesizability.
This issue can be resolved if we collect only those cores that can be
found in PubChem database. This solution is simple and robust,
although a lot of novel promising compounds are thus disregarded.
In our workflow with ML-based models, we do not impose any
additional constraints or filters to disregard unrealistic structures.
We prefer to train themodels on the complete chemical space, so the
predictions are expected to be also correct for synthesizable
compounds. After producing the leads, we can decide which
molecules to pick up for experimental trials using expert
knowledge and other external considerations.

We have demonstrated that ML methods can be applied for
successful generation of novel compounds beyond those in the
training set. We have been able to provide ML models with large
training datasets obtained using SE methods and, at the same
time, use ML inference to cover much larger regions of the
chemical space. The number of molecules grows rapidly with
increasing size of the molecule and heteroatom population. This
means that direct calculation of excitation energies is required
only for a very small portion of the target space. After that, the
training procedure is performed on this dataset, and energies for
any other molecule in the chemical space can be inferred from the
model in a batch-wise manner with high computational
efficiency.

5 CONCLUSION

Using the workflow described above and shown in Figure 6, we have
been able to discover hundreds of TTF candidate molecules with S1,
T1, and T2 energy levels suitable for TTF application in blue OLED
devices. These candidates include more than a dozen of PubChem
compounds. After a thorough examination of the suggested leads by
experimental chemists, several most promising candidates have been
selected for experimental verification. The selection procedures
included not only criteria on excitation energies, but also expert
assessment of chemical and electrical stability of compounds, their
synthetic accessibility, and other considerations. The experimental
verification is currently in progress, and we are looking forward to
report the results in the nearest future.

We note that the presented approach is not limited solely to
TTF molecules, and with reasonable modifications can be applied
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to other compounds relevant for organic optoelectronic
materials.
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FIGURE 6 | Workflow of the TTF materials discovery. See text for details.

TABLE 3 | Gradual increase of the discovered leads for structures with 0, 1, and 2 side chains.

Iteration Unique after the JT-E filter side chains Unique after the PM3 filter side chains Total discovered

0 1 2 0 1 2 —

0 — — — 75 58 55 188
1 357 1,248 1,446 55 195 236 674
2 342 1,378 1,582 67 420 402 1,070

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 80013310

Yakubovich et al. Discovery of TTF Molecules

https://www.frontiersin.org/articles/10.3389/fchem.2021.800133/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.800133/full#supplementary-material
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


REFERENCES

Abreha, B. G., Agarwal, S., Foster, I., Blaiszik, B., and Lopez, S. A. (2019). Virtual
Excited State Reference for the Discovery of Electronic Materials Database: An
Open-Access Resource for Ground and Excited State Properties of Organic
Molecules. J. Phys. Chem. Lett. 10, 6835–6841. doi:10.1021/acs.jpclett.9b02577

Burgos, J., Pope, M., Swenberg, C. E., and Alfano, R. R. (1977). Heterofission in
Pentacene-Doped Tetracene Single Crystals. Phys. Stat. Sol. (B) 83, 249–256.
doi:10.1002/pssb.2220830127

Cheng, Y. Y., Fückel, B., Khoury, T., Clady, R. G. C. R., Tayebjee, M. J. Y., Ekins-
Daukes, N. J., et al. (2010). Kinetic Analysis of Photochemical Upconversion by
Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit. J. Phys. Chem.
Lett. 1, 1795–1799. doi:10.1021/jz100566u

Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P. (1985).
Development and Use of Quantum Mechanical Molecular Models. 76. Am1:
a New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem.
Soc. 107, 3902–3909. doi:10.1021/ja00299a024

Dörr, F., and Gropper, H. (1963). Die Polarisation der Triplett-Singulett-
Phosphoreszenz einiger Aromaten und Heterocyclen II. Mitteilung):
Chinolin, Isochinolin, Fluoren, Chrysen, Triphenylen, Dibenzochinoxalin,
1,2-3,4-Dibenzophenazin, Coronen. Berichte der Bunsengesellschaft für
physikalische Chem. 67, 193–201. doi:10.1002/bbpc.19630670214

Evans, D. F. (1957). 257. Perturbation of Singlet-Triplet Transitions of Aromatic
Molecules by Oxygen under Pressure. J. Chem. Soc., 1351–1357. doi:10.1039/
jr9570001351

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,
Cheeseman, J. R., et al. (2016). Gaussian∼16 Revision C.01. Wallingford CT:
Gaussian Inc.

Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D.,
Maclaurin, D., Blood-Forsythe, M. A., et al. (2016). Design of Efficient
Molecular Organic Light-Emitting Diodes by a High-Throughput Virtual
Screening and Experimental Approach. Nat. Mater. 15, 1120–1127.
doi:10.1038/nmat4717

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,
Sánchez-Lengeling, B., Sheberla, D., et al. (2018). Automatic Chemical
Design Using a Data-Driven Continuous Representation of Molecules. ACS
Cent. Sci. 4, 268–276. doi:10.1021/acscentsci.7b00572

Goodman, L., and Kasha, M. (1958). The Observation and Assignment of the
Lowest Multiplicity-Forbidden Transition in Pyrazine. J. Mol. Spectrosc. 2,
58–65. doi:10.1016/0022-2852(58)90060-2

Goodman, L. (1961). Transitions in the Azines. J. Mol. Spectrosc. 6, 109–137.
doi:10.1016/0022-2852(61)90235-1

Gray, V., Dzebo, D., Abrahamsson, M., Albinsson, B., and Moth-Poulsen, K.
(2014). Triplet-triplet Annihilation Photon-Upconversion: towards Solar
Energy Applications. Phys. Chem. Chem. Phys. 16, 10345–10352.
doi:10.1039/c4cp00744a

Grimme, S., and Parac, M. (2003). Substantial Errors from Time-dependent
Density Functional Theory for the Calculation of Excited States of Large π
Systems. ChemPhysChem 4, 292–295. doi:10.1002/cphc.200390047

Gropper, H., and Dorr, F. (1963). Die orientierung der optischen
übergangsmomente in phenanthren und seinen azaderivaten. Berichte der
bunsen-gesellschaft physikalische Chem. 67, 193–201. doi:10.1002/
bbpc.19630670109

Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C.,
Sánchez-Carrera, R. S., Gold-Parker, A., et al. (2011). The harvard Clean
Energy Project: Large-Scale Computational Screening and Design of Organic
Photovoltaics on the World Community Grid. J. Phys. Chem. Lett. 2,
2241–2251. doi:10.1021/jz200866s

Halverson, F., and Hirt, R. C. (1951). Near Ultraviolet Solution Spectra of the
Diazines. J. Chem. Phys. 19, 711–718. doi:10.1063/1.1748338

Halverson, F., and Hirt, R. C. (1949). The Near Ultraviolet Absorption Spectra of
the Diazines. J. Chem. Phys. 17, 1165–1166. doi:10.1063/1.1747135

Hirt, R. C., Halverson, F., and Schmitt, R. G. (1954). s-Triazine. II. The Near Ultraviolet
Absorption Spectrum. J. Chem. Phys. 22, 1148–1149. doi:10.1063/1.1740306

Ito, M., Shimada, R., Kuraishi, T., and Mizushima, W. (1957). Ultraviolet
Absorption of Pyrazine Vapor Due Ton- π Transition. J. Chem. Phys. 26,
1508–1515. doi:10.1063/1.1743570

Jin,W., Barzilay, R., and Jaakkola, T. (2018). “Junction TreeVariational Autoencoder for
Molecular Graph Generation,” in International Conference on Machine Learning
(PMLR), Stockholmsmässan, July 10-15, 2018, 2323–2332.

Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov,
K., et al. (2017). The Cornucopia of Meaningful Leads: Applying Deep
Adversarial Autoencoders for New Molecule Development in Oncology.
Oncotarget 8, 10883–10890. doi:10.18632/oncotarget.14073

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021). Pubchem in
2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 49,
D1388–D1395. doi:10.1093/nar/gkaa971

Kingma, D. P., and Welling, M. (2014). Auto-encoding Variational Bayes. arXiv,
1312.6114.

Kondakov, D. Y. (2015). Triplet-triplet Annihilation in Highly Efficient
Fluorescent Organic Light-Emitting Diodes: Current State and Future
Outlook. Phil. Trans. R. Soc. A. 373, 20140321. doi:10.1098/rsta.2014.0321

Landrum, G. (2012). Rdkit: Open-Source Cheminformatics. Available at: https://
www.rdkit.org

Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. (2016). “Adversarial
Autoencoders,” in International Conference on Learning Representations,
Caribe Hilton, San Juan, Puerto Rico, May 2-4, 2016.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and
Hutchison, G. R. (2011). Open Babel: An Open Chemical Toolbox.
J. Cheminform 3, 33–14. doi:10.1186/1758-2946-3-33

Padula, D., Omar, Ö. H., Nematiaram, T., and Troisi, A. (2019). Singlet Fission
Molecules Among Known Compounds: Finding a Few needles in a Haystack.
Energy Environ. Sci. 12, 2412–2416. doi:10.1039/c9ee01508f

Parac, M., and Grimme, S. (2003). A TDDFT Study of the Lowest Excitation
Energies of Polycyclic Aromatic Hydrocarbons. Chem. Phys. 292, 11–21.
doi:10.1016/s0301-0104(03)00250-7

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O.,
Belyaev, S., et al. (2020). Molecular Sets (Moses): a Benchmarking Platform for
Molecular Generation Models. Front. Pharmacol. 11, 565644. doi:10.3389/
fphar.2020.565644

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and Klambauer, G. (2018). Fréchet
ChemNet Distance: A Metric for Generative Models for Molecules in Drug
Discovery. J. Chem. Inf. Model. 58, 1736–1741. doi:10.1021/acs.jcim.8b00234

Prlj, A., Sandoval-Salinas, M. E., Casanova, D., Jacquemin, D., and Corminboeuf,
C. (2016). Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for
Excited State Methods. J. Chem. Theor. Comput. 12, 2652–2660. doi:10.1021/
acs.jctc.6b00245

Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., and Campos,
L. M. (2019). Photoredox Catalysis Using Infrared Light via Triplet Fusion
Upconversion. Nature 565, 343–346. doi:10.1038/s41586-018-0835-2

Reineke, S., and Baldo, M. A. (2014). Room Temperature Triplet State Spectroscopy of
Organic Semiconductors. Sci. Rep. 4, 3797–3798. doi:10.1038/srep03797

Renz, M., Theilacker, K., Lambert, C., and Kaupp, M. (2009). A Reliable Quantum-
Chemical Protocol for the Characterization of Organic Mixed-Valence
Compounds. J. Am. Chem. Soc. 131, 16292–16302. doi:10.1021/ja9070859

Ridley, J., and Zerner, M. (1973). An Intermediate Neglect of Differential Overlap
Technique for Spectroscopy: Pyrrole and the Azines. Theoret. Chim. Acta 32,
111–134. doi:10.1007/bf00528484

Schiedt, J., and Weinkauf, R. (1997). Photodetachment Photoelectron
Spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2o
Cluster. Chem. Phys. Lett. 266, 201–205. doi:10.1016/s0009-2614(96)01512-6

Schmidt, W. (1977). Photoelectron Spectra of Polynuclear Aromatics. V.
Correlations with Ultraviolet Absorption Spectra in the Catacondensed
Series. J. Chem. Phys. 66, 828–845. doi:10.1063/1.433961

Segler, M. H. S., Kogej, T., Tyrchan, C., and Waller, M. P. (2018). Generating
Focused Molecule Libraries for Drug Discovery with Recurrent Neural
Networks. ACS Cent. Sci. 4, 120–131. doi:10.1021/acscentsci.7b00512

Shimada, R. (1961). The Lowest Multiplicity-Forbidden Transitions in Diazines-I.
Spectrochimica Acta 17, 14–29. doi:10.1016/0371-1951(61)80007-6

Sponer, H., and Rush, J. H. (1949). Near Ultraviolet Absorption Spectra of the
Isomeric Picolines. J. Chem. Phys. 17, 587–588. doi:10.1063/1.1747337

Stewart, J. J. P. (1989). Optimization of Parameters for Semiempirical Methods Ii.
Applications. J. Comput. Chem. 10, 221–264. doi:10.1002/jcc.540100209

van derMaaten, L., and Hinton, G. (2008). Visualizing Data Using T-SNE. J. Mach.
Learn. Res. 9, 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 80013311

Yakubovich et al. Discovery of TTF Molecules

https://doi.org/10.1021/acs.jpclett.9b02577
https://doi.org/10.1002/pssb.2220830127
https://doi.org/10.1021/jz100566u
https://doi.org/10.1021/ja00299a024
https://doi.org/10.1002/bbpc.19630670214
https://doi.org/10.1039/jr9570001351
https://doi.org/10.1039/jr9570001351
https://doi.org/10.1038/nmat4717
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1016/0022-2852(58)90060-2
https://doi.org/10.1016/0022-2852(61)90235-1
https://doi.org/10.1039/c4cp00744a
https://doi.org/10.1002/cphc.200390047
https://doi.org/10.1002/bbpc.19630670109
https://doi.org/10.1002/bbpc.19630670109
https://doi.org/10.1021/jz200866s
https://doi.org/10.1063/1.1748338
https://doi.org/10.1063/1.1747135
https://doi.org/10.1063/1.1740306
https://doi.org/10.1063/1.1743570
https://doi.org/10.18632/oncotarget.14073
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1098/rsta.2014.0321
https://www.rdkit.org
https://www.rdkit.org
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1039/c9ee01508f
https://doi.org/10.1016/s0301-0104(03)00250-7
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1021/acs.jctc.6b00245
https://doi.org/10.1021/acs.jctc.6b00245
https://doi.org/10.1038/s41586-018-0835-2
https://doi.org/10.1038/srep03797
https://doi.org/10.1021/ja9070859
https://doi.org/10.1007/bf00528484
https://doi.org/10.1016/s0009-2614(96)01512-6
https://doi.org/10.1063/1.433961
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1016/0371-1951(61)80007-6
https://doi.org/10.1063/1.1747337
https://doi.org/10.1002/jcc.540100209
http://jmlr.org/papers/v9/vandermaaten08a.html
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wang, X., Tom, R., Liu, X., Congreve, D. N., and Marom, N. (2020). An Energetics
Perspective on Why There Are So Few Triplet-Triplet Annihilation Emitters.
J. Mater. Chem. C 8, 10816–10824. doi:10.1039/d0tc00044b

Weigend, F., and Ahlrichs, R. (2005). Balanced Basis Sets of Split Valence, Triple Zeta
Valence andQuadruple Zeta Valence Quality for H toRn: Design andAssessment
of Accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305. doi:10.1039/b508541a

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). Moleculenet: a Benchmark for Molecular Machine Learning. Chem. Sci.
9, 513–530. doi:10.1039/c7sc02664a

Zhao, Y., and Truhlar, D. G. (2008). The M06 Suite of Density Functionals for
Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent
Interactions, Excited States, and Transition Elements: Two New
Functionals and Systematic Testing of Four M06-Class Functionals and
12 Other Functionals. Theor. Chem. Account. 120, 215–241. doi:10.1007/
s00214-007-0310-x

Conflict of Interest: AY, AO, YJ, HC were employed by Samsung Electronics.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yakubovich, Odinokov, Nikolenko, Jung and Choi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 80013312

Yakubovich et al. Discovery of TTF Molecules

https://doi.org/10.1039/d0tc00044b
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Computational Discovery of TTF Molecules with Deep Generative Models
	1 Introduction
	2 Methods
	2.1 Target Properties of TTF Candidates
	2.2 Algorithm for the Generation of Molecular Topology
	2.3 Experimental Data for Validation
	2.4 Calculation of the Excitation Energies
	2.5 Machine Learning-Assisted Design
	2.6 Prediction of Excitation Energies

	3 Results
	3.1 Brute-Force Screening of the Core Compounds
	3.2 Baselines and Performance of Generative Models
	3.3 Structure of the Latent Space
	3.4 Filtering Based on Predicting Excitation Energies
	3.5 Workflow for TTF Molecules Discovery

	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


