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ABSTRACT Treponema pallidum, an obligate human pathogen, has an outer mem-
brane (OM) whose physical properties, ultrastructure, and composition differ mark-
edly from those of phylogenetically distant Gram-negative bacteria. We developed
structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T.
pallidum Nichols using solved Gram-negative structures, computational tools, and
small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains.
The T. pallidum “OMPeome” harbors two “stand-alone” proteins (BamA and LptD)
involved in OM biogenesis and four paralogous families involved in the influx/efflux
of small molecules: 8-stranded b-barrels, long-chain-fatty-acid transporters (FadLs),
OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA
(TP0326), the central component of a b-barrel assembly machine (BAM)/translocation
and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-trans-
port-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515,
an LptD ortholog, contains a novel, unstructured C-terminal domain that models
inside the b-barrel. T. pallidum has four 8-stranded b-barrels, each containing posi-
tively charged extracellular loops that could contribute to pathogenesis. Three of
five FadL-like orthologs have a novel a-helical, presumptively periplasmic C-terminal
extension. SAXS and structural modeling further supported the bipartite membrane
topology and tridomain architecture of full-length members of the Tpr family. T. pal-
lidum’s two efflux pumps presumably extrude noxious small molecules via four coex-
pressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we mod-
eled the molecular machines that deliver their substrates into the OM or external
milieu. The spirochete’s extended families of OM transporters collectively confer a
broad capacity for nutrient uptake. The models also furnish a structural road map for
vaccine development.

IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spiro-
chete, is the ultrastructural basis for its well-recognized capacity for invasiveness,
immune evasion, and persistence. In recent years, we have made considerable pro-
gress in identifying T. pallidum’s repertoire of OMPs. Here, we developed three-
dimensional (3D) models for the T. pallidum Nichols OMPeome using structural mod-
eling, bioinformatics, and solution scattering. The OM contains three families of OMP
transporters, an OMP family involved in the extrusion of noxious molecules, and two
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“stand-alone” proteins involved in OM biogenesis. This work represents a major
advance toward elucidating host-pathogen interactions during syphilis; understand-
ing how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules
from its obligate human host; and developing a vaccine with global efficacy.

KEYWORDS syphilis, Treponema pallidum, bioinformatics, outer membrane proteins,
structural biology, vaccines

Syphilis is a multistage, sexually transmitted infection renowned for its protean clini-
cal manifestations and protracted course (1, 2). Since the start of the new millen-

nium, the disease has undergone a dramatic resurgence in the United States, particu-
larly among men who have sex with men (3), in addition to posing an ongoing global
health threat to at-risk populations in resource-poor nations (4). These alarming trends
underscore the urgent need for a vaccine with global efficacy (4). The complex natural
history of syphilis reflects the invasiveness, immunoevasiveness, and inflammatory
potential of its etiological agent, the pathogenic spirochete Treponema pallidum subsp.
pallidum (5, 6). As an extreme auxotroph, T. pallidummust obtain a vast array of biomo-
lecules from its obligate human host (7, 8). To support its distinct parasitic lifestyle (6),
T. pallidum has evolved an outer membrane (OM) (see Table S1 in the supplemental
material, which defines all abbreviations used in this document) whose physical prop-
erties, ultrastructure, and composition differ markedly from those of phylogenetically
distant Gram-negative bacteria (9–12). The T. pallidum OM is a fragile lipid bilayer
lacking lipopolysaccharide (LPS) (7) with a much lower density of membrane-span-
ning proteins than its Gram-negative counterparts (10, 11). The OM’s paucity of sur-
face-exposed pathogen-associated molecular patterns and membrane-spanning
proteins is the ultrastructural basis for the syphilis spirochete’s remarkable capacity
for persistence and immune evasion, attributes that have earned it the designation
“stealth pathogen” (6).

The Gram-negative OM is an asymmetric lipid bilayer consisting of an inner (peri-
plasmic) leaflet of glycerophospholipids and an outer leaflet of LPS, the highly inflam-
matory glycolipid that establishes the permeability barrier (13). In disease-causing
organisms, the OM constitutes the host-pathogen interface, serving adhesive, invasive,
and immunoevasive functions integral to a bacterium’s parasitic program (14–16). The
structure also houses the surface-exposed targets for protective antibodies elicited
during infection or by immunization (17–20) and, therefore, is the focus of vaccine de-
velopment. A characteristic feature of this unusual bilayer is its high density of integral
membrane proteins that, with rare exceptions (21), adopt the versatile b-barrel confor-
mation in which an even number of antiparallel, amphipathic b-strands circularize to
form a closed structure, typically with a central channel (22, 23). Bridging adjacent
strands on the external side of the OM are large extracellular loops (ECLs) that mediate
interactions with host cells and tissue components (24–26) and contain B-cell epitopes
(BCEs) subject to sequence/antigenic variation due to host immune pressure (27–30).
Gram-negative b-barrel proteins serve transport-related functions that contribute to
the maintenance of cellular homeostasis. General porins are abundant, trimeric aque-
ous channels for the passive diffusion of small, water-soluble molecules (31, 32), while
low-abundance, energy-coupled, monomeric transporters serve as substrate-specific,
ligand-gated channels for the uptake of micronutrients such as iron, nickel, and vita-
min B12 (33). Gram-negative bacteria also express OM transporters that enable growth
on alternative carbon sources, such as maltodextrins (LamB) and fatty acids (FadL) (34,
35). BamA and LptD are the terminal b-barrel components of the molecular machines
that insert nascent outer membrane proteins (OMPs) and LPS, respectively, into the
OM bilayer (36–38). The OMs of Gram-negative bacteria also contain a considerable
number of proteins that form 8- to 10-stranded monomeric b-barrel structures that
are implicated in the transport of small molecules and cell adhesion (39, 40). In addi-
tion to shuttling molecules into the cell, Gram-negative bacteria need to expel
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exogenous and endogenous toxins. They achieve this by coupling cytoplasmic mem-
brane (CM)-associated efflux pumps to an interesting variation on the b-barrel theme:
trimeric outer membrane factors (OMFs) in which each monomer contributes 4
b-strands to complete a single 12-stranded b-barrel (41, 42).

Among the many factors hampering the molecular characterization of T. pallidum
strain Nichols rare OMPs was their lack of sequence relatedness to prototypical OMPs
of Gram-negative bacteria (11). To overcome this hurdle, we mined the T. pallidum ge-
nome for proteins predicted to form b-barrels (6, 43), the hallmark conformation of
OMPs in double-membrane organisms (22, 23), and subsequently demonstrated that
selected candidate OMPs, in fact, adopt this conformation in vitro and are surface
exposed in vivo (44, 45). The expansion of OMP structures in the RCSB PDB database
(www.rcsb.org), coupled with newly developed structural algorithms (46–48), has
enabled us to begin to generate three-dimensional (3D) models for candidate OMPs
previously identified by secondary structure predictions (11).

For the iteration of the T. pallidum (Nichols) OMP repertoire (OMPeome) described
here, we refined our structural models using solved structures as the templates, an
expanded battery of computational and bioinformatic tools, recently published experi-
mental data, and small-angle X-ray scattering (SAXS) analysis of selected recombinant
aqueous soluble periplasmic domains. Our analyses revealed that, in addition to the
BamA and LptD “stand-alone” proteins with novel structural features, the spirochete’s
OM contains extended families of transporters and efflux pump OMFs that presumably
endow the organism with a broad capacity for nutrient uptake and molecule extrusion.
For BamA, LptD, and efflux pump OMFs, we identified and modeled the components
of the cognate molecular machines that enable these OMPs to deliver their unique car-
gos into the OM bilayer or the external milieu. SAXS provided new insight into the
function of T. pallidum’s b-barrel assembly machine (BAM) apparatus and additional
biophysical evidence for the bipartite membrane topology of full-length members of
the T. pallidum repeat (Tpr) family. Collectively, the 3D models reveal that T. pallidum
has evolved a unique repertoire of OMPs to address its physiological needs while
meeting the demands of stealth pathogenicity. Strategies to elicit protective antibod-
ies by immunization with recombinant treponemal proteins require detailed knowl-
edge of the molecular architecture of the spirochete’s OM as well as the membrane to-
pology and structure of candidate vaccinogens. Thus, the models described here also
provide a structural road map for the development of a broadly protective vaccine for
a disease that has afflicted humankind for centuries.

RESULTS AND DISCUSSION
T. pallidum BamA (TP0326) possesses a divergent b-barrel domain and a highly

flexible POTRA arm. BamA is the central catalyst of the BAM apparatus, the molecular
machine that inserts newly synthesized OMPs into the OMs of diderm bacteria (49). In
Escherichia coli, BamA consists of a C-terminal b-barrel and an extended N-terminal
periplasmic region containing five polypeptide-transport-associated (POTRA) domains
(50) (Fig. 1A). Following export across the CM by the Sec translocon, nascent OMPs are
transported to the POTRA arm of BamA by the periplasmic chaperones Skp and SurA
(51). The POTRA arm then works in concert with the accessory lipoproteins BamBCDE
to thread unfolded OMPs into the lumen of the b-barrel (52). To accept its cargo, the
BamA b-barrel adopts a conformational state in which the periplasmic aqueous pore is
open and the lateral gate is closed (53).

The discovery that T. pallidum contains a BamA ortholog (TP0326), its first character-
ized rare OMP (54), provided strong support for the assumption that, as in Gram-nega-
tive bacteria, the spirochete’s OMPs adopt a b-barrel conformation. Here and else-
where, we evaluated the integrity of our structural models using MolProbity (55) and
WinCoot (56). Our 3D structural model of the BamA b-barrel (Table 1) revealed features
typical of Gram-negative BamAs, such as a lateral gate formed by b-strands 1 and 16; a
dome comprised of ECL4, -6, and -7 that occludes the barrel’s extracellular opening;
and the projection of ECL6 into the barrel interior (44). However, the model also
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exhibited features suggesting that evolution has tailored T. pallidum’s BamA to cata-
lyze the OM insertion of a distinctive repertoire of OMPs while contending with host-
derived immune selection pressures (30, 44). In addition to having a positively charged
lumen and different anchoring residues within the barrel for ECL6 (44), TP0326 also

FIG 1 The highly flexible POTRA1-5 of T. pallidum BamA lack BamBCDE-interacting residues. (A and B) Ribbon
diagrams for the crystal structure of E. coli BamA (PDB accession number 5D0Q) and the structural model of
TP0326. Both proteins are in the same orientation. The arrows indicate ECL4 in both proteins. The b-strands
(b1 and b16) forming the lateral gate are shown in magenta. The polyserine tract in ECL7 of TP0326 is
displayed as green spheres. A nonconservative amino acid substitution (L593Q) in ECL4 of TP0326 is depicted
as an orange sphere with the BCE (shown as a blue ribbon). (C and D) The LptD interaction sites (59) in the
b-barrel domain of E. coli BamA (PDB accession number 5D0Q) and their equivalent residues in the 3D model
of TP0326 are labeled and shown as sticks. (E and F) BamBCDE-interacting residues of the E. coli POTRA arm
(PDB accession number 5D0Q) and their equivalent residues in the 3D model of TP0326 POTRA1-5 are depicted
as blue, green, cyan, and red surfaces, respectively. Both POTRA arms (E and F) are in the same orientation. (G)
Rg distribution of EOM-generated major conformations for the SAXS data of TP0326 POTRA1-5. Three major
conformations (compact, intermediate, and extended) for TP0326 POTRA1-5 are shown in the 3D models. (H)
The SAXS envelope (gray surface) of TP0326 POTRA1-5 overlaid with the 3D model of its compact
conformation (green 3D model in panel G).
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harbors an unusual ECL (ECL7) with a two-tiered polyserine-rich tract found only in
pathogenic treponemes (44, 57) and a large ECL (ECL4) harboring an antigenically vari-
able BCE (Fig. 1B), which can be targeted by opsonic antibodies (30, 44). Striking mo-
lecular differences were also noted between the BAM complex of T. pallidum and its E.
coli prototype. The T. pallidum BAM complex is larger than that of E. coli (;300 to
400 kDa versus 232 kDa), lacks BamBCDE subunits based on genome mining for struc-
tural as well as sequence orthologs, and, notably, dissociates in relatively low concen-
trations of the detergent n-dodecyl-b-D-maltoside (DDM) (54, 58).

Recent biochemical and structural studies in E. coli have established that folding of
nascent OMPs occurs within the lumen of the BamA b-barrel and, for one substrate,
LptD, have identified residues vital to this process (59). To determine whether these
essential residues are conserved in T. pallidum BamA, we performed structure-based
sequence alignment of the TP0326 3D model with the crystal structures of E. coli BamA
(PDB accession numbers 5D0Q and 5D0O) (60). The presence of an LptD ortholog

TABLE 1 Structural modeling of the T. pallidum OMPeome

T. pallidum protein Modeling softwarea
Identified structural ortholog; organism;
PDB accession no.

% sequence identity
with orthologb

Components of the BAM complex
TP0326 ModWeb BamA; E. coli; 4K3B 19
DUF domain of TP0325 SWISS-MODEL DUF490 domain of TamB; E. coli; 5VTG 22

Components of the Lpt complex
TP0515 I-TASSER LptD; Shigella flexneri; 4Q35 20
TP0784 Phyre2 LptC; Vibrio cholerae; 6MJP 18
TP0785 Phyre2 LptA; E. coli; 2R1A 18
TP0786 Phyre2 LptB; Burkholderia phymatum; 4WBS 50
TP0883 Phyre2 LptF; Vibrio cholerae; 6MJP 15
TP0884 Phyre2 LptG; Vibrio cholerae; 6MJP 17

8-stranded b-barrels
TP0126 Phyre2, SWISS-MODEL OmpW; E. coli; 2MHL (NMR structure), 2F1T

(crystal structure)
19

TP0733 Phyre2, SWISS-MODEL 23
TP0479 I-TASSER, SWISS-MODEL OprG; Pseudomonas aeruginosa; 2N6L

(NMR structure), 2X27 (crystal structure)
16

TP0698 I-TASSER, SWISS-MODEL 18

FadL-like proteins
TP0548 trRosetta Long-chain-fatty-acid transporter FadL; E. coli; 1T1L 17
TP0856 trRosetta 19
TP0858 trRosetta 18
TP0859 trRosetta 17
TP0865 trRosetta 18

Components of efflux systems
TP0966 trRosetta OMF (TolC); E. coli; 1TQQ 15
TP0967 trRosetta 16
TP0968 trRosetta 16
TP0969 trRosetta 16
TP0962 Phyre2 IM-spanning domain of MacB; Acinetobacter

baumannii; 5GKO
25

TP0963 Phyre2 IM-spanning domain of MacB; Acinetobacter
baumannii; 5GKO

27

TP0964 Phyre2 Cytoplasmic domain of MacB; Acinetobacter
baumannii; 5GKO

51

TP0965 Phyre2 MacA; E. coli; 5NIK 19
TP0790 Phyre2 AcrB; E. coli; 5V5S 21

T. pallidum repeat proteins: all
members of Tprs

trRosetta No structural template was identified NA

aModWeb and SWISS-MODEL, comparative modeling; Phyre2, threading; I-TASSER and trRosetta, ab initio. The quality of all models was evaluated with MolProbity (55) and
WinCoot (56).

bNA, not applicable.
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(TP0515 [see below]) in T. pallidum (11) supports the validity of this comparison. Figure
1C and D show that E470, R488, and N666, hydrophilic residues in E. coli BamA essen-
tial for LptD folding (59), have been replaced by K484, D502, and D718 in TP0326. In
separate study, Hart et al. (61) demonstrated that an E470K mutation in E. coli BamA
bypasses the BAM machinery’s requirement for BamBCDE albeit with decreased effi-
ciency. K484, located in the equivalent position in TP0326 (Fig. 1C and D; see also Fig.
S1A in the supplemental material), could serve as a comparable “gain-of-function”
replacement. While TP0326 maintains a lateral gate for the egress of OMPs, the posi-
tions of critical gate residues are swapped in E. coli and T. pallidum (Fig. 1C and D; Fig.
S1A): N427 and Q803 on b-strands 1 and 16, respectively, in E. coli BamA (59) have
been replaced by Q436 and N827 in TP0326. Thus, whereas the overall mechanism for
folding nascent OMPs appears to be preserved in T. pallidum, substitutions in the
BamA barrel collectively imply that specific residue interactions differ substantially.
Given the much lower replication rate of T. pallidum (30 h in vivo versus 20min for E.
coli) (62), these divergences could also serve as an allosteric mechanism to coordinate
the kinetics of OMP folding and OM insertion with the growth rate (63). Other factors,
such as the difference in lipid compositions between the T. pallidum and Gram-nega-
tive OMs (64), particularly the absence of LPS in the former, may also be important in
regulating the rate at which the b-barrel of BamA inserts nascent OMPs into the OM
bilayer (65).

As shown in Fig. 1E, the contact residues of the five POTRA domains with BamBCDE
have been extensively mapped from the crystal structures of the E. coli BAM complex
(PDB accession numbers 5D0Q, 5D0O, and 5EKQ) (60, 66). Not surprisingly, most of
these interacting residues are absent in the POTRA arm of TP0326 (Fig. 1F). Although T.
pallidum contains Skp (TP0327) (54) and a recently identified SurA (TP1016) ortholog
(67), the differences in the POTRA arms and the lack of BAM accessory subunits in T.
pallidum strongly imply that the syphilis spirochete employs a divergent mechanism
for the transfer of nascent OMPs to its BamA b-barrel.

In addition to the BAM complex, E. coli contains a translocation and assembly mod-
ule (TAM) required for the export of a subset of OMPs, particularly autotransporters, to
the cell surface (68, 69). The TAM complex consists of TamA, also a member of the
OMP85 superfamily, and a CM protein, TamB, containing a periplasmic DUF490 domain
that interacts with the POTRA arm of TamA. tp0325, the gene immediately upstream of
tp0326 (Fig. S1B) and likely cotranscribed with it, encodes a large (108-kDa) TamB
ortholog with a C-terminal DUF490 domain (68). Webb et al. (70) proposed that T. pal-
lidum harbors a chimeric BAM/TAM OM biogenesis machine. In support of this conjec-
ture, Iqbal and colleagues (71) demonstrated that the TamB ortholog (bb0794) of
Borrelia burgdorferi, also upstream of bamA (bb0795), is part of the Lyme disease spiro-
chete’s BAM complex. Homology modeling reveals that, like the TamA interaction part-
ner in E. coli (72), the DUF490 domain of TP0325 is an elongated taco-shaped molecule
composed entirely of b-sheets and random coils (Table 1 and Fig. S1C).

Using SAXS, we solved the solution structure of aqueous soluble, monomeric (;45-
kDa), recombinant POTRA1 to -5 (POTRA1-5) of TP0326 (Fig. S2A) to gain insights into
the mechanism of transfer of nascent OMPs. The structural model of POTRA1-5
(Fig. 1F) poorly matched the experimental scattering data (x 2 = 9.0) (Fig. S2B).
Consequently, we assessed whether the SAXS data represent a mixture of conforma-
tions by employing an ensemble optimization method (EOM) (73). The EOM generated
a three-state ensemble (compact, intermediate, and extended conformations), which
dramatically improved the x2 value from 9.0 to 1.0 (Fig. 1G and Fig. S2B). Ab initio
shape reconstruction from the SAXS data, using 10 independent bead models (see
Materials and Methods), yielded a multidomain envelope. The EOM-generated struc-
tural model of the compact conformation of POTRA1-5 (Fig. 1G) shows an excellent fit
for the ab initio molecular envelope (Fig. 1H). Based on the flexibility of the T. pallidum
POTRA1-5 solution structure (Fig. 1G and H) and previously solved E. coli BamA struc-
tures in multiple conformations (37), we can propose a working model for POTRA-
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mediated transfer to the BamA channel of nascent treponemal OMPs delivered by the
periplasmic chaperones SurA and Skp (Fig. S3). Interaction with the DUF490 domain of
TP0325 with TP0326 occurs when the POTRA arm is extended. In this conformation,
the periplasmic pore of TP0326 is closed, and the lateral gate is open, permitting the
egress of substrates folding within the barrel. The receipt of unfolded, newly exported
OMPs from periplasmic chaperones results in the detachment of the POTRA from
TP0325, enabling it to assume the bent, “transfer” conformation, which opens the peri-
plasmic pore and closes the lateral gate. This scenario potentially explains the previ-
ously observed dissociable nature of the T. pallidum BAM complex (54).

T. pallidum harbors an LptD ortholog and an Lpt apparatus for transport of an
uncharacterized substrate other than LPS. The LPS transport (Lpt) machinery con-
sists of seven essential proteins (LptABCDEFG) that mediate the transfer of newly syn-
thesized LPS from the periplasmic side of the CM to the OM (74). The inner membrane
(IM) components LptB2FG form an ATP binding cassette (ABC) transporter that uses the
energy from the hydrolysis of ATP to extract LPS from the CM and push it along the
periplasmic jelly roll bridge formed by LptCAD (the so-called “Pez model” for LPS trans-
port) (74). A translocon, consisting of the integral OMP LptD and the LptE lipoprotein
“plug” within the lumen of the LptD b-barrel, transfers LPS from the periplasmic bridge
to its final destination: the outer leaflet of the OM (74). LptD is a 26-stranded b-barrel
with a hydrophilic interior, ECLs that close off the external opening of the barrel and
fold into the lumen, a lateral gate between b-strands 1 and 26, and an N-terminal
b-jelly roll domain that completes the periplasmic bridge (Fig. 2). A hydrophobic slide
within the b-jelly roll domain of LptD guides LPS through a hydrophobic

FIG 2 Structural model of T. pallidum LptD (TP0515). Shown are cartoon diagrams of the LptD-LptE
complex crystal structure (PDB accession number 4Q35) from Shigella flexneri (left) and the 3D
structure model of the T. pallidum LptD ortholog (TP0515) (right). Both proteins are in the same
orientation. The b-jelly roll N-terminal domain and 26-stranded b-barrel are shown in green and
cyan, respectively. LptE of S. flexneri and the C-terminal extension of TP0515 are depicted as orange
ribbons. With both proteins, the b-strands (b1 and b26) of the lateral gate and b2 are shown in
magenta. Essential amino acids of the lateral gate (N232, P231, and P246) (38) and the
intramembrane hole (W180, F203, Y205, V208, F211, and Y212) (75) and their T. pallidum TP0515
equivalents are displayed as sticks. Residues of intramembrane holes are zoomed-in for clarity. The
four Cys residues required for the folding of S. flexneri LptD (76) are shown in red. Cys residues in T.
pallidum LptD are shown as dark gray sticks.
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intramembrane hole situated within the bilayer and contiguous with the lateral gate
and negatively charged exit pore (Fig. 2) (38, 75). Following transfer from the periplas-
mic bridge, the lipid A moiety of LPS inserts into the OM through the hydrophobic
hole, while the O-antigen is delivered to the extracellular milieu through the lateral
gate and exit pore with the assistance of LptE (38, 75). A functional Lpt pathway
depends upon the proper folding of LptD, which requires LptE and involves a complex
cycle of disulfide bond rearrangements between four conserved cysteines in the b-jelly
roll domain and the b-barrel (76).

Because T. pallidum lacks an LPS biosynthetic pathway (6), we were surprised to dis-
cover that TP0515, originally identified as a candidate OMP based on secondary struc-
ture predictions (43), is a structural ortholog of LptD (11). Moreover, as shown in Fig.
S4, with the exception of LptE, T. pallidum contains all the components of the Lpt path-
way (Table 1) (74). The 3D model of TP0515, built by an ab initio modeling program,
I-TASSER (Table 1) (46), contains the hallmark features of Gram-negative LptD
described above (Fig. 2). DiscoTope 2.0 analysis of TP0515 predicts that several large
ECLs (ECL3, -5, -6, -7, and -12) in its b-barrel domain contain strong BCEs (Fig. S4 and
Table S2), which could serve as antigenic targets for host recognition. The likely cargo
for the Lpt pathway in T. pallidum is its uncharacterized glycolipids (77), and this prob-
ably accounts for structural differences between Gram-negative LptD and TP0515 (Fig.
2). Moreover, it seems reasonable to presume that the putative glycolipid cargo is
delivered to the outer leaflet of the OM where it would serve a barrier function. Most
notable is an unstructured hydrophilic C-terminal extension in TP0515 that I-TASSER
positioned inside the hydrophilic lumen of the b-barrel (Fig. 2); it is tempting to specu-
late that this region fulfills the functional roles of LptE. The essential hydrophobic resi-
dues (75) of the intramembrane hole in TP0515 are well conserved (Fig. 2). Although
TP0515 maintains asparagine residues in its lateral gate (N227 and N848 in b1 and
b26, respectively), it lacks one of the two essential prolines in the b2 strand (Fig. 2)
needed for lateral gate function in Gram-negative LptDs (38), implying somewhat dif-
ferent mechanics of lateral gate function. Whereas Gram-negative LptD has a nega-
tively charged exit pore to expel negatively charged LPS into the outer leaflet of the
OM, the exit pore of TP0515 is positively charged (Fig. S5A) and presumably exports an
uncharacterized, positively charged glycolipid (77). Interestingly, the exit pore of LptD
(LIC11458) from Leptospira interrogans, a spirochete that contains LPS, is negatively
charged (Fig. S5A). Finally, TP0515 has four cysteines, but their positions are not con-
served with respect to the cysteines in Gram-negative LptD (Fig. 2 and Fig. S5B).

Eight-stranded b-barrels. Eight-stranded b-barrels comprise a group of function-
ally versatile OMPs that are ubiquitous in Gram-negative bacteria (78). Members of this
group have either a single-domain b-barrel architecture (e.g., OmpW, Opr, and CarO)
(79–81) or a bipartite topology (OmpA) (82) in which the N-terminal domain forms a
b-barrel and the periplasmic C-terminal domain interacts with peptidoglycan. Despite
their conserved b-barrel architecture, members of this group have low overall
sequence similarity, with the ECLs, in particular, showing extensive diversity (83). E. coli
OmpW, Pseudomonas aeruginosa OprG, and Acinetobacter baumannii CarO are the
most extensively studied representatives of the single-domain subgroup. The crystal
structures of OmpW and OprG revealed a narrow hydrophobic channel leading to a lat-
eral opening in the barrel wall (79, 84), while CarO has a hydrophilic channel and lacks
a lateral gate (85). It is often stated that OmpW transports small nonpolar substrates
(86), OprG transports small neutral amino acids (87), and CarO mediates the uptake of
glycine and ornithine (85). However, there is considerable disagreement about the car-
gos that these proteins handle and their mechanisms of transport (86–88). The
dynamic structures of OmpW (PDB accession number 2MHL), OprG (PDB accession
number 2N6L), and AlkL of Pseudomonas putida (transports alkanes) (PDB accession
number 6QAM) solved by nuclear magnetic resonance (NMR), and their electrostatic
potentials, appear to provide a more uniform picture of structure-function relation-
ships in the 8-stranded b-barrels (Fig. S6). The NMR structures revealed that each has a
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narrow channel, long flexible ECLs, and short b-strands with lengths closely matching
the thickness of the OM bilayer (87, 89, 90). These studies, bolstered by molecular sim-
ulations, yield a mechanistic model in which substrate transport occurs via dynamic
mobility of the ECLs and transient strand separation (89). Eight-stranded b-barrels also
contribute to bacterial virulence by virtue of their ECLs (78). As an example, Ail of
Yersinia pestis binds to negatively charged extracellular matrix (ECM) components via
its positively charged ECLs (83).

The T. pallidum Nichols genome encodes two proteins (TP0624 and TP0292) with
OmpA-like domains containing peptidoglycan recognition motifs; neither, however,
contains a b-barrel domain (91–93). The genome encodes four single-domain 8-
stranded b-barrels (TP0126, TP0479, TP0698, and TP0733). TP0126 and TP0733 were
identified by ab initiomodeling using the OmpW crystal structure (PDB accession num-
ber 2F1T) (11, 94). TP0479 and TP0698, discovered here from a reanalysis of T. pallid-
um’s potential b-barrel-forming proteins (43), best fit the crystal structure of OprG
(PDB accession number 2X27). Knowing that the NMR and crystal structures for 8-
stranded barrels can be at variance, we also used the NMR structures of OmpW (PDB
accession number 2MHL) (87) and OprG (PDB accession number 2N6L) (90) as the tem-
plates to construct homology models (Table 1). We consider the NMR-based models to
be preferable because they provide greater coverage of the TP0126 and TP0733
sequences and yield barrels and ECLs with more open conformations (Fig. 3A).
Calculations done using MOLEonline (95) predict that all four proteins have a narrow,
continuous channel (Fig. 3B) consistent with possible transport functions. Typical of 8-
stranded barrels, structure-based sequence alignments show that the ECLs vary mark-
edly in amino acid composition and length (Fig. S7), with some (e.g., ECL4 of TP0479)
likely being highly flexible. As a consequence of this diversity, the ECLs vary in both
surface charge (Fig. 3C) and density/distribution of BCEs (Fig. 3A and Table S3). These
models support the notion that the syphilis spirochete’s 8-stranded b-barrels transport
a variety of small-molecule substrates and engage in diverse interactions at the host-
pathogen interface. In other bacteria, 8-stranded b-barrels have shown promise as vac-
cine candidates (16, 78). The presence of multiple surface-exposed BCEs in the T. pal-
lidum 8-stranded barrels (Fig. 3A) suggests that these proteins could also be targets for
a protective immune response. It is noteworthy, therefore, that recombinant TP0126
failed to protect in the rabbit model of experimental syphilis (96). As Haynes et al.
noted (96), it remains to be determined whether this negative result reflects the biol-
ogy of the native protein, which has been proposed to undergo phase variation (94),
and/or deficiencies in their immunization/challenge protocol.

FadL-like 14-stranded b-barrels. Although biomembranes typically are highly per-
meable to long-chain fatty acids (LCFAs), Gram-negative OMs are a notable exception
because of the permeability barrier created by an outer leaflet composed of LPS (31).
Consequently, the transport of LCFAs across the OM of Gram-negative bacteria
requires a dedicated transporter (34, 97). Based on the crystal structure of E. coli FadL
(PDB accession number 1T1L), the proposed pathway for fatty acid uptake involves
two low-affinity binding sites within a hydrophobic groove formed by ECL3 and -4 and
a conserved high-affinity site at the entrance of the barrel (Fig. S8A) (34). Once inside
the barrel, the substrate disrupts a hydrogen bond between a conserved glycine
(G103) in b-strand 3 and a phenylalanine (F3) in a hydrophilic, N-terminal “hatch”
region that plugs the lumen (34). Disruption of this bond induces a transient lateral
opening at the kink formed by residues SNYG in b-strand 3 (S3 kink); a conserved Asn-
Pro-Ala (NPA) motif in the hatch is essential for this substrate-induced conformational
change (98). To date, only two other FadL-like OMPs, TbuX of Ralstonia pickettii (PDB
accession number 3BRY) and TodX of Pseudomonas putida (PDB accession number
3BRZ), which transport aromatic hydrocarbons, have been structurally characterized
(99). Compared to E. coli FadL, both structures have similar LCFA high-affinity binding
sites but less pronounced S3 kinks and continuous channels extending through their
barrels.
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Although a previous study proposed that hydrocarbon substrates traverse the
channels of TbuX and TodX to reach the periplasm, a recent investigation provided evi-
dence that traversal of the lateral gate would be the preferred mechanism. Although a
previous study (99) proposed that hydrocarbon substrates traverse the TbuX and TodX
channels to reach the periplasm, a recent investigation (169) provided evidence that
aromatic compounds exit their barrels via a lateral gate.

How T. pallidum obtains LCFAs, which it cannot synthesize (7), has been a long-
standing question (77). Although the syphilis spirochete’s OM is more permeable to
LCFAs than that of E. coli (100), the discovery that it harbors five FadL orthologs
(TP0548, TP0856, TP0858, TP0859, and TP0865) (Fig. S8B) (11) argues that the diffusion
of LCFAs alone is not sufficient to meet the bacterium’s needs. Moreover, the presence
of five paralogous FadL-like OMPs suggests that this family imports a wider range of
essential hydrophobic nutrients. Flavins might be one such substrate. In addition to
being a fatty acid auxotroph, recent studies by Deka and colleagues (101) have called
attention to the spirochete’s “flavin-centric” lifestyle as a basis for many redox bio-
chemical reactions. Flavins have limited water solubility (102), and T. pallidum lacks the
ability to synthesis them (6). An alignment percentage matrix (Table S4) shows that T.
pallidum FadL-like proteins fall into three subgroups: TP0548 (subgroup I), TP0856 and

FIG 3 Eight-stranded b-barrels in T. pallidum. Shown are structural models with BCEs (A), predicted luminal
cavities (B), and comparative electrostatics (C) for TP0126, TP0733, TP0479, and TP0698. BCEs are shown as
transparent surfaces in panel A. The luminal cavities are shown as gray surfaces in panel B.
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TP0858 (subgroup II), and TP0859 and TP0865 (subgroup III). To better understand the
evolutionary and functional relationships between T. pallidum FadL-like proteins and
other bacterial orthologs, we performed a sequence-based phylogenetic analysis of 415
unique FadLs from the Pfam database (http://pfam.xfam.org) (Fig. S9). Interestingly, the
T. pallidum FadL-like proteins are much more closely related to R. pickettii TbuX and P.
putida TodX than to E. coli FadL and cluster on the same branch of the tree, suggesting
evolution from a single precursor.

Three-dimensional ab initio modeling using either Phyre2 or I-TASSER predicts
that all five FadL-like proteins form 14-stranded b-barrels with an unstructured N-ter-
minal hatch within the barrel lumen. However, neither program provided complete
coverage for TP0548, TP0859, or TP0865. More specifically, TP0859 and TP0865 have
unmodeled stretches at their N and C termini, while TP0548 has an unmodeled
stretch at its C terminus (data not shown). Additionally, ECL4 of TP0858 was incom-
plete. We then used trRosetta (48), an advanced computational program based on
direct energy minimization, in an attempt to obtain complete structural models (Fig.
4, Table 1, and Fig. S8B). The complete trRosetta models predict that N- and C-termi-
nal regions of TP0548, TP0859, and TP0865 (subgroups I and III) possess two struc-
tural features not seen in the solved crystal structures (34, 99): (i) the N-terminal
hatch regions extend from within the barrel to the external surface, where they form
a-helices that overlay the entrances (Fig. 4), and (ii) the C-terminal stretches form
three a-helical bundle domains attached to the b-barrel by short linkers. A search of
all FadL members in the Pfam database failed to identify any other orthologs contain-
ing a similar C-terminal domain. Based on its location distal to the b-barrel and pre-
dicted surface hydrophilicity, we assigned the C-terminal a-helical bundles to the
periplasmic compartment (Fig. 4). MOTIF Search (www.genome.jp/tools/motif) identi-
fied a tetratricopeptide repeat (TPR) motif distributed over two antiparallel a-helices
of each helical bundle (Fig. 4 and Fig. S8B). Such motifs typically form a hydrophobic
groove between the a-helices that mediates protein-protein interactions (103); analy-
sis using YRB (104) revealed a potential hydrophobic cleft in each C-terminal domain
(Fig. S10). Phyre2, I-TASSER, and trRosetta all predict that the five FadL orthologs lack
the LCFA high-affinity binding site; however, the luminal plug portions of the hatch
regions contain either a highly conserved NPA motif (TP0548, TP0856, and TP0858)
or an NAA variant (TP0859 and TP0865) (Fig. S8B). Hydrophobicity analysis by the
YRB program (104) revealed that each of the treponemal FadL-like proteins contains
hydrophobic patches extending from the rim through the barrel (Fig. S11A), provid-
ing a potential passageway for hydrophobic substrates into the periplasm. trRosetta
also predicts that ECL4 of TP0858 is a long cystine-rich loop comparable to ECL4 of
TP0856 (Fig. 4); both could form rigid, disulfide-bonded scaffolds to facilitate the cap-
ture of the substrate from the extracellular milieu. In this regard, the extended

FIG 4 Three T. pallidum FadL-like proteins have a bipartite membrane topology. b-Barrel domains are
shown in various cyan shades. In all models, the N-terminal hatch regions are shown in magenta.
BCEs are depicted as transparent surfaces. Cysteine residues in the cysteine-rich ECL4 of TP0856 and
TP0858 are represented as sticks. The C-terminal helical domains of TP0548, TP0859, and TP0865 are
shown in orange and indicated by arrowheads. The TPR motifs in the C-terminal domains are shown
in black.

Structural Modeling of the Treponema pallidum OMPeome Journal of Bacteriology

August 2021 Volume 203 Issue 15 e00082-21 jb.asm.org 11

http://pfam.xfam.org
http://www.genome.jp/tools/motif
https://jb.asm.org


hydrophobic cleft in ECL4 of TP0858 is particularly noteworthy (Fig. S11B). All five T.
pallidum FadL-like proteins harbor one or more predicted conformational BCEs (Fig. 4
and Table S5). Members of subfamilies I and III contain predicted BCEs in their hatch
regions, ECLs, and C-terminal extensions, while TP0856 and TP0858 have predicted
BCEs only in their ECLs or hatch domains, respectively. These predictions suggest
that family members are subject to various degrees of host immunological pressure.
Three (tp0856, tp0858, and tp0859) of the five genes are cotranscribed (Fig. S11B and
C), suggesting that their gene produces function in a coordinated fashion. It is widely
assumed that an effective syphilis vaccine has to target multiple OMPs (105). The
coexpression of these three OMPs makes them attractive vaccine candidates since
their ECLs would be accessible to antibodies at the same time.

It remains to be determined how T. pallidum FadL-like proteins transfer hydrocar-
bon substrates to the periplasm. Once in the periplasm, however, the transport path-
ways might diverge based on the physical properties of the substrates, particularly sol-
ubility. Conceivably, TP0548, TP0859, and TP0865 transport more hydrophobic
substrates. The interaction between their C-terminal a-helical domains and the TRAP
transporter (TP0956/TP0957) described by Norgard and colleagues (106, 107) would es-
tablish a mechanism to shuttle less-water-soluble nutrients across the periplasm, deliv-
ering them to a dedicated CM permease (TP0958). TP0856 and TP0858 would handle
more-water-soluble cargo discharged directly into the periplasmic compartment. The
periplasmic lipocalin TP0751, which we recently demonstrated has a hydrophobic rim
capable of binding small molecules (108), might also serve as a conduit of cargo(s)
imported by one or more members of the FadL-like family.

Treponema pallidum repeat proteins. Arguably, the most important initial discov-
ery from the T. pallidum Nichols genomic sequence was the Treponema pallidum repeat
(Tpr) family of proteins, whose members have sequence homology to the major outer
sheath protein (MOSP) of Treponema denticola (7, 109), a known trimeric pore-forming
adhesin (110–113) and a major virulence determinant (114). Centurion-Lara and co-
workers divided the Tprs into three subfamilies based on sequence relationships (109)
(Fig. S12). In the Nichols strain, TprA and TprF are truncated at their C-terminal ends.

Full-length Tprs consist of an extreme amino-terminal stretch (;50 amino acids
[aa]), a conserved N-terminal domain related to the corresponding domain in the N-
terminal portion of T. denticola MOSP (MOSPN), a central region that varies in both
length and sequence among family members (central variable region [CVR]), and a
conserved C-terminal domain related to the corresponding domain in MOSP (MOSPC)
(6, 111). Previous examinations of subfamily I Tprs (TprC/D and TprI) revealed that their
MOSPC domains form amphiphilic, trimeric b-barrels with porin activity in vitro and are
surface exposed in T. pallidum (45, 115). In contrast, the Tpr MOSPN domains and CVRs
are water soluble in vitro and periplasmic in T. pallidum. The truncated TprF is water
soluble in vitro and periplasmic in T. pallidum. We undertook further analyses to
expand our knowledge of Tpr domain architecture beyond subfamily I to the entire
family.

(i) Domain analysis and modeling predict a tridomain architecture of full-
length Tprs. According to the updated Pfam database (116), all full-length Tprs pos-
sess MOSPN and MOSPC domains (Fig. S12). A comparative percentage alignment ma-
trix of all Tpr MOSPN and MOSPC domains revealed less than 23% similarity between
the two domains (Table S6). This comparison of amino acid sequences between the
two domains suggests that they have distinct evolutionary origins. While the percent
similarities within the MOSPN and MOSPC domains are similar (Table S7), their stretches
of amino acid similarity differ in distribution (Fig. S13). With both domains, diversity is
generated by block insertions as well as amino acid substitutions. Particularly notewor-
thy in comparisons with the MOSPN and MOSPC domains are the marked differences in
the lengths and amino acid compositions of the CVRs (Fig. S12 and S13). Subfamily II
CVRs are considerably larger than those in the other subfamilies, also as a result of
block insertions, while the CVR of TprK is the smallest (Fig. S13). Collectively, these
results imply that the variable length of CVRs, resulting from the wholesale insertion of
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sequence cassettes, was a major factor in the evolution of the Tprs (111). Previous
unsuccessful efforts to predict secondary structures for the CVRs prompted us to con-
sider the possibility that they are unstructured. A search for disorder-based binding
regions using the ANCHOR program (117) predicts that several Tprs have short molecu-
lar recognition features (MoRFs) (;6 to 18 aa in length) (Fig. S12). MoRFs are expected
to undergo disorder-to-order transitions upon interaction with specific protein part-
ners (118).

In the absence of sequence or structural orthologs of the Tprs, we previously used
the TMBpro Web server to transform the MOSPC domain of TprC/D into a 10-stranded
b-barrel topology (30); this conformation is supported by our biophysical data (45).
Given that the TMBpro Web server (119) lacks a modeling module to predict secondary
and tertiary structures unbiasedly, we used the more accurate ab initio modeling pro-
gram trRosetta for the full-length Tprs (Table 1). trRosetta was unable to generate a
b-barrel model for either the full-length polypeptides or individual domains, presum-
ably reflecting the lack of structural templates in the databases. However, it predicted
that all nine full-length Tprs have a tridomain architecture with domain boundaries

FIG 5 trRosetta modeling of full-length Tprs and solution structures of MOSPN domains of T.
denticola MOSP and T. pallidum TprK. (A) MOSPN and MOSPC domains of all Tprs, shown in cyan and
yellow, respectively. a-Helices of CVRs are red. Residues corresponding to predicted CVR domain
boundaries from Pfam are shown as spheres. (B) Ab initio reconstruction of the low-resolution
molecular envelopes of T. denticola MOSP and T. pallidum TprK MOSPN domains (blue and red,
respectively) calculated using DAMMIN (166) and DAMAVER (167). Both envelopes were generated
without enforcing any symmetry. The maximum dimensions (Dmax) and the widths of both envelopes
are also labeled.
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(Fig. 5A) corresponding closely to those predicted by Pfam (Fig. S12). The MOSPN and
MOSPC domains are predominantly b-stranded, in agreement with secondary structure
analyses previously obtained by circular dichroism (CD) spectroscopy (45, 115).
Importantly, trRosetta predicts that all CVRs, including the diminutive CVR of TprK, con-
sist exclusively of a-helices (Fig. 5A). The predicted conservation of secondary structure
for the CVRs is noteworthy given their low degree of sequence similarity (Fig. S13 and
Table S7).

(ii) SAXS supports the bipartite membrane topology of all Tprs. Taken together,
the above-described findings indicate that full-length Tprs have a tridomain architec-
ture and a bipartite membrane topology. We used SAXS to garner additional experi-
mental evidence for the bipartite membrane topology of Tprs. For these investigations,
we chose MOSPN of T. denticola MOSP as a structural surrogate for the corresponding
Tpr domains and MOSPN of TprK given the widespread belief that all seven of its vari-
able regions occur within a b-barrel formed by the full-length polypeptide (120–122).
The MOSPN domains of both proteins could be purified by Ni-nitrilotriacetic acid (NTA)
chromatography without denaturants or detergents and, by size exclusion chromatog-
raphy (SEC), eluted as monomers with molecular weights of ;25 kDa (Fig. S14A). In
SAXS experiments, the scattering curves and intraparticle distance distribution func-
tions [P(r)] of both domains showed correct folding without aggregation (Fig. S14B
and C). As with TprF (45), ab initio envelope reconstructions from the SAXS data reveal
rigid, nonglobular shapes (Fig. 5B).

T. pallidum efflux systems and outer membrane factors. Bacteria not only need
to import nutrients but also need to expel toxigenic molecules of endogenous or exog-
enous origin (123). The capacity of numerous bacterial species to tolerate antibiotics
and other toxic compounds elaborated by the commensal flora and/or host defenses
arises in large part from the activity of efflux systems (124). Additionally, efflux systems
enhance the virulence potential of bacterial pathogens by protecting against reactive
oxygen species (125).

In Gram-negative bacteria, multicomponent efflux systems span both the inner and
outer membranes and consist of an OMF, an inner membrane-spanning transporter
(pump), and a periplasmic adaptor that connects the two (41). The pumps for these
multicomponent systems fall into two families: ATP binding cassette (ABC) and resist-
ance-nodulation-cell division (RND) transporters. ABC transporters (e.g., E. coli MacB)
consist of an N-terminal nucleotide binding domain (NBD) and four transmembrane
(TM) helices and hydrolyze ATP to drive transport (126). RND transporters (e.g., E. coli
AcrB) consist of a TM domain with 12 a-helices within the CM, a porter domain in the
periplasm containing the substrate binding pocket, and a docking domain that con-
nects the pump to the adaptor; RND transporters are powered by the proton motive
force (126). In both systems, OMF monomers (e.g., E. coli TolC) form a trimer with 3-
fold symmetry in which 4 b-strands and 6 a-helices from each subunit associate to
form a 12-stranded b-barrel within the OM and an a-helical barrel within the peri-
plasm, which interacts with a hexameric adaptor (e.g., AcrA and MacA) (127, 128). The
periplasmic adaptor and the IM transporter maintain a stable association, while the
OMF interacts transiently with the periplasmic adaptor. As a result, in E. coli, TolC can
associate with adaptors for both pumps (129).

An investigation by Brautigam and colleagues of Tp34 (TP0971), a T. pallidum lipo-
protein involved in metal homeostasis, resulted in the serendipitous discovery of a
large operon (tp0959 to tp0972) encoding a MacB transporter (TP0962, TP0963, and
TP0964), a periplasmic adaptor (TP0965), and four OMFs (TP0966 to TP0969) (130). In
contrast to conventional MacB (128, 131), which is a homodimer, the MacB transporter
in T. pallidum consists of a heterodimeric TM component (TP0962/TP0963) and two
identical NBDs (TP0964) (130). We identified an ortholog (TP0790) of the RND trans-
porter AcrB elsewhere in the T. pallidum genome (11). Multiple sequence alignment
(MSA) (Table S8) and phylogenetic analysis (Fig. S15A) revealed that the four T. pal-
lidum OMFs share 30% to 40% sequence similarity and cluster on a single branch close
to E. coli TolC and Salmonella enterica serovar Typhi St50. 3D models of the TP0966,
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TP0967, TP0968, and TP0969 protomers (Fig. 6A, Table 1, and Fig. S15B) have a typical
TolC-like topology consisting of four b-strands with two large ECLs and six a-helices.
Threefold symmetry was applied to assemble trimers for the four OMFs. Whereas the
predicted topologies of the T. pallidum OMFs closely overlap that of TolC (PDB acces-
sion number 1TQQ) (132) (Fig. 6A and Table S9), the electrostatics of the channels differ
greatly from that of TolC as well as each other. Notably, the TolC channel is entirely
negative, while the T. pallidum OMF channels contain variable patches of basic and
acidic residues (Fig. 6B). Interestingly, the TP0967 channel, the most negatively
charged of the four, also contains an aspartate ring (Fig. 6C), which, in TolC, determines
ion selectivity (133). As with the genes encoding the FadL-like proteins, the cotran-
scription of OMF genes (tp0966 to tp0969) implies that they function in parallel (130).
Also, as with the fadL-like genes, cotranscription makes them attractive vaccine

FIG 6 Channels of T. pallidum OMFs have dissimilar electrostatic potentials. (A) Ribbon diagrams for trimeric
structural models of T. pallidum OMFs and the crystal structure of E. coli TolC (PDB accession number 1TQQ).
One protomer in all four OMFs is shown in various shades of gold, while the TolC protomer is blue. BCEs are
displayed as surfaces. All proteins are in the same orientation, with b-strands labeled. (B) Comparative
electrostatics (same orientation) of T. pallidum OMFs and TolC. (C) View from the periplasmic entrance showing
the aspartate ring (red spheres) of TP0967 and E. coli TolC. Both proteins are in the same orientation.
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candidates. DiscoTope 2.0 predicts that all four trimers, most notably TP0969, contain
surface-exposed BCEs (Fig. 6A and Table S10).

We used Phyre2 and PyMOL to construct a hexameric assembly of the periplasmic
adaptor (TP0965), which exhibits a typical MacA-like funnel but is shorter than E. coli
MacA (;121 Å versus ;152 Å, respectively) (Fig. 7A and B). Because our mining of the
T. pallidum genome revealed only one adaptor, we hypothesize that it functions in
both efflux systems. This conjecture is based on the mixed electrostatic charges at the
interface of TP0965 with the two efflux pumps (TP0962/TP0963/TP0964 and TP0790)
(Fig. S16A). In E. coli, the positively charged periplasmic interface of MacB interacts
with the negatively charged projections of MacA, while the converse is true for AcrB
and AcrA (Fig. S16B). We next assembled the complete Mac and Acr efflux system in T.
pallidum (Fig. 7B) using the cryo-electron microscopy (cryo-EM) structures of E. coli Mac
and Acr (PDB accession numbers 5NIK and 5V5S, respectively) (127, 128) (Fig. S16B).

In contrast to E. coli, in which one OMF (TolC) interacts with multiple adaptors (129),
T. pallidum appears to have taken a different interactome approach to achieve sub-
strate versatility of its efflux systems. The spirochete’s use of four OMFs, one periplas-
mic adaptor, and two TM exporters theoretically enables it to contend with a wide
range of biochemical threats encountered in different tissues during the protracted
course of this chronic disease. Because of its extraordinary invasiveness, T. pallidum is
usually conceived of as a “loner” pathogen (6). However, during sexual activity, syphilis
spirochetes are often inoculated into sites that teem with commensal microorganisms
(4). The efflux pumps are likely a critical component of the spirochete’s early survival
strategy, particularly in sites such as the female genital tract and the rectal mucosa,
which have complex microbial communities that produce a variety of bactericidal
small molecules and peptides. In addition, one can assume that mucosal epithelial cells
respond to the invader by secreting antimicrobial peptides (AMPs) and sequestering
transition metals (“nutritional immunity”) (134). A mouse model of lower female genital

FIG 7 Modeling of T. pallidum periplasmic adaptors and TM transporters. (A) Structural models of the T.
pallidum periplasmic adaptor (TP0965), the Mac-like TM transporter (TP0962/TP0963/TP964), and the RND-like
TM transporter (TP0790) and OMF (TP0969). (B) Cryo-EM structures of E. coli Mac-type (PDB accession number
5NIK) and Acr-type (PDB accession number 5V5S) efflux systems.
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tract infection with Neisseria gonorrhoeae provides precedent for this notion; the ab-
sence of the MtrC-MtrD-MtrE efflux system decreases the survival of gonococci (135).
Given the complex cellular inflammatory response that T. pallidum elicits in all stages
of syphilis, the spirochete’s need to deal with toxigenic and redox-active molecules of
exogenous origins likely extends beyond early infection (6). T. pallidum’s ability to
evade host defenses and establish persistence due to its OM molecular architecture is
the crux of its designation as the stealth pathogen (6). The potential ability to extrude
different combinations of noxious molecules in diverse milieus, supported by its OMF
repertoire, likely adds a new structure-function dimension to the concept of stealth
pathogenicity.

Concluding remarks. The OM is a durable, adaptable permeability barrier that
enables Gram-negative bacteria to thrive in unpredictable, and often hostile, environ-
ments as free-living organisms, pathogens, or both (31). After more than 50 years of
intensive investigation, the ultrastructure, constituents, and biogenesis of the Gram-
negative OM are reasonably well understood (23, 52). The T. pallidum OM must also
support homeostatic, protective, and virulence-related functions but for a bacterium
with a markedly limited biosynthetic capacity and an exclusively pathogenic, invasive
lifestyle capable of causing protracted, and even lifelong, infection in humans (2,
136). We have known for years that the properties, composition, and molecular archi-
tecture of the T. pallidum OM differ greatly from those of its Gram-negative counter-
parts (6, 11, 137). Cryo-EM has revealed that spatial relationships between the OM of
T. pallidum and the other compartments of the cell envelope differ greatly from those
of Gram-negative bacteria (9, 10). Previously, we identified candidate OMPs in the
spirochete based on their predicted ability to adopt a b-barrel conformation (43).
The characterization of these molecules and their interaction partners using struc-
ture-based approaches (30, 44) represents an important step toward deconvoluting
the spirochete’s enigmatic mechanisms for persistence and devising strategies to
elicit protective immunity.

How T. pallidum obtains the vast array of nutrients required to sustain infection of
its obligate human host is a long-standing conundrum of syphilis pathogenesis, well
predating the sequencing of the spirochete’s minimalist genome (7, 8, 138, 139). The
analyses presented here reveal that much of the answer to the enigma resides in the
previously unsuspected diversity and complexity of its OMPeome. T. pallidum differs
from many (although not all) Gram-negative bacteria in that it contains multiple
paralogous OMP families. We postulate that each family enables the bacterium to
import a different “class” of substrate and that members within a family have differ-
ent substrate specificities within that class. With the important exception of the Tprs,
T. pallidum has achieved this functional diversity by utilizing known structural ortho-
logs as evolutionary templates. The multidomain Tprs, on the other hand, which
have no Gram-negative counterpart, appear to have evolved under a combination of
pressures related to the spirochete’s architectural plan (i.e., the need to stabilize the
OM by tethering it to the peptidoglycan sacculus [9, 10]) in addition to its metabolic
requirements (i.e., the need for porin-like proteins to passively import numerous
small molecules). While the bacterium requires an OMP repertoire with broad impor-
tation capabilities, it does not need high copy numbers of individual importers given
its dramatically slower replication time (;30 h) than that of Gram-negative bacteria
(62, 140, 141). From the standpoint of immune evasion, the benefits of this evolution-
ary path seem readily apparent. T. pallidum appears to contend with a less obvious
adverse consequence of this broad importation strategy, the incidental uptake of cy-
totoxic small molecules, by deploying a robust combinatorial efflux system to func-
tion in concert with its importers.

As an obligate human pathogen with no known environmental or zoonotic reser-
voir that has remained exquisitely sensitive to penicillin G for the past 75 years (2, 142,
143), one would expect that eradication of T. pallidum could be accomplished by
aggressive public health measures. The explosive increase in new syphilis cases in the
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United States and globally during the past 20 years clearly argues otherwise (1, 4, 144).
Consequently, there is a growing sense of urgency about the need for a vaccine as a
cornerstone of a global containment strategy (105, 145). Because T. pallidum is an
extracellular bacterium (6, 8), an effective vaccine must elicit antibodies against anti-
gens on the bacterial surface (105, 145). Years of investigation of the molecular archi-
tecture of the T. pallidum outer membrane have shown that the principal candidates
for syphilis vaccine design are contained within the spirochete’s OMPeome (6, 11, 108,
137). The structural models described here provide investigators, for the first time, with
a platform for a rational, systematic investigation of the combination of OMPs needed
to elicit long-lived protection. With b-barrel proteins, protective antibodies must be
directed against BCEs located in ECLs. Applying the principles of structural vaccinology
will enable investigators to ascertain that antibodies elicited in syphilis vaccine trials
with animal models precisely target the Achilles’ heels of candidate OMP vaccinogens:
their ECLs.

MATERIALS ANDMETHODS
Ethics statement. All animal experimentation was conducted according to the Guide for the Care

and Use of Laboratory Animals, 8th ed. (146), and in accordance with protocols reviewed and approved
by the UConn Health Institutional Animal Care and Use Committee under the auspices of Animal
Welfare Assurance A3471-01.

Propagation of T. pallidum. T. pallidum (Nichols strain) was propagated by intratesticular inocula-
tion of adult male New Zealand White rabbits and harvested in CMRL medium (Gibco) supplemented
with 20% heat-inactivated normal rabbit serum at peak orchitis as previously described (54). Spirochetes
were enumerated by dark-field microscopy using a Petroff-Hausser counting chamber (Hausser
Scientific).

Cloning procedures. Recombinant constructs and oligonucleotide primers used in this study are
listed in Table S10 in the supplemental material. All cloned constructs are based on the T. pallidum
Nichols strain. Constructs for POTRA1-5 of BamA (TP0326) and the MOSPN domain of T. denticola
strain ATCC 35405 without its signal sequence were described previously (44, 67). DNA encoding the
MOSPN domain (amino acid residues 29 through 259) of TprK (TP0897) (GenBank accession number
WP_010882340) without its signal sequence was PCR amplified from the pUK57 plasmid harboring
an E. coli codon-optimized version of tprK (synthesized by GenScript). The resulting amplicon was
cloned into linearized pET28a in frame with the N-terminal His6 tag using in-fusion cloning (147)
(TaKaRa).

Expression and purification. All constructs in this study were overexpressed in E. coli OverExpress
C41(DE3) (Lucigen) at 20°C. Expression was induced at an optical density at 600 nm (OD600) of ;0.4 by
the addition of isopropyl-b-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5mM, fol-
lowed by 12 to 44 h of growth. Following induction, cells were harvested at 7,000� g for 20min at 4°C.
The pellet was lysed in Tris-NaCl buffer (20mM Tris-HCl [pH 7.5], 150mM NaCl) supplemented with a
protease inhibitor cocktail (PIC; Sigma-Aldrich). The lysate was centrifuged at 14,000 rpm for 40min at
4°C to remove insoluble proteins and cell debris. The supernatant was mixed with Ni-NTA resin (Qiagen,
USA) for 1 h and washed with Tris-NaCl buffer, followed by another wash with the same buffer contain-
ing 40mM imidazole. Elution was carried out in Tris-NaCl buffer with 400mM imidazole at pH 7.5.
Elution fractions were pooled and subjected to size exclusion chromatography (SEC) using a Superdex-
200 HR 16/60 column (GE Healthcare Life Sciences) preequilibrated with a solution containing 50mM
Tris (pH 7.5), 100mM NaCl, and 1mM dithiothreitol (DTT). The purity of all proteins was verified by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final proteins (POTRA arm and
the MOSPN domains of TprK and MOSP) were concentrated to 1 to 3mg/ml using an Amicon filtration
device, flash-frozen in liquid nitrogen, and stored at 280°C until use.

3D modeling of T. pallidum OMPs. To predict the 3D structures of recently identified T. pallidum
OMPs (11), amino acid sequences were submitted to the Phyre2 server (http://www.sbg.bio.ic.ac.uk/
phyre2/html/page.cgi?id=index) (47). A confidence score of 90% or higher (47) between the template
model and the target match was set as a cutoff value (47). The high confidence level (90%) indicates
that the query protein is likely to adopt the overall predicted b-barrel at high accuracy (47). Proteins
that did not meet the 90% threshold or had unmodeled regions in Phyre2 were submitted to I-TASSER
and/or trRosetta (46). The accuracy of 3D models from I-TASSER was quantitatively measured by the C
score (148). The structural model of BamA was made, as described previously by Luthra et al. (44), using
the solved structure of full-length BamA (PDB accession number 3KGP) from N. gonorrhoeae (149). The
quality of all models was evaluated with MolProbity (55). All Tpr models were made using trRosetta (46).
Steric clashes in each model were evaluated using WinCoot (56). Structural modeling and sequence
identities are summarized in Table 1.

3D modeling data availability. Atomic coordinates for all structural models of the T. pallidum
OMPeome are downloadable from https://drive.google.com/file/d/1EurEnlwAiqtsUm8t-jC3Xuz5e7nV45mT/
view?usp=sharing&export=download.

Modeling and assembly of the T. pallidum Lpt complex. The Phyre2 server (47) was used to build
the initial 3D structural model of T. pallidum LptB (TP0786), LptF (TP0883), LptG (TP0884), LptC (TP0784),

Hawley et al. Journal of Bacteriology

August 2021 Volume 203 Issue 15 e00082-21 jb.asm.org 18

https://www.ncbi.nlm.nih.gov/protein/WP_010882340
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
https://doi.org/10.2210/pdb3KGP/pdb
https://drive.google.com/file/d/1EurEnlwAiqtsUm8t-jC3Xuz5e7nV45mT/view?usp=sharing&export=download
https://drive.google.com/file/d/1EurEnlwAiqtsUm8t-jC3Xuz5e7nV45mT/view?usp=sharing&export=download
https://jb.asm.org


and LptA (TP0785) orthologs. Next, the crystal structure of Vibrio cholerae LptB2FGC (PDB accession num-
ber 6MJP) (150) was applied as a template to assemble a structural model for T. pallidum LptB2FGC
(TP07862-TP0883-TP0884-TP0784). Finally, T. pallidum LptA (TP0785) was manually aligned between the
N-terminal domain of LptD (TP0515) and LptC (TP0784).

Modeling and assembly of T. pallidum efflux systems. The crystal structure of trimeric E. coli TolC
(PDB accession number 1TQQ) (132) was used to build trimers of T. pallidum OMFs TP0966, TP0967,
TP0968, and TP0969 using WinCoot (56). Structural models of TP0790, TP0962/TP0963, TP0964, and
TP0965 were made in Phyre2 (47). The cryo-EM structures of the MacAB-TolC (PDB accession number
5NIK) (128) and AcrAB-TolC (PDB accession number 5V5S) (127) efflux pump-OMF complexes were used
as the templates to assemble T. pallidum ABC-type and RND-based pumps with the periplasmic adaptor
(TP0965) and OMFs (TP0966, TP0967, TP0968, and TP0969).

Bioinformatics. DOG 2.0 (151) was used to delineate domains and extracellular loops of T. pal-
lidum OMPs on the primary (one-dimensional [1D]) protein structures. Structures were aligned using
the secondary structure matching (SSM) superimposition algorithm in WinCoot (56). All structural fig-
ures were rendered in PyMOL (https://pymol.org/) (152). MSA was performed using ClustalW with the
GONNET matrix in MacVector. Sequence identity matrices were calculated in Clustal Omega using the
default parameters (153). PROMALS3D (154) and ESPript3.0 (155) were used to generate structure-
based sequence alignments. The electrostatic potential of 3D structures was calculated using the
adaptive Poisson-Boltzmann solver (APBS) (156). Discontinuous BCEs were predicted from each 3D
model using a threshold of 23.7 with the DiscoTope 2.0 server (157). The score for BCEs is calculated
as a combination of propensity scores of amino acids in spatial proximity and contact numbers. The
residue contact number is the number of Ca atoms in the antigen within a distance of 10 Å (158). All
phylogenetic analyses were performed using Clustal Omega (153) and visualized using Interactive
Tree of Life (iTOL) (V4) (159).

Acquisition of small-angle X-ray scattering data. Online SEC–small-angle X-ray scattering (SAXS)
at the 16 LiX beamline (160) of National Synchrotron Light Source II (Brookhaven National
Laboratory) was used to collect scattering data for the MOSPN domain of TprK. One hundred fifty
microliters (;200mM) of a protein sample (TprK) was injected into a Superdex Increase 200 10/300
GL column (GE Healthcare) at a flow rate of 0.45ml/min. Scattering images were collected continu-
ously at 1-s exposures per frame. The data processing program pyXS (161) was used for scaling, inte-
gration, and averaging of individual scattering images after inspection for aggregation. SAXS data of
MOSPN of T. denticola MOSP were also collected at the 16 LiX beamline (160) under static data collec-
tion conditions using a 1.0-mg/ml protein concentration. pyXS (161) was used to determine the scat-
tering contribution of the MOSPN domain of T. denticola MOSP by subtracting the background scat-
tering of the buffer.

The SAXS data of TP0326 POTRA1-5 were collected at the Cornell High-Energy Synchrotron Source
(CHESS) beamline using a dual Pilatus 100 K-S SAXS/wide-angle X-ray scattering (WAXS) detector, and
background subtraction of SAXS buffer was performed using the open-source software RAW (162).

SAXS analysis and model building. The ATSAS software package (163) was used to generate 3D ab
initio envelopes of BamA POTRA1-5, T. denticola MOSPN, and TprK MOSPN from one-dimensional SAXS
profiles. Radii of gyration (Rg), deduced from the Guinier region of the Guinier plots, were computed
using PRIMUS (164). GNOM (165) was used to generate a well-behaved P(r) curve. Ab initio envelope
reconstructions were performed using DAMMIN (166) and DAMAVER (167). Theoretical scattering curves
were compared against experimental scattering data using FoXS (168). The predicted flexibility of
POTRA1-5 was determined using the ensemble optimization method (EOM) (73).

Operon prediction of FadL-like genes in T. pallidum. The FGENESB server (http://www.softberry
.com/berry.phtml?topic=fgenesb&group=programs&subgroup=gfindb) was used for operon prediction
for the region encompassing nucleotide positions 937198 to 932966 of the T. pallidum Nichols strain
(NCBI accession number NC_021490.2) genome carrying tp0856, tp0858, and tp0859, including intergenic
regions between tp0856 and tp0858 and between tp0858 and tp0859.

Expression analysis of fadL-like genes. RNA was extracted from testicular tissue of four rabbits ino-
culated with the T. pallidum Nichols strain as previously described (54). The RNA concentration was
measured using a Nanodrop spectrophotometer (Thermo Scientific). cDNA synthesis was performed
using the high-capacity cDNA archive kit (Applied Biosystems) according to the manufacturer’s instruc-
tions. Primers used to amply transcripts for tp0856, tp0858, tp0859, and the intergenic regions between
tp0856, tp0858, and tp0859 are listed in Table S10. Amplification reactions were performed in a
GeneAmp 9700 PCR system (Applied Biosystems) as follows: 1 cycle at 98°C for 3min, followed by 35
cycles of 98°C for 10 s, 55°C for 15 s, and 72°C for 10 s and 1 cycle of 72°C for 3min.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 5.4 MB.
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