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Challenges in microRNAs’ targetome prediction and 
validation

The Canonical MicroRNA Processing 
Machinery
In recent years, the central role of microRNAs (miRNAs) as 
post-transcriptional repressors has been extensively studied in 
development and disease. In animals, miRNAs are non-coding 
22 nucleotide (nt) sequences that regulate gene expression by 
binding either partially- or fully-complementary RNA sequenc-
es - predominantly messenger RNA (mRNA), but also but also 
ribosomal RNAs, transfer RNAs, long intergenic non-coding 
RNAs, and other miRNAs (Helwak et al., 2013). The main de-
terminants of target recognition reside within the miRNA 5′ end 
in positions 2 to 7, which together are commonly known as the 
“seed” sequence (Ha and Kim, 2014). Computational predictions 
suggest that individual miRNAs regulate large genetic networks 
by targeting hundreds of mRNA molecules (Agarwal et al., 2015), 
although experimental data on entire networks within specific 
cell types are rare. Most experimental studies only validate one 
or a few miRNA targets at once. In turn, an individual mRNA 
molecule can possess binding sites for several miRNA species 
(Friedman et al., 2009; Chou et al., 2018), though the latter might 
compete against each other for specific binding sites (Saetrom et 
al., 2007) and thereby lead to non-synergistic outcomes (Xu et 
al., 2011). Additionally, the existence of competing endogenous 
RNAs (Tay et al., 2014; Denzler et al., 2016), i.e. natural miRNA 
sponges such as long non-coding and circular RNAs, is further 
evidence of the intricacy of miRNA regulatory networks. 

The biogenesis and maturation of miRNAs is highly conserved 
across species. miRNAs are generated from partially-comple-
mentary regions of primary RNA transcripts (pri-miRNA) 
produced mainly by RNA polymerase II, but also by RNA poly-
merase III. These transcripts anneal and give rise to short RNA 

hairpins or stem-loops (Ha and Kim, 2014). Initially contained 
within non-coding RNAs or within the introns of coding se-
quences (host genes), these hairpins are recognized and cleaved 
in the mammalian cell nucleus by the miRNA-processing 
complex, also known as microprocessor, formed by the Dro-
sha ribonuclease and the DiGeorge critical region 8 (DGCR8) 
protein. By cutting 11 base pairs (bp) away from the base of the 
hairpin stem, the miRNA-processing complex produces a 70-nt-
long sequence known as a precursor miRNA (pre-miRNA) and 
characterized by a 5′ phosphate and a 2-nt 3′ overhang (Han et 
al., 2004). Pre-miRNA hairpins are subsequently transported 
by exportin 5 to the cytoplasm, where they are cleaved by the 
Dicer endoribonuclease 22 nt away from the Microprocessor 
cutting site. This second cut generates a new 5′ monophosphate 
and one more 2-nt 3′ overhang on the opposite side of the dou-
ble-stranded RNA sequence (Chiang et al., 2010). The resulting 
~22-nt RNA duplexes are incorporated into the Argonaute 
protein and unwound to form, together with other proteins, the 
RNA-induced silencing complex (RISC). RISC then mediates 
the miRNA-guided scanning of target transcripts and the subse-
quent miRNA-target pairing (Bartel, 2009; Ha and Kim, 2014). 
Ultimately, miRNA-targeted mRNA molecules are degraded or 
exhibit reduced translational efficiency (Krol et al., 2010). 

Challenges in the Identification of Novel 
MicroRNAs 
Although miRNA identification was initially achieved by 
Sanger sequencing of complementary DNA clones produced 
from small-RNA libraries, the rapid advance in sequencing 
technologies towards higher-throughput methods has led to an 
exponential increase in the number of predicted miRNAs (Ko-
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zomara and Griffiths-Jones, 2011). RNA sequencing (RNA-Seq), 
in particular, has revolutionized the field of transcriptomics 
and spearheaded the discovery of all types of novel transcripts 
(Kukurba and Montgomery, 2015). Offering higher coverage 
and resolution than traditional Sanger- and microarray-based 
sequencing methods, RNA-Seq experiments have revealed 
many novel miRNAs (Kozomara and Griffiths-Jones, 2011): 
this has resulted in an enormous challenge in miRNA annota-
tion and validation. The latter is further compounded by the 
usage of heterogeneous RNA-Seq methods and deep-sequenc-
ing parameters. Similarly, low RNA quality has a notoriously 
detrimental effect on sequencing results. Sequencing low-qual-
ity RNA has the potential to bias miRNA quantifications and 
might lead to assuming that RNA fragments resulting from 
degradation are real miRNAs (Kukurba and Montgomery, 
2015; Ludwig et al., 2017). Indeed, hundreds of miRNAs can be 
erroneously annotated from a single, poorly-analyzed RNA-Seq 
dataset and decimate the fraction of legitimate miRNAs an-
notated in databases (Kozomara and Griffiths-Jones, 2014). In 
order to deal with these difficulties, guidelines for miRNA an-
notation have been devised and are continuously being refined. 

The first set of guidelines for annotating miRNAs was pub-
lished in 2003 (Ambros, 2003). These guidelines stated that clon-
ing, sequencing, or northern blotting should be used to provide 
evidence for the existence of a 22-nt-long sequence, and that the 
predicted origin of such sequence should be a region with the 
potential to generate a stem-loop structure. These principles, 
however, are subject to certain limitations. For instance, millions 
of hairpin structures are predicted to exist in the genome, yet not 
all of them give rise to miRNAs (Kozomara and Griffiths-Jones, 
2011). Hence, stem loops are necessary but insufficient to pre-
dict the existence of a “true” miRNA. Furthermore, even “true” 
miRNA candidates might escape detection in sequencing exper-
iments if tissues or cells are examined at time-points in which 
their expression levels are low. For this reason, complementing 
criteria for the validation of animal miRNAs were established. 
These criteria are often incorporated in modern miRNA identi-
fication tools such as miRDeep (An et al., 2013) and include: a) 
the presence of matching 3′ overhangs up to 4 nt-long; b) 5′ ends 
compatible with the miRNA processing machinery; c) a max-
imum number of permitted mismatches between pre-miRNA 
strands; d) a minimum number of required mapped reads; and 
e) a specific pattern for such reads (Friedlander et al., 2008; Hen-
drix et al., 2010). With regard to criterion e), a high number of 
reads is expected to map to the mature miRNA, whereas much 
lower read numbers should map to its loop region and to the 
second strand of the miRNA duplex (miR*; also known as “pas-
senger” strand). Additionally, reads mapping to both loop and 
miRNA (or to both loop and miR*) are expected to be almost 
undetectable as they contain the cutting sites for the miRNA 
processing machinery. Although these principles are certain-
ly useful in aiming for high-confidence annotations, defining 
a minimum number of required mapped reads as a guideline 
could cause problems, particularly because some miRNA species 
are expressed only at low levels and in a temporally- and tis-
sue-restricted manner (Karali et al., 2010). Numerous candidate 
miRNAs have been annotated in miRNA repositories even with 
a single mapped read from a deep-sequencing experiment as evi-
dence (Berezikov et al., 2006). Since many of these miRNAs have 
not yet been validated, it is still possible that they are artifacts.

“True” MicroRNAs: Needles or Haystack? 
Several of the hurdles inherent in the identification of novel 
miRNAs are evident in multiple miRNA databases. miRBase, 
for instance, represents the primary public repository and on-
line resource for miRNA sequences and annotations, and de-
scribes 48,860 mature miRNAs from 271 organisms in its 22nd 
version (Kozomara et al., 2019). Nonetheless, many miRNA 
annotations in this and other databases correspond to pre-
dicted miRNAs and might thus be inaccurate. As an example, 
over 150 annotated miRNAs have failed to yield RNAs with 
miRNA features in response to the overexpression of their hair-
pin sequences flanked on both sides by the ~100-nt genomic 
sequence required for their correct processing (Chiang et al., 
2010). Moreover, although the mapping patterns of over 5.5 
billion reads gathered from almost 1500 small RNA-Seq data-
sets support the validity of the miRBase annotations to varying 
degrees (up to 65% depending on the species), over 200 miRNA 
sequences have been removed from this database in the past 
5 years (Kozomara et al., 2019). In contrast, more than 10,000 
miRNAs were added within the same timeframe. 

For homo sapiens, in particular, the miRBase presently con-
tains 2654 mature miRNA sequences predicted to originate from 
1917 hairpin precursors. Yet, only approximately one quarter of 
these miRNAs are annotated with high confidence, and no more 
than 20 reads are associated with each strand of the RNA duplex 
for about half of them (Kozomara et al., 2019). However, vali-
dating all candidate miRNAs via overexpression assays (Chiang 
et al., 2010) is a titanic task likely to fail in identifying miRNAs 
produced via non-canonical pathways and hence not complying 
with the features that arise from conventional miRNA processing 
(Yang and Lai, 2011; Ha and Kim, 2014; Kozomara et al., 2019). 
Thus, improved annotation approaches, and the development 
and implementation of stringent validation pipelines are impera-
tive for defining whether a miRNA is “true” or falsely-identified. 

Experimental Approaches to Identify and 
Validate MicroRNAs
As most of the RNA species obtained from biological tissues 
or cells in culture correspond to ribosomal RNA, a variety of 
depletion and enrichment strategies have emerged over time 
to preferentially sequence RNAs of interest. A prominent 
strategy to enrich miRNAs from total RNA is to isolate small 
RNAs, i.e. species of 15–30 nt. This is commonly achieved 
either by excising gel fragments after electrophoresis in the 
region corresponding to the expected RNA fragment size, 
or by using silica columns that bind small RNAs (Kukurba 
and Montgomery, 2015). These approaches, however, are 
prone to miRNA misidentification in the case of low-quali-
ty or degraded RNA. Recently, a number of methods based 
on the crosslinking of miRNAs and their targets, together 
with immunoprecipitation of RISC proteins, have emerged 
for the validation of miRNAs and for the identification of 
miRNA-target interactions. High-throughput sequencing of 
RNAs isolated by crosslinking and immunoprecipitation of 
Argonaute, for instance, allows miRNAs contained within 
AGO and the binding sites of Argonaute-miRNA complexes 
within distinct mRNA molecules to be identified (Chi et al., 
2009; Boudreau et al., 2014). Building on this method, photo-
activatable ribonucleoside-enhanced crosslinking and immu-
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noprecipitation uses randomly-incorporated photoactivatable 
nucleosides, commonly 4-thiouridine, prior to crosslinking 
RNA molecules with RNA binding proteins and ribonucleop-
rotein complexes (Hafner et al., 2010). This enables enhanced 
crosslinking and subsequent RNA recovery with reduced 
ultraviolet irradiation and, more importantly, leads to charac-
teristic mutations, depending on the nucleoside utilized, which 
correlate with RNA-protein crosslinking sites. Thus, by cou-
pling photoactivatable ribonucleoside-enhanced crosslinking 
and immunoprecipitation with AGO immunoprecipitation, 
miRNA binding sites can be identified by mutational analyses, 
and discriminated from contamination by other RNA species. 
Similarly, by crosslinking the RNA sequences bound to the 
AGO-miRNA complex after immunoprecipitation and se-
quencing the hybrids generated, CLASH (crosslinking, ligation, 
and sequencing of hybrids) allows miRNAs and their targets to 
be identified with high confidence (Helwak et al., 2013; Helwak 
and Tollervey, 2014). Importantly, CLIP-based sequencing 
approaches, including CLASH, are among those considered re-
liable for miRNA-target validation within the miRTarBase (ver-
sion 7.0) (http://mirtarbase.mbc.nctu.edu.tw/php/index.php), 
the most comprehensively annotated database of experimental-
ly-validated miRNA-target interactions (Chou et al., 2018). Yet, 
in spite of its benefits, crosslinking poses the risk of generating 
undesired mutations, introducing background, and failing to 
detect mRNA-miRNAs interactions occurring via non-canon-
ical “seed” pairing. Further, CLIP-based methods often require 
large amounts of biological material and are biased towards the 
identification of miRNAs that are highly expressed and that 
contain specific sequences (Tan et al., 2014). To overcome these 
limitations, RNA immunoprecipitation (RIP) followed by next 
generation sequencing (RIP-Seq) enables specific RNA-binding 
proteins and their target-RNA complexes to be pulled down ei-
ther in their native state or after cross-linking (Malmevik et al., 
2015; Gagliardi and Matarazzo, 2016). In this context, immuno-
precipitation of AGO-bound RNAs in the absence of crosslink-
ing, followed by sequencing (AGO-RIPseq), allows miRNAs 
and bound mRNAs to be identified (Petri and Jakobsson, 2018). 
RIP-Seq datasets are considered as evidence of miRNA-mRNA 
binding in the DIANA-TarBase (version 8.0) (http://diana.imis.
athena-innovation.gr/DianaTools/index.php?r=tarbase/index), 
a manually-curated database containing over 790,000 experi-
mentally-validated miRNA-gene interactions (Karagkouni et 
al., 2018). This repository also incorporates the results of the 
IMPACT-Seq approach (identification of miRNA-responsive 
elements by pull-down and alignment of captive transcripts-se-
quencing), in which RNA targets are sequenced after co-purifi-
cation with transfected miRNA mimics biotinylated at their 3’ 
end in the absence of crosslinking (Tan et al., 2014). Although 
these methods have enabled an enormous number of novel 
miRNA−mRNA interactions to be identified, such interactions 
remain limited by the expression levels of the miRNAs of inter-
est within particular cells or tissues at the examined time-point. 

Predicting the Targetome and Genetic 
Regulatory Network of a MicroRNA
The targetome of a miRNA refers to the set of RNA molecules 
that it targets. Several computational approaches have been de-
veloped to predict the targetome of specific miRNAs. To date, 

most of these prediction algorithms use the canonical rule of 
miRNAs binding to their target mRNAs mainly by base pairing 
between the seed region of the miRNA and fully-complemen-
tary sequences within the 3′ untranslated region of the mRNA 
(Tan et al., 2014). However, evidence indicates that bulges, G:U 
wobbles, “seedless” interactions, and binding regions within 
a gene’s coding sequence are admissible and not uncommon, 
with canonical miRNA-mRNA interactions accounting for only 
25% (Helwak et al., 2013). Hence, computational prediction of 
binding regions within mRNA molecules, and thus of miRNA 
target genes, remains a major challenge. Although non-ca-
nonical miRNA-mRNA interactions seem to have no effect on 
mRNA or protein levels in mammals (Agarwal et al., 2015), in-
complete miRNA-mRNA base-pairing is common and enhanc-
es Argonaute-mediated target slicing and the rate of product 
release (or target turnover) in other classes of living organisms 
(Wee et al., 2012; Helwak et al., 2013; Chen et al., 2017). Thus, 
although the biological relevance of accurately predicting par-
tially-complementary miRNA-mRNA interactions remains 
controversial, there is no doubt such interactions are important 
to ensure undesired mRNA regulation is avoided upon admin-
istration of RNA interference-based therapeutics. 

In general, the prediction accuracy for individual miRNA 
targetomes is relatively high if distinct parameters are consid-
ered. For example, to predict the probability of a specific miR-
NA-mRNA, TargetScan has developed the context++ model 
to go beyond simply searching for conserved multimers (more 
specifically, sequences of 6, 7, or 8 nt) that match the miRNA 
seed region. The TargetScan context++ model factors in site 
accessibility (Robins et al., 2005; Tafer et al., 2008; Hölscher, 
2014), and allows mismatches in the miRNA seed region (Agar-
wal et al., 2015) by incorporating the concepts of conserved 3′ 
pairing (Friedman et al., 2009) and centered sites (Shin et al., 
2010). Moreover, many online platforms now even incorporate 
machine-learning algorithms and advanced text-mining ap-
proaches using natural language processing methods to explore 
the literature and devise distinct miRNA-targeting mecha-
nisms, the probability that they occur, and their effects in terms 
of translational repression and mRNA degradation. Offering 
high-quality miRNA targetome predictions for distinct verte-
brate species and model organisms, such platforms include the 
user DNA Intelligent Analysis (DIANA)-microT (http://diana.
imis.athena-innovation.gr/DianaTools/index.php?r=microT_
CDS/index) (Paraskevopoulou et al., 2013), miRDB (mirdb.
org), and MIRZA-G (Gumienny and Zavolan, 2015). Although 
targetome and large-scale genetic network predictions for in-
dividual miRNAs are increasingly reliable, accounting for the 
combined action of multiple miRNAs and predicting their joint 
effects on mRNA or protein levels remain daunting endeavors. 
The distance between miRNA binding sites in an mRNA mol-
ecule, for example, defines whether different miRNAs will act 
cooperatively or competitively, with distant sites favoring the 
former, but short distances promoting the latter (Grimson et 
al., 2007). In this sense, the DIANA-miRPath online platform 
enables predictions on the combined effect of modulating mul-
tiple miRNAs to be run (Vlachos et al., 2012, 2015). Altogether, 
only the combination of prediction algorithms and experimen-
tal approaches will ultimately lead to a detailed understanding 
of miRNA regulatory networks. 
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The Role of MicroRNAs in the Central 
Nervous System
miRNAs are implicated in virtually all aspects of cell biology, 
and play essential roles in several developmental and patho-
logical processes. Dysfunctional miRNA regulatory networks 
correlate with the emergence and/or progression of diabetes, 
heart failure, cancer, and neurodevelopmental disorders (Allen, 
1940; Blenkiron and Miska, 2007; Rajman and Schratt, 2017). 
In the brain, for instance, miRNAs act not only as “fine-tuners” 
but also as master regulators of neuronal circuit development, 
maturation, and function, and influence processes such as 
cell-fate determination, cell migration, neuronal polarization, 
cognition, and synapse formation and plasticity (Ye et al., 2016; 
Rajman and Schratt, 2017). Early studies aimed at assessing the 
role of miRNAs in the central nervous system revealed that de-
letions of key components of the miRNA-processing pathway, 
including Dicer, DGCR8, and Argonaute, lead to defects in 
neurogenesis, impaired brain development, and neuronal atro-
phy (Schaefer et al., 2007; Davis et al., 2008, 2015; Im and Ken-
ny, 2012). Moreover, Cre-loxP-mediated conditional deletion 
of Dicer in specific neuronal cell types leads to their premature 
death, often as a consequence of a depleted neuronal progenitor 
pool or of enhanced apoptosis (Barca-Mayo and De Pietri Ton-
elli, 2014). Thus, miRNAs are likely to regulate cell-type speci-
fication in the central nervous system. Remarkably, transcrip-
tomic profiling studies have identified miR-124, in particular, 
as the most abundant small RNA in the central nervous system 
(Lagos-Quintana et al., 2002; Landgraf et al., 2007).

While ectopic expression of miRNA-124 in mice depletes the 
pool of neuronal progenitors within the subventricular zone by 
forcing their differentiation, its partial inhibition blocks neuro-
genesis and promotes progenitor self-renewal (Cheng et al., 2009; 
Åkerblom et al., 2012). Nonetheless, as the cellular and molecu-
lar composition of the human brain is different to that of other 
mammals, including primates (Somel et al., 2011), investigating 
the role of miRNAs in human model systems is indispensable. In 
the HeLa human cell line, miR-124 overexpression has previously 
been reported to drive the acquisition of a neuronal-like tran-
scriptional profile (Conaco et al., 2006), strongly hinting at the 
crucial role of this miRNA species in also defining neuronal iden-
tity in humans. In order to gain a deeper insight into the role of 
miR-124 in human neurogenesis, we used a highly homogeneous 
cellular model system known as iNGN cells. In this system, over-
expression of the transcription factors neurogenin-1 and neuro-
genin-2 is driven by a doxycycline-inducible promoter in induced 
pluripotent stem cells. These cells acquire a homogeneous bipolar 
neuronal morphology and become electrically active 7 days after 
doxycycline administration (Busskamp et al., 2014). More impor-
tantly, as in the murine central nervous system, miR-124 is also 
the most abundant miRNA species in iNGN cells. In our study, 
CRISPR/Cas9-mediated disruption of the six miR-124 paralogs 
revealed this miRNA species to not be required for neurogenesis 
(Kutsche et al., 2018). However, miR-124-depleted iNGN cells 
acquired more complex morphologies, reduced their dendritic 
extension speed, and, unexpectedly, shifted from a glutamatergic 
identity towards the preferential use of acetylcholine as a neu-
rotransmitter, which are findings consistent with previous reports 
(Yu et al., 2008; Franke et al., 2012; Volvert et al., 2014). Of note, 
miR-124-deficient cells also exhibited increased apoptosis in 

long-term cultures, as was previously shown in mouse neurons 
in vivo upon knock-out of a single miR-124 locus (Sanuki et al., 
2011). Since the molecular machinery mediating these phenotyp-
ic alterations is so far largely unexplored, we decided to combine 
experimental and computational approaches to deepen our un-
derstanding of the miR-124 regulatory network.

Taking its limitations into consideration, we used AGO-RIP-
Seq in miR-124-depleted iNGN cells at distinct time-points over 
the course of differentiation to identify miR-124 high-confidence 
targets (Kutsche et al., 2018). Although 4024 human transcripts 
have been described as possessing binding sites for miR-124, 
our approach allowed us to reliably identify 127 transcripts with 
reduced expression in miR-124-deficient cells compared to their 
wildtype counterparts. Remarkably, 98 of these 127 transcripts 
(77%) had been predicted to be miR-124 targets, and 38 of them 
had also been annotated as previously validated in the miRTar-
Base (Chou et al., 2018). Using luciferase reporter assays, which 
are considered a reliable validation method in the miRTarBase, 
we confirmed 43 novel bona fide miR-124 targets. Despite this 
approach signifying important progress in the validation of 
mRNAs targeted by miR-124, its interaction capacity with the 
remaining ~4000 annotated transcripts needs to be confirmed, 
potentially by also considering changes in protein levels. How-
ever, targeting 98 mRNAs, of which 81 have now been validated, 
demonstrated that miR-124 exerts its regulatory function at the 
network level. Another striking observation in our study was 
that 24 of these 98 predicted miR-124 targets were transcription 
factors (TFs) (Kutsche et al., 2018), hinting that these TFs are 
potential effectors of miR-124. As TFs modulate entire genetic 
programs and thereby have a strong impact in cell fate decisions 
(Hobert, 2008; Lambert et al., 2018), miRNA-mediated perturba-
tions in the expression levels of TFs are particularly relevant.

Knowledge of the existence of regulatory feedback mech-
anisms between miRNAs and TFs is not new. The die-1 TF, 
required for controlling chemosensory laterality in Caenorhab-
ditis elegans, was shown over a decade ago to perform its func-
tions by activating the lsy-6 miRNA in left-sided chemosensory 
neurons but having its expression levels modulated in left-sided 
neurons by mir-273 (Chang et al., 2004). Similarly, multiple 
miRNA-TF feedback circuits have been described as essential 
for mammalian neurogenesis, including miR-133b/Pitx (Kim 
et al., 2007), miR-7/Pax6 (de Chevigny et al., 2012), miR-132/
Nurr1 (Nr4a2) (Yang et al., 2012), and miR-17-3p/Olig2 (Chen 
et al., 2011). Moreover, specific miRNAs are known to regulate 
the expression of multiple TFs, as is the case for the neuron-en-
riched miR-9 in the murine brain (Shibata et al., 2011). As a 
consequence of their biological importance and widespread 
occurrence, multiple online platforms have been developed to 
predict miRNA-TF interactions, including TFmiR (Hamed et 
al., 2015) and DIANA-mirExtra (Vlachos et al., 2016). Howev-
er, building an interaction network is not trivial. To generate 
gene regulatory networks, in particular, co-expression networks 
are widely used (Yang et al., 2014; van Dam et al., 2018). Such 
networks are characterized by connected pairs of nodes repre-
senting significantly correlated expression patterns which can 
also contain information regarding both the direction and the 
strength (or weight) of the interaction. Nonetheless, network 
analyses are often performed using defined subsets of entities, 
leading to biased results if relevant interactions via other inter-
mediaries are not considered. To overcome this limitation, the 
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weighted topological (wTO) network analysis method implic-
itly includes correlations among nodes which are subsequently 
omitted in the analysis (Nowick et al., 2009; Gysi et al., 2018). 
Thereby, the wTO approach enables a more reliable evaluation 
of the interactions among sets of nodes of interest relative to 
other network analysis pipelines. By implementing the wTO 
network analysis method on the differentially regulated TFs in 
miR-124-deficient iNGN cells, we identified a number of fac-
tors likely to mediate the biological functions of miR-124. To 
validate the results, the function of the zinc finger 787 (ZNF787) 
was additionally characterized in iNGN cells, confirming its 
role as a repressor of neuronal features and revealing that it 
modulates a big fraction of the targets regulated by miR-124 
(Kutsche et al., 2018). 

Lastly, the experimental deletion of a highly abundant miR-
NA species did not result in a vacuum of miRNA regulation, as 
we detected other miRNAs being upregulated (Kutsche et al., 
2018). Hence, our data suggest that this de novo miRNA regu-
lation upon manipulation affects the primary phenotype. This 
likely contributes to the difficulties in interpreting experimen-
tal miRNA knockout and knockdown phenotypes, and must 
therefore be considered.

Outlook and Perspective
With less than 2% of the human genome encoding protein-cod-
ing genes, non-coding RNAs represent most of the human 
transcriptome (Tay et al., 2014). The central roles of such RNAs, 
including miRNAs, in health and disease is now widely recog-
nized. Consequently, steady progress has been made over recent 
years in the annotation and validation of novel miRNA. Howev-
er, there are still a number of important challenges in collecting 
highly heterogeneous data from multiple experimental sources 
and in developing highly accurate prediction tools. The latter 
are essential for enhancing the medical potential of miRNAs 
(Jimenez-Mateos et al., 2012). We foresee that machine learning 
will make an important contribution to the refinement of miR-
NA repositories and prediction tools acting at the systems level.
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