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ABSTRACT

Proximal promoter regions (PPR) are heavily tran-
scribed yielding different types of small RNAs. The
act of transcription within PPRs might regulate down-
stream gene expression via transcriptional interfer-
ence (TI). For analysis, we investigated capped and
polyadenylated small RNA transcripts within PPRs
of human RefSeq genes in eight different cell lines.
Transcripts of our datasets overlapped with exper-
imentally determined transcription factor binding
sites (TFBS). For TFBSs intersected by these small
RNA transcripts, we established negative correla-
tion of sRNA expression levels and transcription fac-
tor (TF) DNA binding affinities; suggesting that the
transcripts acted via TI. Accordingly, datasets were
designated as TFbiTrs (TF-binding interfering tran-
scripts). Expression of most TFbiTrs was restricted
to certain cell lines. This facilitated the analysis of
effects related to TFbiTr expression for the same Ref-
Seq genes across cell lines. We consistently uncov-
ered higher relative TF/DNA binding affinities and
concomitantly higher expression levels for RefSeq
genes in the absence of TFbiTrs. Analysis of cor-
responding chromatin landscapes supported these
results. ChIA-PET revealed the participation of distal
enhancers in TFbiTr transcription. Enhancers regu-
lating TFbiTrs, in effect, act as repressors for cor-
responding downstream RefSeq genes. We demon-
strate the significant impact of TI on gene expression
using selected small RNA datasets.

INTRODUCTION

Proximal promoter regions (PPRs, for a comprehensive list
of abbreviations Supplementary File 1) of RNA polymerase
II transcribed genes usually extend up to 1Kb upstream
from transcription start sites (TSSs) (1). Transcription fac-
tor binding sites (TFBSs) within PPRs provide important
cis-regulatory elements and, for example, integrate devel-
opmental programs or environmental stimuli in gene ex-
pression (2). In eukaryotes, PPRs are heavily interleaved
with different classes of small transcripts (3–7). Promoter-
associated RNAs (PARs) are transcripts located within sev-
eral hundred nucleotides surrounding the TSS (3). The
majority of these RNAs belong to three different classes
(3). i) PASRs (promoter associated small RNAs) are tran-
scribed bidirectionally; most of these small (<200 nt) tran-
scripts map immediately downstream from the TSS, and
sense transcription is generally prevalent (3,8,9). PASRs
are capped and either represent small independently tran-
scribed RNAs or, processing products of longer overlapping
(heteronuclear or messenger) RNAs (3,9). ii) TSSa RNAs
(TSS-associated RNAs) are often detected in association
with strongly expressed genes (3,10). Most sense and anti-
sense TSSa RNAs are located within 250 nt upstream and
50 nt downstream from the gene TSS (10). Northern blot
hybridizations established RNA size ranges of 20 to 90 nt
(10). Finally, iii) Transcription initiation RNAs (tiRNAs)
are on average 18 nt long and map immediately downstream
from the TSS of highly expressed genes (3). Even tiRNAs
display bidirectional transcription, which coincides with re-
gions of enriched RNAPII (RNA polymerase II) occupancy
levels (11). The biogenesis of tiRNAs is not completely un-
derstood, but dependencies on the endonucleolytic cleav-
age activity of transcription elongation factor TFIIS are

*To whom correspondence should be addressed. Tel: +49 251 835 2132; Fax: +49 251 835 2134; Email: raabec@uni-muenster.de
Correspondence may also be addressed to Wojciech Maka-lowski. Tel: +49 251 835 3006; Fax: +49 251 835 3005; Email: wojmak@uni-muenster.de

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



1070 Nucleic Acids Research, 2018, Vol. 46, No. 3

suggested (3,11). Therefore, these classes of PAR transcrip-
tion are most often associated with promoters of highly ex-
pressed genes, and also occupy regions immediately down-
stream from the gene TSS (9). Actual functions of these
transcripts are not completely resolved, but initial exper-
iments implied an involvement in the regulation of gene
expression (9,12). However, as the functional analysis has
been limited to only a small number of transcripts, it can-
not entirely be ruled out that many of these RNAs are mere
by-products of gene expression (13,14).

Transcriptional interference (TI) and promoter occlusion
describe cis-regulatory processes involving two adjacent
promoters. Elongating RNA polymerases interfere with the
transcription of downstream genes (15,16), and regulate
gene expression throughout all major stages of the tran-
scriptional cycle. Therefore, TI might inhibit the formation
of preinitiation complexes or remove RNA polymerases
that are slow to transit into active elongation. Clashing
polymerases also regulate gene expression during the sub-
sequent stages of transcriptional elongation. The efficacy
of TI/promoter occlusion correlates with the relative pro-
moter strength: stronger upstream promoters initiate tran-
scription at higher frequencies, and cause greater inhibition
at regulated downstream sites. Active RNA polymerases
within PPRs also interfere with bound transcription factors
(TFs) or inhibit effective binding in ways comparable to TI
acting on core promoters (15). More broadly, ‘TI-related’
processes could be viewed as regulatory mechanisms con-
trolling protein/DNA interactions via the act of transcrip-
tion. We examined TI as a potential mode of action for
subsets of small RNA transcription within PPRs of hu-
man RefSeq (hg19) protein coding genes. Here, candidate
datasets were restricted to small RNAs (<200 nt) within
1Kb upstream regions overlapping experimentally identified
TFBSs. Occlusion via TI or related mechanism was cor-
related with lower TF-binding affinities compared to sites
for the same TF within PPRs devoid of candidate tran-
scripts. The corresponding RefSeq genes that harbored TF-
BSs of reduced binding affinities in proximal promoters
displayed only low mRNA expression levels. Hence, our
datasets differed substantially from the previously reported
PAR collections, which were associated with strongly ex-
pressed genes (see above) (3,9–11).

We refer to these transcripts as TFbiTrs (TF-binding
interfering Transcripts) or TFbiTr candidates. Our ana-
lytical procedure (Supplementary File 6) employed EN-
CODE (ENCyclopedia Of DNA Elements) cDNA libraries
from eight different human cell lines (K562, HeLa, A549,
IMR90, MCF7, SKNSH, H1hESC and H1 neuron) as
input data. The annotation of TFbiTrs uncovered min-
imal overlap between cell lines. This allowed the evalu-
ation of TFbiTr-related effects across cell lines. Analysis
of identical TFBSs via STAP/TRAP (sequence to affin-
ity prediction/TF affinity prediction) revealed consistently
higher relative binding affinities in cell lines and promoter
regions devoid of candidate transcripts (17,18). Notably, the
corresponding protein-coding RefSeq genes displayed sig-
nificantly higher expression levels in cell lines and loci de-
void of TFbiTrs. In summary, for our datasets TF-binding
affinities and mRNA expression correlated negatively with
TFbiTr transcription, suggestive of TI.

Detection of primary transcripts within 1Kb upstream
regions of RefSeq mRNA encoding genes indirectly implied
complex architectures of two promoters within compara-
tively close vicinity. To characterize these epigenetic land-
scapes underlying TFbiTr expression, we analyzed histone
tail modifications indicative of active and poised transcrip-
tion, respectively (19). TFbiTrs generally resided within
regions enriched for histone tail modifications indicative
of active transcription. Chromatin domains of associated
downstream genes, however, displayed preferentially poised
characteristics, and reconfirmed the RNA-seq analysis. Fi-
nally, the evaluation of promoter/enhancer interactomes
via ChIA-PET (chromatin interaction analysis by paired-
end tag sequencing) revealed that TFbiTr regions partici-
pate in cell line specific interactions (20,21). Accordingly,
enhancers that trigger TFbiTr expression function indi-
rectly as repressors of (RefSeq) gene expression via TI.

MATERIALS AND METHODS

Datasets: RNA-seq

All datasets included in this analysis are part of the EN-
CODE repository. References to the corresponding GEO
(Gene Expression Omnibus) accession numbers for individ-
ual datasets are provided as URLs in Supplementary File 1
and Table S1.1–1.5.

Small RNA-seq for TFbiTr candidate isolation. The edgeR
calcNormFactors function was used to obtain normalized
expression values from read counts (BAM files) for biolog-
ical sRNA-seq replicates (CPM) (22,23); featureCounts re-
turned an R ‘List’ object, which includes raw cDNA read
counts for each gene and library. Unannotated (i.e. accord-
ing to GENCODE) cDNA contigs that represented small
(<200) RNAs of eight different human cell lines (K562,
HeLa, A549, IMR90, MCF7, SKNSH, H1hESC and H1
neuron) were the actual input data of our analysis (Sup-
plementary File 1 and Table S1.1). The total RNA start-
ing material was isolated from whole cell lysates and cDNA
libraries were generated via CIP (calf intestinal alkaline
phosphatase)/TAP (tobacco acid pyrophosphatase) treat-
ment. All datasets were provided by the ENCODE reposi-
tory (24). We refer these cDNA contigs as ‘novel’ or tran-
scripts devoid of known function. Datasets were limited
to 1Kb upstream regions from RefSeq annotated TSSs of
mRNA encoding genes and intersected with experimentally
identified TFBSs (see below).

Enrichments in CIP/TAP treated samples compared to
untreated controls, allowed the detection of capped tran-
scripts. Only cDNA contigs with ≥10-fold enrichment in
CIP/TAP pre-treated starting material entered the analysis
(Supplementary File 1 and Table S13). BCV (Biological co-
efficient of variation) values for sRNAs between biological
replicates were calculated with edgeR’s estimateGLMCom-
monDisp function (Supplementary File 1 Table S14) (22).

Determination of genome-wide expression of messenger
RNAs. BAM files for CSHL (Cold Spring Harbor Labo-
ratory) long mRNA-seq (>200, polyA + RNA from whole
cell lysates) data for K562, HeLa (main text) and the other
six cell lines were accessed via GSE30567 (Supplementary
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File 1 and Table S1.2). Replicates were normalized using the
calcNormFactors function (CPM); featureCounts returned
an R ‘List’ object, which includes read counts for each gene
and library (22,23). Messenger RNA expression for K562
and HeLa was analyzed via edgeR (rpkm) (22). BCV val-
ues between biological replicates within samples and across
cell lines were calculated via edgeR’s estimateGLMCom-
monDisp function (Supplementary File 1 and Table S12)
(23).

Calculation of correlation coefficient in expression data for
TFbiTrs and corresponding downstream mRNA

We used RPKM calculated via edgeR to determine correla-
tion coefficient between expression values obtained for TF-
biTrs and mRNA datasets. rpkm gives expression values
normalized by library size, TMM and gene length (23). The
approach was used to consider the different feature lengths
(TFbiTrs and corresponding downstream mRNAs) while
comparing datasets within cell lines.

CAGE cluster analysis

CAGE (cap analysis of gene expression) was employed to
restrict our datasets to products of primary transcription
within 1Kb upstream regions of RefSeq mRNA encoding
genes (25) (Supplementary File 1 and Table S1.3). CAGE
clusters were selected via pre-calculated HMMs (hidden
Markov models, scores-0.77/1.00) (26). The application of
HMMs reduces the inclusion of false positives, which might
be incorrectly interpreted as bona fide TSSs (27). The sta-
tistical significance of CAGE clusters intersecting with TF-
biTr candidate regions was analyzed via two-tailed � 2 tests
(Supplementary File 1 and Table S2.1 and 2.2).

RIP-seq (RNA Immunoprecipitation) with antibodies against
polyA binding protein

PABP (polyA binding protein) binds to polyA tails of
(m)RNAs (28). We analyzed BAM files for RNA RIP-seq
libraries generated from K562 and HeLa cellular lysates
and with antibodies raised against PABP with Piranha for
confirmation of TFbiTr polyadenylation (29,30) (Supple-
mentary File 1 and Table S1.4). The distribution of start-
ing peaks at candidate 3′ termini was analyzed with default
parameters (./Piranha rip.bam -o (output) -p (threshold =
significant threshold for sites) -a (background threshold =
0.99) -b (bin size = 10) -l (log scale). The statistical signifi-
cance of PABP clusters starting at TFbiTr candidate 3′ ter-
mini was evaluated via the GSC (genome structure correc-
tion, Supplementary File 1, Section A) (31,32).

PolyA-seq analysis

Pre-aligned polyA-seq (i.e. for cell lines other than K562
and HeLa) cDNA collections for single polyA sites rep-
resenting five different human tissues (brain, kidney, liver,
testis and muscle) were employed for analysis (33) (Supple-
mentary File 1 and Table S1.5). The statistical significance
of polyA-seq clusters intersecting with TFbiTr candidate re-
gions was analyzed via two-tailed � 2 tests (Supplementary
File 1 and Table S9).

CEAS analysis of candidate TFbiTr genomic regions

Genomic regions containing candidate transcripts were an-
notated with CEAS (cis-element annotation system), which
computes the G/C content, identifies mapped genes, and
reports enrichment of TFBSs (34). Regulatory regions re-
ported by CEAS, which relies on RefSeq gene annotations
(hg19), include: (i) PPRs (1Kb upstream from the TSS),
(ii) enhancer domains (>1Kb upstream and downstream
from the TSS and TTS [transcription termination site], re-
spectively), (iii) exons, (iv) introns and (v) immediate down-
stream regions (extending up to 1Kb downstream from
annotated 3′ ends of RefSeq genes). Only TFbiTrs, which
are entirely located within PPRs (i.e. 1Kb upstream of the
RefSeq-annotated TSS), were selected for further analyses.
Therefore, our datasets do not contain small RNAs that in-
tersect with the TSS of the corresponding downstream Ref-
Seq genes.

Datasets: ChIP-seq (chromatin immunoprecipitation se-
quencing) and ChIA-PET (chromatin interaction analysis by
paired-end tag sequencing)

All datasets for ChIP-seq, ChIA-PET and nucleosome po-
sitioning are part of the ENCODE repository (20,35). Ref-
erences to GEO accession numbers are provided as URLs
in the Supplementary File 1 and Table S1.6–1.8. For analy-
sis of ChIP-seq data we utilized the rmdup command from
MACS2 (Model-based Analysis of ChIP-Seq v2) to filter
duplicated reads starting within the analyzed regions (36).

Calculation of ChIP-seq peaks for transcription factor bind-
ing sites within proximal promoter regions

To quantify effects that are related to TI, we employed the
ENCODE TFBS ChIP-seq data track for detectable bind-
ing sites that were intersected by TFbiTrs (Supplementary
File 1 and Table S1.6) (37). Only TFs that directly interact
with DNA and do not depend on chromatin-mediated in-
teractions were considered for this analysis. Genome-wide
peaks were identified with MACS2 and standard parame-
ters (macs2 callpeak -t ChIP.bam -c Control.bam -f BAM
-g hs -n output -B -q 0.01) (36). The application of the
MACS2 bdgcmp command computes enrichment and re-
moves background noise from BedGraph signal data for
reported peaks. All subsequent analysis, i.e. (i) reading of
peak datasets, (ii) occupancy analysis (for determining con-
sensus peaksets) (iii) read counting (iv) differential binding
affinity analysis and finally (v) plotting was conducted ac-
cording to the DiffBind protocol (38). ChIP-seq peaks for
TFBSs were intersected within H3K4me3 peaks to ensure
the analysis of actual promoter regions (19). Datasets for
investigated TF were obtained via the GEO; URLs are pro-
vided in Supplementary File 1 and Table S1.6. The impact
of sRNA expression on TF-binding was further investigated
via STAP/TRAP analysis tools (see below).

Histone modifications- ChIP-seq data and peak calling

Default parameters were applied for MACS2 analysis for
calculation of genome-wide peaks of histone tail modifica-
tions within ENCODE ChIP-seq datasets as input (macs2
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callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n out-
put -B -q 0.01) (Supplementary File 1 and Table S1.7). The
MACS2 bdgcmp command computes enrichment and re-
moves background noise from BedGraph signal data for
reported peaks. Biological replicates for each cell line were
pooled separately. Peaks were selected via q-values (FDR
[False Discovery Rate], 0.01 = default) and mfold = 10 (de-
fault = 5.5).

Active promoter states were defined by combined en-
richments of H3K4me3, H3K4me2, H3K27ac, RNAPII
(i.e. including RNAPII with phosphorylated C-terminal
domains) and poised (promoter) states by H3K4me3 and
H3K27me3, respectively (39). H3K4me3 BED regions
(broad peaks) were the (input) reference for detection
of the other overlapping peaks (i.e. H3K27ac, RNAPII,
H3K4me2 for active and H3K27me3 for poised promoter
states, respectively).

For analysis of transcription within candidate regions
(i.e. +50 to −150 from the TSS of TFbiTrs) and RefSeq core
promoters (i.e. +50 to −150 from the TSS of downstream
RefSeq genes), H3K79me2, H3K36me3 and H4K20me1
histone tail modifications were evaluated (40,41). These
datasets were provided by the Broad Institute Histone and
accessed via the GEO. URLs are provided in Supplemen-
tary File 1 and Table S1.7. Local enrichments for indi-
vidual histone tail modifications or combinations thereof
were statistically analyzed via GSC (Supplementary File 1,
Section A) for TFbiTr and core promoter regions, respec-
tively. Calculations of consensus peaks between replicates
were performed via DiffBind (consensusObj←dba.peakset
(dbaObj, consensus = DBA CONDITION, minOverlap =
1), data.peakset ← dba.peakset (consensusObj, bRetrieve
= TRUE) (38).

Differential analysis of RNA-seq and ChIP-seq data across
cell lines (identical loci for K562 and HeLa cells)

Generalized linear models as provided by edgeR and Diff-
Bind were utilized to quantify RefSeq mRNA expres-
sion and TF-binding for identical loci across cell lines
(22,38). The calcNormFactors (edgeR), glmTreat (edgeR
with L2FC > 1.5) and dba edgeR (DiffBind) functions were
employed for normalization and further analysis. Data are
represented as boxplots and scatterplots as provided by
DiffBind (38).

Measurement of relative transcription factor/DNA binding
affinities

In order to analyze relative TF/DNA binding affinities
within TFbiTr regions, i.e. for TFBSs overlapped by TF-
biTrs, and non-TFbiTr regions, i.e. for TFBSs within PPRs
devoid of TFbiTrs, we adhered to the following workflow:

(i) Extraction of binding motifs and calculation of Position
Weight Matrix from ChIP-seq peaks
a. DNA sequences of ChIP-seq peak regions for JunD,

c-Jun and c-Myc (for K562 and HeLa, for other
TFs and cell lines Supplementary File 3 and Table
S1) were input data for PhysBinder to extract corre-
sponding binding motifs. The ‘Max. Precision value
(PPV)’ option was used for the analysis (42).

b. The resulting binding motifs were converted
into PWMs (position weight matrices) via the
make pwm motility tool (https://github.com/ctb/
motility/blob/master/doc/python-tutorial.html).
The make pwm tool generates PWMs based on
log frequencies of each nucleotide and position.
PWMs were converted to IUPAC symbols with
the make iupac motif tool, which is part of the
motility package, and employed for further analysis
(https://github.com/ctb/motility/blob/master/doc/
python-tutorial.html). The similarities between
PWMs for case and control data were quantified via
the KL divergence test in R (43,44) (Supplementary
File 1 and Table S11).

c. The PWMs for all the TFs from TFbiTr and non-
TFbiTr regions were utilized individually for cal-
culation of TF/DNA binding affinities with STAP
version 2 (sequence to affinity prediction v2) (17).

(ii) Calculation and comparison of TF/DNA binding affini-
ties in TFbiTr and non-TFbiTr regions
STAP (sequence to affinity prediction) requires as in-
put: (a) sequences underlying the corresponding ChIP-
seq peaks for TFs in TFbiTr regions (i.e. TFBSs over-
lapped by TFbiTrs), (b) control peaks in non-TFbiTr
regions (i.e. TFBSs within PPRs devoid of TFbiTrs) for
the same TF and (c) the TFbiTr associated PWMs (17).
For the calculation of relative TF/DNA binding affini-
ties via STAP we adhered to the following workflow:
1. The TF/DNA binding affinities predicted via STAP

are based on biophysical models. As a relative mea-
sure of binding affinity, the program computes the
expected number N of bound TF molecules for a
given TF matrix of length W and a given DNA se-
quence of length ‘l’. This quantity is computed as
the sum of individual contributions from all sites ‘l’
contained within the sequences of interest (17).

〈N〉 =
L−W∑

l=1

pl =
L−W∑

l=1

R0 e−βEl (λ)

1 + R0 e−βEl (λ)

1/� = kBT denotes temperature times Boltzmann
constant (Ro) E = energy and p l = probability of
sites occurring in a sequence of length ‘l’.

2. Predicted PWMs to chart TF/DNA affinities as
consequence of TFbiTr transcription were derived
from non-TFbiTr regions (i.e. TFBSs for the same
TF within PPRs devoid of TFbiTrs) by the identical
procedure as detailed above (17).

3. STAP employs the predicted affinity (based on
PWMs) to score DNA/TF-binding affinities in re-
gions of interest (i.e. expected versus observed bind-
ing). By a single iteration STAP quantifies whether
adding the motif to the model will significantly im-
prove the internally computed Pearson’s correlation
coefficient. The significance of this improvement is
assessed with randomized motifs as negative con-
trol. After these iterations STAP re-trains the model
parameters (17).

4. The STAP output consists of: (i) the binding param-
eter (i.e. a relative measure of how strongly the TF
binds with its binding site): here values greater than

https://github.com/ctb/motility/blob/master/doc/python-tutorial.html
https://github.com/ctb/motility/blob/master/doc/python-tutorial.html


Nucleic Acids Research, 2018, Vol. 46, No. 3 1073

1 signify favorable interaction, and less than 1 un-
favorable binding. (ii) The Pearson’s correlation co-
efficients for predicted and observed binding scores
(17).

(iii) Extraction of binding motifs computed across identical
loci for K562 and HeLa cells
PscanChIP with pre-computed cell line specific back-
ground files representing JunD, c-Jun and c-Myc
ChIP-seq binding signals in K562 and HeLa cell lines
were used to calculate binding motifs in TFbiTr and
non-TFbiTr loci (pscan chip -r input.bed -g hg19 -M
-bg BG/K562/HeLa.transfac.bg) (45). Resulting mo-
tifs were converted into PWMs as described above and
utilized for further analysis via STAP tools.

(iv) TRAP graphical representations
TRAP v3.05 (transcription factor affinity prediction)
generated the graphical output for STAP analysis and
displays the predictions of relative binding affinities for
TFbiTr and non-TFbiTr regions (18).

Analysis of TFbiTr expression thresholds for occlusion of TF-
binding

ENCODE BAM files for sRNA-seq (<200) were used to
calculate expression levels (i.e. CPM) for TFbiTrs that were
associated with TFBSs of unfavorable TF-binding affinities.
This procedure enabled to establish threshold expression
levels for occluding transcripts: the ‘-dt flag’ in the STAP
command line aided in the identification of TFbiTrs as-
sociated with sites of favorable or unfavorable TF-binding
affinities.

TFbiTrs and the correlation with downstream RefSeq gene
expression

For the selection of appropriate control datasets for RefSeq
mRNA expression within cell lines, we categorized the cor-
responding RPKM values as low, medium or high. RPKM
values were employed to account for length difference of
RNAs and to allow internal ranking of RNA expression
(46–48). RPKM values were calculated via edgeR (22). Us-
ing K means in R, expression levels of RefSeq protein cod-
ing genes within the K562 cell line were separated into three
groups: high (RPKM ≥ 11 ≤ 18), medium (RPKM > 3 ≤
10) and low (RPKM ≤ 3) (49) (Supplementary File 1 and
Table S8 for HeLa and other cell lines).

ChIA-PET data analysis

For K562 and HeLa cell lines, genome-wide ChIA-PET
(chromatin interaction analysis by paired-end tag se-
quencing) interaction clusters (i.e. enhancer/promoter) for
RNAPII were accessed via GEO (Supplementary File 1 and
Table S1.8). Interactomes for K562 and HeLa cells were in-
tersected with TFbiTr candidate regions via BEDTools’ in-
tersectBed command (intersectBed –a file.bed –b file.bed –f
0.8 –r; where f = Minimum overlap (80%) required as a frac-
tion of a.bed and b.bed and -r = fraction of overlap recip-
rocal for a.bed and b.bed) (50). ChIA-PET interaction data
was normalized for differential peak enrichment and iden-
tification of genomic proximity using Mango with default
parameters (51).

Analysis of TFbiTr interactomes

TFbiTr interaction partners (i.e. as revealed by ChIA-PET)
were scanned for enrichment of promoter, enhancer, and in-
sulator elements as represented by ChIP-seq peaks for P300,
CTCF and H3K4me1, respectively. Enhancers were further
differentiated into active and poised domains according to
the over-representation of H3K27ac and H3K27me3. More
specifically, active enhancer states were identified by com-
bined enrichments of H3K4me1, H3K27ac and H3K9ac
histone tail modifications. Poised enhancer domains, how-
ever, displayed over-representation of H3K27me3 (i.e. in
place of H3K27ac and H3K9ac) histone tails (19,52–54).
All datasets were accessed via the GEO; URLs are pro-
vided within Supplementary File 1 and Table S1.8. Visu-
alizations of the TFbiTr interactomes were generated with
CIRCOS (55). The statistical analysis for enrichments of hi-
stone tail modifications within TFbiTr interacting arms was
conducted via the GSC and two-tailed chi-square (� 2) tests,
respectively (See Supplementary File 1 and Tables S5.1–
6.2).

Nucleosome occupancy

Nucleosome occupancy levels were analyzed via MNase-
seq (sequencing of micrococcal nuclease sensitive sites, Sup-
plementary File 1 and Table S1.7) for TFbiTr containing
PPRs. Individual nucleosomal peaks were calculated with
DANPOS (dynamic analysis of nucleosome position and
occupancy by sequencing) and standard parameters (dan-
pos -b [background] -c count [specify count of reads per
replicate] -o [out] -q [occupancy/height] -t [p = 1e-5] -n
[data normalization] -F [fold normalization] -w [width] -d
[distance between peaks, 100bps] -e [edge = 1] -z [smooth
width]) (56). DANPOS analysis proceeds in five steps: (i)
calculation of nucleosome occupancy based on mapped
reads, (ii) quantile normalization, global scaling and boot-
strap sampling to adjust occupancy levels, (iii) calculation
of nucleosome signals at single-nucleotide resolution with
control and treatment samples applying Poisson test, (iv)
peak calling and finally, (v) classification of differential
peaks into nucleosome position shifts, fuzziness and occu-
pancy changes (56). Homer was used to compare nucleo-
some peaks for PPRs with TFbiTrs and promoters of Ref-
Seq genes with similar expression levels to the TFbiTr con-
taining counterparts (57).

Statistical data analysis

Statistical materials and methods are summarized in Sup-
plementary File 1 Sections A and B.

Visualization of ChIP-seq signals for histone modifications
and TFBSs

Logos of PWMs in TFbiTr and non-TFbiTr regions were
generated using WebLogo (58) All boxplots were drawn
with BoxPlotR and DiffBind (38,59). Boxplot notches indi-
cate the 95% confidence interval for the median value, cal-
culated as ± 1.58 × IQR/

√
n, where IQR is the interquartile

range or distance between the first and third quartiles, and
n is the number of cells (60). The lower and upper hinges
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Table 1. Numbers for cDNA contigs and TFbiTr candidates

Cell line
Total number of
cDNA-contigs

Number of cDNA-contigs af-
ter CIP/TAP enrichment

Number of cDNA-contigs
overlapping TFBSs of lower
TF/DNA binding affini-
ties within PPRs of RefSeq
protein coding genes

TFbiTr candidates with capped and
polyadenylated transcript termini that
overlapped TFBSs of lower binding affin-
ity and correlated with lower expression
levels of corresponding downstream
RefSeq genes

1 A549 54 089 28 993 (53%) 3282 (11%) 997
2 HeLa 40 310 21 457 (53%) 4269 (20%) 1953
3 K562 39 531 18 903 (47%) 5213 (28%) 1232
4 IMR90 26 224 16 792 (64%) 2167 (13%) 566
5 MCF7 110 576 23 215 (21%) 5671 (25%) 2345
6 Sknsh 115 581 22 256 (19%) 6544 (30%) 1993

of the boxplots correspond to the first and third quartiles
i.e. (the 25th and 75th percentiles). The upper and lower
whiskers extend from the hinge to ± 1.5 * IQR of the hinge.

RESULTS

Identification of capped TFbiTr candidates

To restrict datasets to small RNAs that represent prod-
ucts of primary transcription and to reduce the number of
potential processing or degradation intermediates, we in-
spected RNA terminal modifications of candidate TFbiTrs
(Supplementary File 6). For identification of capped TF-
biTr candidates, we utilized ENCODE small RNA libraries
generated with CIP/TAP pre-treated total RNA starting
material. Only candidates that displayed at least 10-fold en-
richment in CIP/TAP pre-treated starting material entered
the analysis (Table 1) (61). Resulting cDNA contigs were
intersected with CAGE clusters to reconfirm the identifica-
tion of capped transcripts (Table 1).

PPRs are generally enriched in CAGE clusters (62–64).
To statistically evaluate the contribution of TFbiTrs to
CAGE clusters within PPRs, we analyzed two datasets. The
first comprised of all 1Kb upstream regions from the Ref-
Seq gene TSS containing TFbiTrs. The second dataset con-
sisted of the same PPRs, from which we artificially excluded
CAGE clusters associated with TFbiTr regions (Supple-
mentary File 1 Section B, two-tailed chi square (� 2) test
for details). This allowed the identification of specific as-
sociations between CAGE clusters and TFbiTrs compared
to flanking regions. The analysis revealed significant enrich-
ment of CAGE clusters within TFbiTr containing PPRs for
HeLa and K562 cell lines (� 2, P < 0.01, Supplementary File
1 and Table S2.1 and 2.2), which implied the identification
of capped transcripts (Table 1).

TFbiTrs are polyadenylated transcripts––PABP RIP in K562
and HeLa cell lines

We analyzed ENCODE RIP-seq data generated with anti-
bodies against PABP (polyA binding protein) to investigate
TFbiTr polyadenylation in K562 and HeLa cells (Supple-
mentary File 6). Regions 30nt up- and downstream from
TFbiTr 3′ ends served as control (Supplementary File 2 and
Figure S8). The results were statistically evaluated with the
GSC tools (GSC tools Supplementary File 1, Section A)
(31,32). Here, the number of peaks starting at candidate 3′
ends (intersection) were compared to the number of peaks
beginning within 30nt regions up- and downstream from

TFbiTr 3′ ends (union) (Supplementary File 1 and Table
S3.1a and 3.1b).

Jaccard indices for TFbiTr 3′ termini and flanking regions
(0.87 and 0.81 for TFbiTr 3′ ends in K562 and HeLa cells
compared with 0.15 and 0.16 for control regions, i.e. the
30nt flanks) revealed candidate polyadenylation for TFbi-
Trs in K562 and HeLa cells. The identification of TFbiTrs
for K562 and HeLa cell lines is summarized in Table 1.

TFbiTrs overlap with polyA-seq clusters indicating candidate
polyadenylation

To potentially extend this analysis to TFbiTrs detected
within cell lines other than K562 and HeLa, for which no
PABP RIP-seq data were available, candidate small RNA
contigs were intersected with polyA-seq clusters collected
from five different human tissues (‘Materials and Methods’
section) (33) (Supplementary File 6 and Figure S1). Sim-
ilar to the CAGE cluster analysis, the numbers of polyA-
seq clusters within TFbiTr containing PPRs were compared
with those detected within the same regions in which TFbi-
Trs were artificially removed (Supplementary File 1 Section
B, two-tailed chi square).

Resulting enrichments were analyzed via � 2-tests and
suggestive of candidate polyadenylation (� 2-tests, P < 0.01
Supplementary File 1 and Table S9). Table 1 summarizes
the results for TFbiTrs detection quantitatively per cell line.

Analysis of ChIP-seq signals for c-Myc, c-Jun and JunD
binding within TFbiTr loci

Due to TI, significantly lower TF/DNA binding affinities in
TFbiTr loci were anticipated (15). For this analysis, we com-
puted the overlap of TFbiTrs with annotated TFBSs within
PPRs via CEAS (34) (Supplementary File 6 and Figure S1).
The analysis of TF-binding required ChIP-seq datasets. We
identified that 95% of TFbiTrs in HeLa and 85% in K562
intersected with the ENCODE TFBS ChIP-seq data track
(Jaccard indices for significant TFs 0.52 and 0.73). Only TFs
present in both HeLa and K562 cell lines (analysis across
cell lines, see below) were considered for further investiga-
tion. Also, we required that the analyzed TFs bind directly
to DNA templates and do not depend on bridging chro-
matin interactions. Given that our cellular models repre-
sent immortalized cancer cell lines, which might be deregu-
lated in various key cellular processes, we included an ad-
ditional six cell lines with different TFs to establish that
TFbiTr-related effects are connected to the general mech-
anism of TI and are not a consequence of regulation inher-
ent to certain cell lines (Table 2). Quantitative differences
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Figure 1. ChIP-seq analysis of TFs c-Jun, c-Myc and JunD within PPRs (i.e. 1Kb upstream regions from the RefSeq TSS) of human protein coding
RefSeq (hg19) genes; plots display ChIP-seq signals for TF-binding sites (A) with and (B) without TFbiTr expression in K562 cells. For the same analysis
in HeLa cells see (C) and (D). STAP (sequence to affinity prediction) analysis for TFbiTr versus non-TFbiTr regions (i.e. PPRs devoid of TFbiTrs) revealed
‘unfavorable binding’ for TFs within candidate TFbiTr loci (see main text, Table 3 and Supplementary File 3 for details). Signals for TF-binding were
calculated within the major H3K4me3 peak for PPRs. The results suggested the occlusion of TF-binding via TFbiTr expression.

Table 2. TFs included for analysis

Cell line TFs
A549, MCF7, Sknsh GABP, GATA3, JunD, Max, NRSF

and TEAD4
IMR90 JunD
K562, HeLa c-Myc, c-Jun and JunD
H1 hESC, H1 neuron NRSF

for TF-occupancy levels for c-Myc, c-Jun and JunD in K562
and HeLa cell lines as revealed by ChIP-seq analysis for TF-
biTr and non-TFbiTr regions (i.e. PPRs devoid of TFbiTrs)
demonstrated the predicted effect (Figure 1).

STAP analysis for quantification of relative TF/DNA bind-
ing affinities. STAP analysis evaluates TF/DNA bind-
ing interactions with ChIP-seq data as input; the method
builds on individual training datasets and PWMs for the
analyzed TFs (Supplementary File 6). Binding affinities re-
vealed by STAP analysis are therefore relative values and re-
flect differences in TF/DNA interactions for case and con-

trol datasets. PWMs are position-specific weight matrices
and represent TF-motifs within input sequence data. To en-
sure that TFbiTr regions are not associated with particu-
larly low affinity sites, which could explain the lower TF
ChIP-seq signal intensities within candidate regions (com-
pared to control regions), we generated PWMs for case (TF-
biTr regions) and control (non-TFbiTr regions) datasets.
The results clearly revealed that PWMs derived from TF-
biTr and non-TFbiTr regions were essentially the same (see
maxBindingWts in Tables 3-5 Supplementary File 2 and
Figure S13). These results were also confirmed via the KL
test to analyze the actual similarity between sets of PWMs
(Supplementary File 1 and Table S11). Therefore, the fortu-
itous association of TFbiTrs with low affinity binding sites
was unlikely the reason for reduced ChIP-seq signal inten-
sities in the case of TFBSs intersected by candidate sRNAs.
Finally, the relative TF/DNA binding efficacies for TFBSs
overlapped by TFbiTrs (case) were matched against those
derived from non-TFbiTr regions (control) (‘Materials and
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Table 3. STAP (sequence to affinity prediction) results for TFs c-Myc, c-Jun and JunD in TFbiTr and non-TFbiTr regions (PPRs devoid of TFbiTrs)
computed for K562 and HeLa cell lines, respectively

maxBindingWts inFactorIntMat expRatios
Cell line TF TFbiTr non-TFbiTr TFbiTr non-TFbiTr TFbiTr non-TFbiTr
K562 1. c-Myc 82.15 86.69 0.001 1.34 0.04 0.81

2. c-Jun 79.93 78.52 0.11 1.89 0.01 0.86
3. JunD 87.18 93.29 0.02 1.28 0.014 0.69

HeLa 1. c-Myc 79.02 82.14 0.03 1.38 0.01 0.72
2. c-Jun 69.12 68.20 0.12 1.28 0.115 0.85
3. JunD 86.29 85.17 0.22 1.27 0.3 0.81

Key parameters displayed are (i) maxBindingWts = PWM scores, (ii) inFactorIntMat = favorable (>1)/unfavorable (<1) TF-binding and (iii) expRatios
= Pearson’s correlation (‘Materials and Methods’ section). The maxBindingWts scores were similar for TFbiTr and non-TFbiTr control regions. Hence,
TFbiTrs are unlikely to be associated with TF-binding sites of lower relative affinity. The results revealed substantially reduced relative binding affinities
within TFbiTr loci compared to control datasets (see the inFactorIntMat and expRatios for non-TFbiTr and TFbiTr loci) and suggested the occlusion of
otherwise productive TF-binding.

Table 4. STAP (sequence to affinity prediction) results for TFs c-Myc, c-Jun and JunD in TFbiTr and non-TFbiTr regions (PPRs devoid of TFbiTrs)
computed across identical loci for K562 and HeLa cell lines, respectively

maxBindingWts inFactorIntMat expRatios
Cell line TF TFbiTr non-TFbiTr TFbiTr non-TFbiTr TFbiTr non-TFbiTr
K562 1. c-Myc 83.69 87.75 0.001 1.03 0.004 0.64

2. c-Jun 76.12 78.50 0.13 1.18 0.01 0.62
3. JunD 79.69 81.72 0.02 1.36 0.014 0.75

HeLa 1. c-Myc 81.34 85.06 0.03 1.56 0.01 0.79
2. c-Jun 62.20 66.23 0.12 1.35 0.05 0.79
3. JunD 82.17 80.12 0.21 1.39 0.03 0.62

Key parameters displayed are (i) maxBindingWts = PWM scores, (ii) inFactorIntMat = favorable (>1)/unfavorable (<1) TF-binding and (iii) expRatios
= Pearson’s correlation (‘Materials and Methods’ section). For each analysis, datasets were reduced to TFbiTrs that are expressed in one cell line (K562
or HeLa) only. The comparison across cell lines enables monitoring of identical TF-binding as a consequence of TFbiTr expression. The results revealed
consistently reduced relative binding affinities for TFbiTr loci and agreed with TI as a functional mode of TFbiTr expression (compare inFactorIntMat
and expRatios for non-TFbiTr and TFbiTr loci).

Table 5. STAP results for c-Myc, c-Jun and JunD TFs in K562 and HeLa cells for TFbiTr and non-TFbiTr regions (PPRs devoid of TFbiTrs) with sRNA
expression below thresholds

maxBindingWts inFactorIntMat expRatios
Cell line TF TFbiTr non-TFbiTr TFbiTr non-TFbiTr TFbiTr non-TFbiTr
K562 1. c-Myc 79.29 82.75 1.01 1.01 0.67 0.72

2. c-Jun 79.32 76.50 1.42 1.78 0.48 0.66
3. JunD 82.29 87.02 1.03 1.16 0.74 0.68

HeLa 1. c-Myc 73.44 78.15 1.24 1.64 0.73 0.67
2. c-Jun 81.20 79.23 1.62 1.42 0.77 0.79
3. JunD 79.27 71.52 1.78 1.32 0.71 0.62

Key parameters displayed are: (i) maxBindingWts = PWM scores, (ii) inFactorIntMat = favorable (>1)/unfavorable (<1) TF-binding and (iii) expRatios
= Pearson’s correlation (‘Materials and Methods’ section). Note that the maxBindingWts scores were similar in TFbiTr and non-TFbiTr regions. Hence,
TFbiTrs are unlikely to be associated with TF-binding sites of lower relative affinity. The analysis revealed no substantial difference for TFbiTrs below
threshold and control datasets, which confirmed thresholds for effective TF occlusion (see the inFactorIntMat and expRatios for non-TFbiTr and TFbiTr
loci).

Methods’ section). Our results revealed ‘unfavorable’ bind-
ing for TFbiTr regions compared to non-TFbiTr regions
(Table 3). STAP output data were also represented graphi-
cally via TRAP tools (Figure 2). Our results suggested that
the effective reduction of TF/DNA binding in case of can-
didate datasets is correlated with regulatory TFbiTr expres-
sion.

To demonstrate that these effects are not restricted to spe-
cific TFs or cell lines, we investigated TF-binding of seven
additional TFs within A549, MCF7, Sknsh and IMR90 cell
lines, respectively (Supplementary File 3). The results were
entirely consistent with those obtained for HeLa and K562,
and revealed reduced TF-binding within regions intersected
by TFbiTrs. Furthermore, the analysis of relative TF/DNA
binding affinities across cell lines (‘Materials and Methods’
section) strongly implied TI for TFbiTr regions (Table 4)
and hinted at a general mechanism of transcriptional regu-
lation, independent of a specific TF or cell line.

The identification of occluding and non-occluding tran-
scripts via STAP, both within and across cell lines, allowed
establishing expression thresholds (CPM) that are mini-
mally required for effective TI (Supplementary File 1 Table
S10, ‘Materials and Methods’ section).

Analysis of ChIP-seq c-Myc, c-Jun and JunD binding signals
overlapping TFbiTr loci across cell lines

To directly monitor effects of TFbiTr expression on iden-
tical TF-binding sites, we investigated ChIP-seq signals
across cell lines. Here, we restricted datasets to TFbiTrs,
which are expressed in one cell line only (HeLa or K562).
These transcript collections enabled the quantitative anal-
ysis for (the same) TF/DNA interaction with and with-
out influences derived from the potentially regulatory act
of TFbiTr expression. DNA binding affinities were investi-
gated with STAP analytical tools. The corresponding rela-
tive affinities were on an average much higher in the absence
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Figure 2. TRAP analysis for relative TF-binding affinities for loci with and without TFbiTr expression in (A) K562 and (B) HeLa cell lines. Graphs
display TF-binding affinities (y-axis) against sequence positions (x-axis) for the investigated TFs. Resulting TF-binding affinities were consistently higher
in non-TFbiTr (i.e. 1Kb upstream regions devoid of TFbiTrs) compared to TFbiTr loci (i.e. 1Kb upstream regions containing TFbiTrs)

of TFbiTr expression as revealed by ‘unfavorable binding’ in
TFbiTr loci (Table 4 and Figure 3).

Thresholds of TFbiTr expression for occlusion of TF/DNA
binding

Regulation via TI indirectly implies that there are thresh-
olds of TFbiTr expression for effective (‘Introduction’ sec-
tion) occlusion of otherwise productive TF/DNA binding
(16,65). These thresholds likely depend on both the spe-
cific TF and analyzed cell line. STAP enables delineation
of individual TFBSs, which are associated with favorable
or unfavorable TF-binding. Finally, analysis of TFbiTr ex-
pression levels established these specific thresholds, which
are minimally required to cause effective occlusion of TF-
binding (Supplementary File 1 and Table S10). As antici-
pated, STAP analysis delivered no indications of ‘unfavor-
able’ TF/DNA binding for TFbiTr candidates that were
represented by cDNA contigs with expression levels below
these thresholds (Table 5).

TI as functional mode for TFbiTrs also implied that can-
didate sRNAs are on an average stronger expressed than
the regulated downstream RefSeq genes (Figure 4A and B).
Correlation tests for mRNA and TFbiTr expression con-
firmed the anticipated effect (Supplementary File 7). No-
tably, no such correlation could be established for TFbi-
Trs expressed below threshold levels for occlusion of TF-
binding (Figure 5). Analysis across cell lines with TFbiTrs
that were specific to K562 or HeLa cell lines demonstrated
that RefSeq genes are significantly stronger expressed in the
absence of candidate RNAs (Figure 4C and D, Table 6). We

concluded that TF-binding and concomitant RefSeq gene
expression are inhibited via TFbiTr expression.

Histone tail modifications support the RNA-seq
results––analysis of TFbiTr and core promoters via GSC
(genome structure correction)

Analysis of genome-wide epigenetic landscapes enables the
identification of transcriptionally active and inactive genes
(19,66) (Supplementary File 6). TI as the prevalent mode
of TFbiTr action suggested the following: (i) TFbiTr re-
gions are enriched for histone tail modifications indica-
tive of active promoters; and reversely (ii) the associated
downstream protein coding RefSeq genes display preferen-
tially poised promoter characteristics. Specifically, combi-
nations of H3K4me3 and H3K27ac define active promot-
ers, whereas poised promoters display local enrichments of
H3K4me3 and H3K27me3, respectively (19,67). We investi-
gated H3K27ac and H3K27me3 occupancy levels along the
1Kb flanks (relative from the TSS) of RefSeq genes, harbor-
ing TFbiTrs to test our hypothesis (Figure 6, for results in
HeLa cells Supplementary File 2 and Figure S2) (19,66).

TFbiTr expression within the 1Kb upstream regions also
implied that these PPRs harbor cis-acting elements respon-
sible for TFbiTr expression (i.e. apart from those driving
the RefSeq gene). For analysis, we investigated chromatin
landscapes associated with promoters transcribing TFbiTr
and core promoters (i.e. regions −50 to +150 surrounding
the TSS of candidate TFbiTrs or RefSeq genes, respectively)
via the GSC tools to test the actual significance for local
overlaps of histone tail modifications signifying active and
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Figure 3. Analysis across cell lines; scatterplots for TFs (A) c-Myc (green) (B) c-Jun (blue) and (C) JunD (red) in TFbiTr regions (TFbiTrs +) compared to
the same loci that are devoid of TFbiTrs (TFbiTrs −). P-values corrected for multiple testing (q-value) K562 ≥ HeLa: c-Myc q = 1.3 × 10–9, c-Jun q = 7.7
× 10–5, JunD q = 8.8 × 10–1 and HeLa ≥ K562, c-Myc q = 1.5 × 10–7, c-Jun q = 5.6 × 10–4, JunD q = 9.7 × 10–1.

Table 6. Expression levels of protein-coding genes containing TFbiTrs in PPRs compared to identical genes devoid of TFbiTrs across cell lines (see main
text)

Cell line
Number of TFbiTrs
detected in cell line

Identical TFbiTr
loci analyzed in

Number of mRNAs with significantly higher
expression values in loci devoid of TFbiTrs

1 A549 997 IMR90 861 (86%)
2 HeLa 1953 K562 1496 (76%)
3 K562 1232 HeLa 967 (78%)
4 IMR90 566 A549 449 (88%)
5 MCF7 2345 Sknsh 2094(89%)
6 Sknsh 1993 MCF7 1872 (93%)
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Figure 4. The panel displays the analysis of mRNA expression for RefSeq genes harboring TFbiTrs in PPRs in (A) K562 and (B) HeLa cell lines. The
lower panel depicts mRNA expression for RefSeq genes harboring TFbiTrs in PPRs in (C) K562 (mRNA TFbiTrs +) cells compared to the same genes
in HeLa cells devoid of TFbiT5rs (mRNA TFbiTrs −, after correction for multiple testing = 962 sites in analysis) and (D) vice versa (after correction for
multiple testing = 1527 sites in analysis). P-values corrected for multiple testing (q-value) K562 ≥ HeLa, q = 1.0 × 10−2 and HeLa ≥ K562 q = 1.2 ×
10−3. Black dots represent the non-differentially (non-DE) expressed dataset.

poised states within critical regions (Supplementary File1
Section A and Supplementary File 2 and Figure S12).

Enrichments of histone tail modifications signifying tran-
scriptional activity for TFbiTrs and associated core promoter
regions

Our analysis indicated that TFbiTrs preferentially reside
within active chromatin domains (Figure 6, for HeLa cells
Supplementary File 2 and Figure S2, Jaccard indices 0.85
K562 and 0.90 HeLa in TFbiTr regions; Supplementary
File 1 Tables S4.1 and S4.3 for K562 and HeLa cell lines).
Conversely, connected downstream core promoters dis-
played predominantly poised characteristics (Jaccard in-
dices 0.06 and 0.09 in K562 and HeLa cells; Supplementary
File 1 Tables S4.2 and S4.4). This might imply that candi-
date regions host two promoters: one responsible for active
TFbiTr expression upstream and a poised one, associated
with the TSS of downstream mRNAs. Notably, even poised

promoters harbor the initiation competent form of RNAPII
(19,40,68,69). Therefore, the detection of RNAPII over-
representation within TFbiTr containing 1Kb upstream re-
gions and near the RefSeq TSS agreed with this interpre-
tation (i.e. the bimodal distribution of RNAPII). Further
confirmatory results were obtained via the analysis of nu-
cleosome positioning based on MNase-treatment for active
(i.e. TFbiTr containing 1Kb upstream regions) and poised
promoter states (i.e. regions 1Kb downstream from the Ref-
Seq gene TSS), respectively.

Nucleosome occupancies were unperturbed for 1Kb
downstream regions from the TSS; displaced nucleosomes,
which are strongly indicative of active transcription, were
detectable only within the corresponding TFbiTr regions.
To avoid wrong conclusion we also compared TFbiTr con-
taining PPRs to those that are devoid of candidate sRNAs.
Notably, mRNA expression levels for these control datasets
were similar to their TFbiTr-containing counterparts (Fig-
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Figure 5. Results for mRNA expression for RefSeq genes harboring TFbiTrs in PPRs in (A) K562 and (B) HeLa cell lines; the impact of TFbiTr candidates
with expression levels above or below thresholds, which are minimally required for effective TF-occlusion, on the corresponding RefSeq gene expression
is demonstrated (Supplementary File 1 and Table S10).

ure 7). For PPRs within control data there were no signals
of active transcription identifiable as revealed by regular nu-
cleosome occupancies.

Histone tail modifications indicating transcriptional activity
in PPRs with and without TFbiTrs

We compared histone tail modifications detected within
PPRs containing TFbiTrs with epigenetic landscapes of
PPRs for RefSeq genes devoid of candidate transcripts.
In order to avoid bias, this analysis was restricted to Ref-
Seq genes that displayed expression levels similar to those
containing TFbiTrs within 1Kb upstream regions (RPKM
0.3–1.4 K562 and 0.2–1.9 HeLa). For this purpose, all
datasets were categorized according to corresponding Ref-
Seq gene expression levels (‘Materials and Methods’ sec-
tion). The absence of H3K27ac enrichments within PPRs
for genes devoid of TFbiTrs differentiated both data (Figure
8, for HeLa cell Supplementary File 2 and Figure S3). Even
strongly expressed RefSeq genes devoid of TFbiTrs (RPKM
11.8–18.4 K562 and 13.7–18.6 HeLa) displayed specific en-
richment of H3K27ac only in the vicinity of the RefSeq
TSS, but were devoid of the activating mark within PPRs
(Supplementary File 2 and Figure S4.1 and 4.2). In addi-
tion, we monitored H3K36me3 and H4K20me1 occupancy
levels, which signify transcriptional activity, for highly ex-
pressed genes, and observed significant enrichments of ei-
ther histone tail modification only within downstream core
promoters. However, the corresponding PPRs did not dis-
play any detectable enrichment of either modification (Sup-
plementary File 4 and Figures S1 and 2). Therefore, pro-
moter landscapes of TFbiTr upstream regions are specific
to candidate transcription and no feature of RNAPII pro-
moters per se.

Analysis of phosphorylated RNAPII ChIP-seq footprints in
TFbiTr loci

The largest subunit of RNAPII contains a repetitive
carboxyl-terminal domain (CTD) that is phosphorylated

during elongation (70). To gain further insight into the pro-
moter structures of TFbiTr regulated genes and as addi-
tional control, we analyzed ENCODE ChIP-seq data for
local enrichments of phosphorylated RNAPII within 1Kb
flanks from the RefSeq gene TSS. Peaks of phosphorylated
RNAPII were significantly over-represented in regions of
active TFbiTrs compared to downstream mRNAs (Figure
9A and B) (Jaccard index 0.84 and 0.92 for K562 and HeLa
cell lines, respectively for TFbiTr promoter regions and
0.012 and 0.005 for core promoters, Supplementary File 1
and Tables S4.5–4.6, � 2 tests P < 0.01, Supplementary File
1 and Tables S4.7 and 4.8). Analysis of analogous regions
for non-TFbiTr regulated RefSeq genes with expression lev-
els similar to those containing TFbiTr in PPRs served as
control. PPRs of control datasets did not display enrich-
ment for phosphorylated RNAPII. Confirmatory results
were also obtained for the distribution of phosphorylated
RNAPII in PPRs when non-TFbiTr regulated genes with
high expression were analyzed (Figure 9C and D). Here
RNA polymerase enrichment, as predicted, within core pro-
moter regions surrounding the RefSeq TSS but was barely
detectable within the corresponding 1Kb upstream regions.
Hence, the distribution of specific histone tail modifications,
occupancy levels of phosphorylated RNAPII and nucle-
osome positioning distinguish PPRs of TFbiTr-regulated
from RefSeq genes devoid of candidate transcription. Fig-
ure 10 summarizes our findings for the KIF2A gene (for
more examples Supplementary File 2 and Figures S9–11).

TFbiTr loci interact with enhancer regions

Enhancer and promoter regions are closely embedded in
a complex mesh of cell-type specific interactions (71,72).
ChIA-PET (chromatin interaction analysis by paired-end
tag sequencing) integrates ChIP-based enrichment followed
by chromatin proximity ligation (21). The technique utilizes
paired-end tags and high-throughput sequencing for the de-
termination of long-range chromatin interactions. The ma-
jority (>80%) of TFbiTr loci intersected with regions en-
riched in ChIA-PET signals in HeLa and K562 cell lines
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Figure 6. Average enrichments for histone tail modifications in (A) proximal and (B) core promoter regions for RefSeq genes with TFbiTrs in K562
cells; black bars denote the relative positions of TFbiTrs and core promoters. (C) For the same regions chromatin environments representing activation
(H3K27ac) and (D) repression (H3K27me3) are also displayed as notched boxplots; chromatin landscapes of candidate loci were specific to PPRs harboring
TFbiTrs.

and the interacting regions revealed over-representation of
enhancer marks (Supplementary File 1 Tables S5.1–5.6 for
K562 and HeLa cell lines, Figure 11).

ChIA-PET identified cell line specific interactions of TFbiTr
loci with enhancer regions

Comparison of ChIA–PET interactomes between K562
and HeLa cell lines uncovered mostly cell line specific loop-
ing interactions. This finding might, at least in part, explain
the overall limited intersection of TFbiTr datasets. Of all
candidates, 932 were specific to K562 and 1509 to HeLa
cells, respectively. To establish the hypothesis that TFbiTr
expression is dependent on interacting enhancers of cell line
specific activity, the following analysis was conducted: First,

we selected PPRs of non-TFbiTr regulated genes, with ex-
pression values similar to those of TFbiTr-controlled pro-
tein coding genes (RPKM 0.1–1.6 and 0.5–1.8 in K562
and HeLa), and uncovered significantly less enhancer in-
teractions compared to 1Kb upstream regions of mRNA
genes regulated via TFbiTrs (� 2 test P < 0.01, Supplemen-
tary File 1 and Tables S6.1 and 6.2; Supplementary File 2
and Figure S5). Identical mRNA expression levels for case
and control data suggested––albeit indirectly––that differ-
ences of enhancer/promoter looping interactions in case of
TFbiTr controlled genes are relevant to candidate sRNA
transcription. Second, the predominantly cell line-specific
mode of TFbiTr transcription enabled the monitoring of
enhancer/promoter interactions in relation to TFbiTr ac-
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Figure 7. Comparative analysis of nucleosome occupancy levels for genes (A) harboring TFbiTrs (+) and (B) RefSeq genes devoid of TFbiTrs (−) that are
expressed at similar levels (‘Materials and Methods’ section) compared to TFbiTr-containing counterparts in K562 cells.

tivity. We compared looping interactions within the 1Kb
upstream regions of active TFbiTrs in K562 to identical
sites in HeLa cells in the absence of candidate RNAs and
uncovered significantly less enhancer interactions (Supple-
mentary File 2 and Figure S6).

Based on this analysis, we suggest that enhancer loops de-
tected within TFbiTr regions were linked to candidate tran-
scripts and in turn responsible for their expression. ChIP-
seq footprints of H3K27ac and H3K9ac enrichment for
TFbiTr-linked enhancers revealed that the vast majority
(1158/1232 in K562 and 1768/1953 in HeLa) of them were
indeed active (73). Notably, when analyzed across cell lines,
identical enhancer domains displayed poised characteristics
(Figure 11, Supplementary File 2 and Figure S7 for HeLa).
Our results therefore suggested functional switches of active
enhancers into bona fide repressors via candidate transcrip-
tion. The cartoon in Figure 12 serves as an illustration.

DISCUSSION

Pervasive transcription generates myriads of non-protein
coding transcripts (74,75). However, functions for most of

these RNAs remain enigmatic (13). Promoter proximal re-
gions are heavily interleaved with different types of poten-
tially regulatory sRNAs (3,4,8,10,11,76). Overlapping mod-
ules of RNA transcription and TFBSs might establish regu-
latory networks where the act of transcription itself controls
TF/DNA interactions (77). Here, as a proof of principle, we
analyzed small RNAs (<200 nt) to evaluate the potential of
TI to act within PPRs of human RefSeq (hg19) protein cod-
ing genes.

Our input datasets were specifically confined to small
RNAs within the 1Kb upstream regions, and hence dif-
fer from the repertoire of promoter proximal RNAs which
included transcripts from downstream regions of the gene
TSS (8–11). We identified small transcripts that act via
the occlusion of otherwise productive TF/DNA inter-
actions. Only RNAs overlapping with TFBSs of signif-
icantly lower relative TF-binding affinities compared to
controls were analyzed (24). We established TFbiTr ex-
pression thresholds that were minimally required to inter-
fere with productive TF/DNA interactions. These thresh-
olds do not represent absolute values and reflect also the
experimental/computational design of our analysis. For
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Figure 8. Average enrichments for histone tail modifications (A) in proximal and (B) core promoter regions for RefSeq genes devoid of TFbiTrs in K562 cells.
RefSeq genes were of similar expression levels as datasets containing TFbiTrs in PPRs (‘Materials and Methods’ section). The black bar denotes the core
promoter region. (C) and (D) boxplots for the same regions, representing chromatin environments of activation (H3K27ac) and repression (H3K27me3)
are displayed.

control and to avoid false inferences, we also screened for
sRNAs that overlapped TFBSs associated with productive
TF-binding (i.e. ‘favorable’ binding), and found that these
transcripts consistently did not meet the critical expression
thresholds (Table 5). For 2% of our dataset we uncovered
TFbiTr candidates that were expressed above the thresh-
old and were associated with TFBSs of relatively higher
TF-binding affinities. In future studies, these transcripts
should be investigated, as they might function as transcrip-
tional activators, maybe in ways analogous to eRNAs (en-
hancer RNAs) in eukaryotic enhancer domains (78,79).
These transcripts might act in complex with proteins as
RNPs, e.g. by increasing the local concentration of chro-
matin modifying activities within promoter proximal re-

gions, which ultimately would lead to stronger TF/DNA
interactions.

TI is commonly related to the relative promoter strength
of the regulating and to be regulated promoters. For TF-
biTrs, we uncovered that candidate transcripts were gen-
erally associated with mRNAs of comparatively lower ex-
pression. This finding suggested that the occlusion of oth-
erwise productive TF/DNA interactions is the cause for
diminished mRNA expression. Hence, TFbiTr expression
levels are possibly the most important criterion to define
functions associated with these transcripts. Consequently,
we consider TFbiTrs to represent simple byproducts of TI,
as the actual regulation is exerted via the act of transcrip-
tion itself and is not connected to any RNA encoded func-
tion. The term ‘transcripts’ might be utilized to emphasize
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Figure 9. ChIP-seq footprints for phosphorylated RNAPII (P+) in PPRs with TFbiTrs (RNAPII CTD P+ TFbiTr containing PPRs) in and corresponding
1Kb downstream regions in (A) K562 and (B) HeLa cells. ChIP-seq footprints of phosphorylated RNAPII (P+) for highly expressed non-TFbiTr genes
(TFbiTr −) in (C) K562 and (D) HeLa cell lines are displayed as notched boxplots.

differences in TFbiTrs and other sRNAs, e.g. tRNAs or
rRNAs that encode functions mediated via (higher order)
RNA structures (14). However, our analysis does not nec-
essarily rule out that TFbiTrs act also via additional, trans-
regulatory mechanisms, e.g. based on local competition be-
tween TFbiTrs and TFBSs for effective TF-binding (12,80).

For the analysis of PPRs containing TFbiTrs, we reckon
the precise identification of candidate 5′ termini is essen-
tial to unambiguously define TFbiTr in comparison to Ref-
Seq core promoters. Notably, the intersection of candidate
5′ termini as identified with CIP/TAP pretreated total RNA
starting material and CAGE clusters reduced the original
datasets significantly. This procedure might correct for false
positive detection of small RNAs, which potentially escaped
sufficient CIP treatment. Furthermore, the confinement to
sRNAs that harbor both terminal modifications, i.e. RNA
5′ caps and 3′ terminal polyA tails, helped to exclude tran-
scripts or degradation products, which potentially are de-
rived from hnRNAs with promoters located further up-
stream from the actual RefSeq TSS and to enrich for full-
length transcripts.

Various transcript classes may have escaped identifi-
cation due to the specific confinements of our cDNA
datasets. For instance, CUTs (cryptic unstable transcripts),

SUTs (stable uncharacterized transcripts) and PROMPTs
(promoter upstream transcripts), which on average are
much longer than 200 nt, potentially function via similar
mechanisms (81,82,83,84). Also, non-polyadenylated tran-
scripts or RNAs that do not possess 5′ terminal cap struc-
tures could act via the same mechanism. Indeed, analy-
sis of these originally excluded transcripts revealed that
they––depending on their actual expression levels are com-
petent to occlude productive TF/DNA interactions (Sup-
plementary File 1 and Table S7a–d). This implies that
there are possibly (unreported) additional transcript classes
within PPRs that regulate gene expression in ways analo-
gous to TFbiTrs. On the other hand, it cannot be ruled that
these transcripts represent processed or degraded TFbiTrs.

The interaction of TFbiTr promoters with human tissue-
specific enhancer elements could explain the limited inter-
section of TFbiTrs between cell lines, and suggests that TF-
biTrs may be involved in regulation of gene expression in
response to developmental stimuli. Also, TI as a regulatory
principle might be extended to the occlusion of transcrip-
tional repressors (Supplementary File 5). The analysis of
effects mediated by TFbiTr expression on NRSF (neuron-
restrictive silencer factor) binding in human Embryonic
Stem (ES) and neuronal progenitor cells agreed with both
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Figure 10. TI via TFbiTr expression within the 1Kb upstream region of the KIF2A gene for K562 cells (left); histone tail modifications indicative of active
and poised promoter states, respectively: H3K4me3 (mustard yellow), H3K4me2 (purple) and H3K27ac (green), H3K27me3 (aquamarine), H3K36me3
(dark green), H3K79me2 (brown). Peaks for RNAPII (RNA polymerase II) are displayed in gray and KIF2A mRNA expression in black. Lowered c-Myc
binding and reduced mRNA expression as a consequence of TFbiTr expression is represented on the left. The right site displays results for the same region
analyzed in HeLa cells (right); here in the absence of TFbiTr expression KIF2A gene expression was significantly higher than in K562 cells. Therefore,
changes in c-Myc DNA-binding (light green) were associated with altered KIF2A expression. For further examples see Supplementary File 2 and Figures
S9–11. The figure was drawn with the aid of the Human Epigenome Browser at http://epigenomegateway.wustl.edu/.

Figure 11. Comparison of chromatin environments for distal enhancers associated with TFbiTrs across cell lines. Only enhancers connected with TFbiTrs
that were actively expressed in (A) K562 but silent in (B) HeLa cells entered the analysis. ChIP-seq signals for histone tail modifications indicative of active
enhancers within TFbiTr interacting arms (as identified via ChIA-PET) for K562 cells suggested that TFbiTr expression is dependent on the activity of
these distal enhancers. Identical loci, representing active enhancers in K562,displayed only poised enhancer characteristics in HeLa cells. The results agreed
with the predominantly cell line specific expression of TFbiTrs. Signals for the analyzed histone tail modifications were calculated within major H3K4me1
peaks. Boxplot notches indicate the 95% confidence interval for the estimated median value. Log base 2-fold change (L2FC) and P-values corrected for
multiple testing (q-value) K562 ≥ HeLa: H3K27ac L2FC = 6.15, q = 1.0 × 10–2, H3K9ac L2FC= 8.17, q = 3.2 × 10–2, H3K27me3 L2FC = 7.11,q =
3.7 × 10–3.

http://epigenomegateway.wustl.edu/
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Figure 12. (A) ChIA-PET loops representing enhancer–promoter interactions for a TFbiTr candidate, located within the PPR of the NCOA7 gene are
displayed by black curves for K562 cells. Black arrows outside of the circle indicate the orientation for RefSeq gene and TFbiTr transcription. Messenger
RNA expression levels are shown in blue and RefSeq annotations are displayed in black. Expression of NCOA7 was barely detectable in K562 cells. Orange,
yellow and gray circles represent H3K4me3, H3K27ac histone tail modifications and RNAPII, respectively. This combination signifies active promoter
states. Active enhancers are displayed in light green, light red and lightyellow for H3K4me1, H3K9ac and H3K27ac, respectively. This figure was drawn
with the aid of the Human Epigenome Browser at http://epigenomegateway.wustl.edu/. (B) ChIA-PET loops representing enhancer–promoter interactions
for the same region (as in A) in the absence of the TFbiTr candidate in HeLa cells are indicated by black curves. Note the absence of interacting loops
for the 1Kb upstream region of the NCOA7 gene. Black arrows outside of the circle indicate the orientation of RefSeq gene and TFbiTr transcription.
Messenger RNA expression levels are shown in blue and RefSeq annotations are displayed in black. In the absence of TFbiTr transcription NCOA7
mRNA expression was elevated. Orange, yellow and gray circles represent H3K4me3, H3K27ac histone tail modifications and RNAPII, respectively.
This combination signifies active promoter states. Active enhancers are displayed in light green, light red and light yellow for H3K4me1, H3K9ac and
H3K27ac, respectively. This figure was drawn with the aid of the Human Epigenome Browser at http://epigenomegateway.wustl.edu/. (C) The cartoon
summarizes histone tail modifications and chromatin environments of enhancers interacting with TFbiTr promoters. Active enhancers display enrichments
of H3K4me1, H3K9ac, H3K27ac and minimal H3K27me3 occupancies. (D) The cartoon depicts the analogous region as displayed in (C), in the absence
of TFbiTr expression. Chromatin environments of poised enhancers display enrichments of H3K4me1 along with H3K27me3. H3K27ac and H3K9ac
histone tail modifications, signifying active enhancer states, are barely detectable. Changing chromatin environments for the interacting promoters are
indicated schematically.

assumptions. Therefore, enhancers might, depending on the
occlusion module, act as repressor or activator of corre-
sponding downstream gene expression.

Given the ubiquitous nature of pervasive transcription
and the number of regulatory sites encoded within eukary-
otic genomes, we envision that numerous pervasive tran-
scripts are best considered as byproducts of TI. Potentially,
TI could contribute to the regulation of other functional
modules that depend on protein/DNA interactions (Pande
et al., in preparation).
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