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Expression quantitative trait locus (eQTL) analyses are critical in understanding the
complex functional regulatory natures of genetic variation and have been widely used in
the interpretation of disease-associated variants identified by genome-wide association
studies (GWAS). Emerging evidence has shown that trans-eQTL effects on remote gene
expression could be mediated by local transcripts, which is known as the mediation
effects. To discover the genome-wide eQTL mediation effects combing genomic and
transcriptomic profiles, it is necessary to develop novel computational methods to rapidly
scan large number of candidate associations while controlling for multiple testing
appropriately. Here, we present eQTLMAPT, an R package aiming to perform eQTL
mediation analysis with implementation of efficient permutation procedures in multiple
testing correction. eQTLMAPT is advantageous in threefold. First, it accelerates mediation
analysis by effectively pruning the permutation process through adaptive permutation
scheme. Second, it can efficiently and accurately estimate the significance level of
mediation effects by modeling the null distribution with generalized Pareto distribution
(GPD) trained from a few permutation statistics. Third, eQTLMAPT provides flexible
interfaces for users to combine various permutation schemes with different confounding
adjustment methods. Experiments on real eQTL dataset demonstrate that eQTLMAPT
provides higher resolution of estimated significance of mediation effects and is an order of
magnitude faster than compared methods with similar accuracy.

Keywords: trans-eQTL, cis-eQTL, mediation analysis, multiple testing control, permutation test, gene regulation
INTRODUCTION

Understanding the complex functional natures of genome variants has been the focus of many
studies in recent years, which provides us with advanced insights into phenotype variability and
disease susceptibility (Cheng et al., 2017; Watanabe et al., 2017; Gallagher and Chen-Plotkin, 2018).
Vast genome variants relevant to disease risks and other traits have been unequivocally identified by
genome-wide association studies (GWAS) (Visscher et al., 2017). However, most of those traits-
associated variants localize in non-coding regions, intergenic, or intronic regions, indicating that
genomic variants are likely to be involved in gene regulation instead of exerting their effects through
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altering the protein sequence directly (Gallagher and Chen-
Plotkin, 2018). To understand the complex regulatory natures
of genomic variants, one of the fundamental tasks is to discover
target genes which can be regulated by variants in the cell. The
expression quantitative trait loci (eQTL) analysis has been
proven a powerful tool in achieving this goal.

An eQTL is essentially a variant at a specific genome location
with its genetic variance associates with gene expression
variation in a population. Most eQTL mapping studies access
the eQTL effects through association tests between the genotypes
of a variant and expression profiles of a gene using regression
models (Shabalin, 2012; Ongen et al., 2015). And eQTL summary
statistics have been widely used in the interpretation of GWAS
results and Mendelian randomization studies (Cheng et al.,
2018b; Peng et al., 2019a). eQTLs can exert their regulatory
effects on local gene transcriptions (cis-acting) and distant gene
transcriptions (trans-acting), defined by the physical distance
between an eQTL and a gene, usually using 1 Mb as a threshold
or on different chromosomes for trans-acting associations
(Ongen et al., 2015; GTEx Consortium, 2017). cis-acting or
trans-acting may reflect different underlying regulation natures.
For example, cis-eQTLs usually reside close to transcription
starting sites (TSS) and might affect the gene expression
directly through affecting transcription factor (TF) binding
process (Nica and Dermitzakis, 2013). However, very little
knowledge is known for trans-eQTLs due to multifaceted
reasons. First, trans-acting effects are usually weaker than cis-
acting, which requires a large sample size to detect the weak
signals (Yao et al., 2017). Second, the number of trans-eQTL
associations is an order of magnitude more than cis-eQTL
associations, which brings heavy computational burdens.
Third, the multiple testing problem in identifying trans-eQTLs
results in stringent significance thresholds. And trans-eQTLs
have been proven less replicable across studies (Innocenti et al.,
2011). Therefore, most eQTL studies only focus on cis-eQTLs,
and the mechanisms underling the regulatory effects of genetic
variation on the expression of distant genes and genes in other
chromosomes are largely unknown (Bryois et al., 2014).

Recent studies have shown that trans-eQTLs are likely
involved in indirect regulations, where the trans-eGene can be
mediated by the cis-eGene, which is known as the mediation
effect (Pierce et al., 2014; Brynedal et al., 2017; Yang et al., 2017;
Yao et al., 2017). These studies provide evidence of a cis-
mediated mechanism that explains distal regulation of trans-
eGenes by trans-eQTLs (Yao et al., 2017). Characterizing these
regulatory relationships will allow us to better understand
regulatory networks and the biological mechanisms underlying
trans-eQTLs (Westra et al., 2013). To discover the mediation
effect among cis-/trans-eQTL (L), cis-eGene (C) and trans-eGene
(T), represented by a trio (L!C!T), a recently proposed work
which aims to test the significance of the effect of cis-eGene on
trans-eGene controlled by the genotype of L and confounders
(Yang et al., 2017). Mathematically, by using a linear regression
model, with the formula T = a + b1C + b2G + GCov + ϵ, where G
represents the genotype of L (see details in Material and
Methods), the objective is to test the significance of b1. In
Frontiers in Genetics | www.frontiersin.org 2
practice, this requires performing a large amount of association
tests in order to scan all possible candidate trios due to related
variants in linkage disequilibrium (LD). Thus, it will result in a
large number of nominal statistics, i.e., P values, and multiple
testing has to be considered in order to control the false discovery
rate. A traditional solution is to use Bonferroni correction
method, which multiplies the nominal P value with the total
number of tests to get an adjusted P value. However, the
Bonferroni method has been proven overly stringent in
genomic area due to the fact that a large number of tests are
not independent because of variants in LD, and this method will
result in a lot of false negatives (Ongen et al., 2015).

To solve this problem, a commonly adopted strategy is to use
the non-parametric permutation testing approach. The
permutation test can be performed by the following steps: first,
perform thousands of permutations on gene expression profiles
by randomly exchanging sample IDs. Notably, to break the
potential mediation effects from C to T while keeping the cis-
eQTL and trans-eQTL associations, the sample ID
rearrangement need to be performed within each genotype
group (i.e., AA, AB, or BB) (Yang et al., 2017). Second,
calculate a list of permutation statistics, under the null
hypothesis of no association, by performing associations using
genotypes and permuted expressions. Third, compare the
nominal statistics with the distribution of permutation
statistics to assess how likely the observed nominal association
statistics originates from the null distribution. The permutation
tests have been applied to multiple bioinformatics applications to
control for multiple testing, for example, eQTL mapping (Ongen
et al., 2015), allelic association analysis (Zhao et al., 2000), and
biological network analyses (Wang et al., 2019). In the context of
detecting mediation effect of cis-eGenes on trans-eGenes, a
recent ly proposed algorithm named GMAC adopts
permutation strategy to control for multiple testing (Yang
et al., 2017). However, it suffers from a main drawback: it
relies on performing a fixed number, usually thousands of
permutations per trio, to balance the running time and P value
resolution empirically estimated. For example, 10,000
permutations can derive P value at a resolution of 10−4 at the
best circumstance. There is no efficient built-in permutation
scheme, which makes its practical application very time-
consuming and not accurate in estimating significance of
mediation effects.

In this work, we present eQTLMAPT, an R package which
improves upon GMAC (Yang et al., 2017) by implementing
faster and more efficient permutation-based multiple testing
correction approaches. Besides the traditional fixed
permutation scheme, eQTLMAPT also provides 1) the
adaptive permutation scheme which prunes the permutation
process opportunely; 2) the approximation of the tail of null
distribution using generalized Pareto distribution (GPD) model,
which allows the user to accurately estimate adjusted P values at
any significance level in a short running time; and 3) flexible
choices of different confounding factors adjustment methods. In
addition, eQTLMAPT provides flexible interfaces for users to
combine different features and perform the proper permutation
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scheme based on their practical needs. Experiments on a real
eQTL dataset demonstrate that eQTLMAPT is an order of
magnitude faster than GMAC, and its estimated significance
has a much higher resolution than the compared method.
MATERIAL AND METHODS

Overview
To efficiently identify cis-eGene mediators of trans-eQTLs in
whole genome, we developed eQTLMAPT, an R package to
perform mediation analysis with multiple permutation schemes
and flexible covariate adjustment strategies. The core regression
models we used in mediation analysis is similar to the model
used in the recently proposed method, GMAC (Yang et al.,
2017). The models can be formalized as Equations 1, 2, and 3,
where G represents the genotype of single nucleotide
polymorphism (SNP)L; C, and T represent gene expression
levels of cis-eGene and trans-eGene, respectively; Cov
represents covariates; and ϵ represents the error term
following normal distribution. For the trio (L,C,T), we
assume L is significantly associated with C and T by testing
b1 ≠ 0 and b2 ≠ 0 in the linear models, with b estimated by least-
squares fitting. The statistic of mediation analysis here is to test
the mediation effect of cis-eGene C on trans-eGene T while
controlling for the effects of eQTL L, covariants Cov. The null
hypothesis is H0:b3 = 0.

C = a1 + b1G + G1Cov + e1 (1)

T = a2 + b2G + G2Cov + e2 (2)

T = a3 + b3C + b4G + G3Cov + e3 (3)

Our method can be separated into two main steps: first, we
calculate the nominal association statistic, z = b3/se, in Equation
3, where se represents the standard error of b3. Second, to
account for multiple testing in assessing the significance of the
mediation effect, we perform within-genotype group
permutations of cis-eGene transcripts C to empirically
characterize the null distribution of mediation effects (i.e., the
distribution of z scores expected under the null hypothesis of no
mediation effect, denoted by vector Z0). The purpose of within-
genotype group permutation is to break the potential mediation
effects from C to T within each genotype group (i.e., AA, AB, or
BB) while keeping the cis-eQTL and trans-eQTL associations.
The adjusted empirical P value of mediation test would finally be
calculated by comparing the observed mediation statistic z with
the permutation statistics Z0 under the null.

To obtain the null distribution of mediation effects, i.e., Z0, and
provide users with flexible choices, we implemented three
permutation schemes in our package: 1) fixed permutation
scheme, which generates N permutation datasets (Estimation of
P Values Under Fixed Permutation Scheme); 2) adaptive
permutation scheme, which prunes the permutation process
when there are too many null statistics better than the observed
z statistic (Calculate Empirical P Value Using Adaptive
Permutation Scheme); and 3) GPD approximation, which
Frontiers in Genetics | www.frontiersin.org 3
models the tail of the null distribution via a drastically reduced
number of null statistics and estimates P value with higher
resolution (Model the Tail of the Null Distribution Using GPD).
To deal with complex hidden confounding effects, we also adopt
an adaptive confounder adjustment method (Yang et al., 2017)
and a fixed confounder adjustment method incorporating the
three permutation schemes (Confounding Factors Adjustment).

Estimation of P Values Under Fixed
Permutation Scheme
The associations of trios (L,C,T) we aim to test are not
independent due to the fact that multiple SNPs are correlated
because of LD. Traditional multiple testing correction methods
like Bonferroni and Benjamini–Hochberg correction, which give
a global significance threshold based on all nominal P values,
prove to be overly stringent and may result in false negatives in
such correlated genomic analyses. Thus, we adapt permutation-
based testing approaches to assess the significance in association
test for each trio (L, C, T) (Equation 3). Permutation test is a
widely used non-parametric method in many bioinformatics
applications. It generates a null statistic distribution by random
permutations and then assesses how likely the observed statistic
obtained in the nominal association originates from the
null distribution.

Assume the nominal mediation statistic z = b3/se is assessed
for a trio (L, C, T) by Equation 3, where se is the standard error of
b3. Given a fixed number of N, we perform N times permutations
within-genotype groups for cis-eGene C by randomly permuting
sample labels in each genotype group, i.e., AA, AB, and BB. It
will generate N null mediation statistics, denoted by Z0 =
f z10 , z20,…, zN0 g, where zi0 is in absolute value, i∈[1,N]. If M
null statistics in Z0 are stronger than the observed statistic |z|, the
empirical P value is assessed by Equation 4, where pseudo-count
1 is added to avoid meaningless denominator.

Pfixed =
M + 1
N + 1

(4)

The strategy of fixed permutation scheme is direct, easy to
implement, and adopted by most permutation testing
approaches. However, the adjusted P value has lower bound
limitation that Pfixed ≥

1
N+1. That means we have to increase the

fixed number of N to get precise P value estimates for strong
mediation effects with smaller P values, which will tremendously
increase the computational costs. For example, if the true P value
is 10−6 for a trio, at least 1 million permutations should be
performed to achieve the precise P value. But for most trios, with
true P values larger than 10−3, 1 million permutations would be a
waste of resources because thousands of permutations could lead
to precise P values. To solve this problem, we implemented an
adaptive permutation strategy in eQTLMAPT to prune
permutations once we observe too many null statistics stronger
than the nominal statistic z of mediation analysis.

Calculate Empirical P Value Using
Adaptive Permutation Scheme
The basic idea of adaptive permutation strategy is to perform
more permutations for significant trios while decreasing the
January 2020 | Volume 10 | Article 1309
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number of permutations for insignificant trios. This is because
insignificant trios could be assessed with fewer permutations
than significant ones. By setting a significance level, a = 0.05 for
example, and a maximum permutation times N, in case of
indefinitely running the process, we define the pruning
threshold K = a*N, and usually K << N. For each trio (L,C,T),
if we observe more than or equal to K null statistics that jzi0j > jzj
or we reach the maximum permutation upper bound N, the
permutations process will be stopped. Suppose G times of
permutations are executed in total and M null statistics are
found to be stronger than the observed statistic |z|, the adjusted P
value is given by Equation 5.

Padaptive =
min K + 1,M + 1ð Þ
min G + 1,N + 1ð Þ (5)

For example, given N = 10,000 and a = 0.05, then K = 500,
and assume we have performed 800 times of permutation for a
trio and find K null statistics stronger than nominal statistic z.
Then, we stop performing further permutations and the final
adjusted P value = 501/801. In this case, only 800 times
permutations are needed instead of 10,000 times in the fixed
permutation scheme. This strategy tremendously reduces the
number of permutations required for insignificant trios;
however, the lower bound of adjusted P value still exists, which
is 1/(N + 1). To solve the lower bound problem, we approximate
the tail of null statistics distribution by generalized Pareto
distribution and estimate the small P values at any significance
level without the limitation of lower bound.

Model the Tail of the Null Distribution
Using GPD
It is critical to accurately estimate small P values especially in
large-scale genomic analyses, where huge numbers of
associations are simultaneously tested. To determine precise
small P values at any significance level without performing all
possible permutations, we implemented a P value approximation
method based on GPD, which has been widely used in modeling
extreme values (Knijnenburg et al., 2009). The basic
methodology is to estimate the small permutation P values
using extreme value theory by fitting extreme permutation
values originating from the tail of null distribution with
generalized Pareto distribution (Gumbel, 2012). And it has
been proven that the GPD approximation method can lead to
precise estimation of small P values using much fewer
permutations compared with fixed number of permutation
approach (Knijnenburg et al., 2009).

In our case, given permutation statistics set Z0 = f z10, z20,…,
zN0 g and nominal mediation statistic z of a trio (L,C,T), we
suppose both z and zi0 ∈ Z0 are in absolute value, and elements in
Z0 are sorted in decreasing order, i.e., zi0 ≥ zj0, i<j. Define Nexc as
the number of exceedances (extreme values), and Y0 = f z10, z20,
…, zNexc

0 g,Y0⊂Z0, and exceedance threshold t = (zNexc
0 + zNexc+1

0 )=2,
such that z0 > t, if z0∈Y0. Then, we calculate z0−t for each element
z0∈Y0 to get a vector of exceedances X0 = f x10, x20, :::xNexc

0 g, where
xi0 = zi0 − t, xi0 ∈ X0, z

i
0 ∈ Y0. Next, exceedances in X0 are used

to fit the tail of the null distribution modeling by GPD. The
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GPD has cumulative distribution function (CDF) shown in
Equation 6.

F(x) =
1 – 1 – kx

a

� �1
k , k ≠ 0

1 − e
−x
a , k = 0

8<
: (6)

The a and k are scale parameter and shape parameter,
respectively, and the range of x requires 0 ≤ x ≤ a

k for k > 0,
and x ≥ 0 for k ≤ 0. If x falls out of these ranges, the GPD
estimated P values will be zeros, i.e., k > 0, x > a

k. Maximum
likelihood (ML) is used to estimate the two parameters a and k in
F(x) given X0. The goodness-of-fit test of the Anderson–Darling
statistic is used to evaluate whether the exceedances follow the
GPD (Choulakian and Stephens, 2001). Finally, the permutation
test P value of the GPD approximation is computed as shown in
Equation 7, where z represents the absolute value of the nominal
mediation statistic.

Pgpd =
Nexc

N
(1 − F(z − t)) (7)

Nexc is initialized as minimum value between 250 and number
of permutation tests by default. If it fails to fit GPD (goodness-of-
fit test P ≤ 0.05), then iteratively reduce Nexc by 10 until a good fit
is achieved. Besides, the GPD approximation can only be used
when the nominal mediation statistic z is in the range of extreme
permutation null statistics (tail of null distribution). For example,
if z is in the middle of the null distribution, this method cannot
be applied. To specify, let M be the number of permutation
values that exceed the test statistic z, if M < N*a, a = 0.01 in
default, GPD approximation will be performed; otherwise, fixed
permutation scheme will be performed. The detailed methods
have been described in Knijnenburg et al. (2009), and we
implemented this method with R language in our package to
accurately estimate the mediation significance with much
fewer permutations.

Confounding Factors Adjustment
The presence of heterogeneous known or latent unmeasured
covariates that affect genotype and phenotype (gene expression
in our context) is a major source of bias in the mediation
analysis, which needs to be adjusted. The common sources of
covariates, such as batch effects, age, sex, postmortem interval
(PMI), RNA integrity number (RIN), and population
stratification, are associated with either samples or individuals.
The latent unwanted covariates can be identified by methods like
principal component analysis (PCA) (Abdi and Williams, 2010),
surrogate variables analysis (SVA) (Leek et al., 2012), and
probabilistic estimation of expression residuals (PEER) (Stegle
et al., 2012).

In our package, we adopt two covariates adjustment
strategies: fixed confounder adjustment strategy and adaptive
confounder adjustment strategy. The first one is to directly pass
the user-given PCs/SVs or PEER factors together with known
covariates into the Cov variable in Equation 3 when performing
mediation analysis. The second way is proposed in GMAC (Yang
et al., 2017), which adaptively selects hidden covariates for each
January 2020 | Volume 10 | Article 1309
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trio. In brief, this method first identifies a pool of hidden
covariates, represented by H, which can be supplied by users
or identified with PCA on expression profiles automatically [first
30 principal components (PCs) in default]. Then, for each trio (L,
C,T), only a small number of PCs will be selected from H for
adjustment based on the correlations between PCs and C,T. And
experiments demonstrated that this adaptive covariates selection
method improved power and precision in mediation analysis
(Yang et al., 2017). Notably, both covariates adjustment
strategies can be flexibly selected by users for each of the three
permutation schemes introduced above.

ROSMAP Dataset and Preprocessing
ROSMAP Study and Dataset
The Religious Orders Study (ROS) (A Bennett et al., 2012a) and
Memory and Aging Project (MAP) (A Bennett et al., 2012b) are
two longitudinal cohort studies of aging and Alzheimer’s disease
(AD). We downloaded the gene expression, genotype, and clinical
dataset of ROSMAP Study from Synapse platform (ID:
syn3219045) with approval. RNA samples were obtained from
the homogenate of the dorsolateral prefrontal cortex of 724
subjects and RNA sequencing (RNA-seq) data have been
processed into read count table using standard pipeline
(syn9702085) (Mostafavi et al., 2018). DNA samples were from
whole blood and genotype profiles of 1,179 subjects were calculated
from whole-genome sequencing (De Jager et al., 2018). Only
neuropathologically healthy individuals (cogdx score ≤3, no
Alzheimer’s disease and no dementia) with both genotype data
and RNA-seq data passing quality controls were used in eQTL
analysis, which downsized the sample size to N = 334.

Genotype Processing
We applied PLINK2 (v1.9beta) (Chang et al., 2015) and in-house
scripts to perform rigorous subject and SNP quality control (QC)
for genotype dataset derived from WGS. To QC in SNP level, we
removed SNPs with genotype call rate <95%, with Hardy–
Weinberg equilibrium testing P < 10−6, informative missingness
test P < 10−9, and with minor allele frequency (MAF) < 0.05
seperately. To QC in subject level, we removed subjects with call
rate <95%, with outlying heterozygosity rate based on
heterozygosity F score (beyond 4*sd from the mean F score), and
with gender mismatch. We also performed IBS/IBD filtering:
pairwise identity-by-state probabilities were computed for
removing both individuals in each pair with IBD > 0.98 and one
subject of each pair with IBD > 0.1875. To test for population
substructure, we performed PCAusing smartPCA in ENGINSOFT
(Patterson et al., 2006).

Gene Expression Profiles Processing
Stringent quality controls and normalization steps were also
performed for gene expression profiles. Gene read count derived
from RNA-seq was normalized to TPM (transcripts per kilobase
million) by scaling gene length (union of exon length) and
sequencing depth. We removed samples with gender mismatch
by checking gender-specific expression genes XIST and RPS4Y1.
Sample outliers with problematic gene expression profiles were
detected and removed based on hierarchical clustering (AC’t Hoen
Frontiers in Genetics | www.frontiersin.org 5
et al., 2013). Genes with low expression were also removed by
keeping genes with >0.1 TPM in at least 20% of samples and ≥6
reads in at least 20% samples. For normalization, gene expression
values were quantile normalized after log10-transformed. SVA
package was applied for removing batch effect and adjusting age,
sex, RIN, PMI, and latent covariates. Residuals were outputted for
downstream eQTL analysis.

eQTL Mapping and Mediation Analysis
MatrixEQTL (Shabalin, 2012) was used for cis/trans-eQTL
mapping using additive linear model. In cis-eQTL analysis,
variants (SNPs and indels) within 1 M upstream and downstream
from the TSSwere tested for associationwith gene expression traits.
And variants beyond the ±1M window were associated with the
gene expression traits in trans-actingmanner. For cis-eQTL results,
a significance level offalsediscovery rate (FDR)≤0.05wasused.And
for trans-eQTL results, we adopt a global significance level P < 1 ×
10−8 because of the tremendous amount of trans-associations and
weak trans-eQTL effects.

For biological discovery, mediation analyses with adaptive
permutation scheme and GPD approximation (N = 10,000, a =
0.05) were applied for all candidate trios (L,C,T), where eQTL L
was significantly associated with cis-eGene C (FDR ≤ 0.05;
Equation 1) and trans-eGene T (P < 1 × 10−8; Equation 2). For
performance comparison, mediation analyses were performed in
multiple scenarios described in the Results section.
RESULTS

Candidate (L, C, T) Trios Detected
in ROSMAP Dataset
After stringent quality controls for both RNA-seq and
genotyping data (ROSMAP Dataset and Preprocessing), 26,662
gene transcripts and 6,736,714 variants (including SNPs and
indels) of 334 subjects were left for eQTL analysis. We detected
3,195,073 significant cis-eQTL associations, representing 5,711
unique cis-eGenes and 60,758 unique cis-eQTLs, and 145,153
trans-eQTL associations, representing 1,382 trans-eGenes and
66,847 unique trans-eQTLs, under significance thresholds of
FDR ≤ 0.05 (corresponding P < 1 × 10−3) and P < 1 × 10−8 for
cis- and trans-eQTL associations, respectively. Seventy-five
percent of trans-eQTLs were also identified as cis-eQTLs,
which is similar to previous findings (Pierce et al., 2014; Yao
et al., 2017). To detect the mediation effects, 999,725 candidate
trios (L,C,T) representing 6,217 unique gene pairs (C,T) were
derived from significant cis- and trans-eQTL associations. For
multiple correlated variants linked to each gene pair, we used
permutation schemes introduced in Material and Methods to
control for multiple testing, and for genome-wide unique gene
pairs, we used a FDR procedure to control for multiple testing.

Performance With Adaptive
Permutation Scheme
We first compared adaptive permutation scheme implemented
in our package with fixed permutation strategy which was
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commonly adopted by traditional methods, including GMAC
(Yang et al., 2017). For each unique gene pair (C,T) from
candidate trios, we selected the most significant cis-eQTL for
cis-eGene C, resulting in 6,217 trios. Mediation analyses with
fixed permutation scheme (with N = 10,000) and adaptive
permutation scheme (with N = 10,000, a = 0.05) were both
performed on those 6,217 trios. Empirical P values Pfixed and
Padaptive were shown in Figure 1A, with Pearson’s correlation r =
0.999, indicating the two schemes have similar precision. While
fixed scheme always executed 10,000 times of permutations for
each tested trio, adaptive scheme significantly reduced the
permutation times, as shown in the histogram in Figure 1B.
For example, 68% trios executed less than 2,000 times of
permutations. The total time used with adaptive scheme is less
than one-third of that with fixed permutation strategy (floating
bar plot in Figure 1B).

More Accurate P Values and Fewer
Permutations with GPD Approximation
Using generalized Pareto distribution to model the tail of null
distribution of permutation statistics could derive more precise
empirical P values with fewer number of permutations compared
with traditional fixed permutation strategy (Knijnenburg et al.,
2009). To test the performance of the GPD approximation
method implemented in eQTLMAPT, we first randomly
selected 1,000 (L,C,T) trios with fixed permutation P values
were less than or equal to 0.01 (N = 10,000). And then we
rerun mediation analyses for those trios with GPD
approximation under fixed permutation schemes with N =
1,000, 5,000, and 10,000. The reason that we only select trios
with P ≤ 0.01 is because only permutation P values at the tail of
null distribution can be estimated by the GPD approximation
method (see Model the Tail of the Null Distribution Using GPD).
Figures 2A–C show the GPD estimated P values versus P values
Frontiers in Genetics | www.frontiersin.org 6
derived from the fixed permutation scheme (N = 10,000, 5,000,
and 1,000, respectively), and we can see that GPD-estimated P
values have higher resolution than fixed permutation scheme.
For instance, GPD-estimated P values range from 10−2 to 10−8,
while fixed permutation-derived mediation P values range from
10−2 to 10−3, when N is set to 1,000. And GPD-estimated P values
are much smaller than fixed permutation-derived P values,
which demonstrates that the GPD approximation method has
the ability to detect mediation effect more accurately with higher
significance resolution.

To prove the accuracy of the GPD approximation strategy, we
first sampled 1,000 trios with P value equal to 0.01 under the
fixed permutation scheme with N = 100. It is reasonable to
suppose that the significance is likely to be underestimated
because of the small N (Pfixed ≤ 0.01). Then we rerun the
mediation analyses for those 1,000 trios with N set to 10,000,
where Pfixed ≤ 10−4. The density plot of P values of those 1,000
trios derived under the fixed permutation scheme (N = 10,000)
was shown in Figure 3A, where two peaks around 10−2 and 10−3

were shown. The peak around 10−2 indicates some trios have true
significance level around 10−2. However, the larger peak centers
around 10−3 indicate that the significance of a large number of
tests is underestimated when N = 100. Then we asked whether
using GPD approximation strategy can derive P values proxy for
true P values even when N was still set to 100. We extracted trios
with significance levels between (a,b) interval (shown in Figure
3A) and rerun mediation analyses with GPD approximation and
N was still set to 100. The distribution of the GPD
approximation-derived P values was shown as the boxplot in
Figure 3A, which were centered around 10−3, as expected.

The other advantage of using GPD approximation in
mediation effect analysis is that with fewer permutations large
amount of time cost can be avoided. To achieve a resolution of P
≤ 10−8, at least 108 permutations should be performed under
FIGURE 1 | Performance of mediation analysis with adaptive permutation scheme versus fixed permutation scheme. (A) Empirical P values of 6,217 (L,C,T) trios
derived from adaptive scheme (y-axis) and fixed scheme (x-axis) were shown in Panel A, and the portion of Pfixed < 0.05 was enlarged in −log10 scale. (B) Trios were
grouped by permutation times (in adaptive scheme) and were shown in histogram (left-side y-axis). Running time of each group (right-side y-axis) using two
permutation schemes was overlaid on the histogram with two colored dash lines, and the total running time was also shown in the floating colored bar plot. To be
noted, all trios were executed 10,000 times of permutations in the fixed permutation scheme.
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FIGURE 3 | Performance of eQTL mediation analysis with GPD approximation. (A) Density plot reflecting the distribution of empirical P values under fixed
permutation scheme (N = 10,000) of 1,000 selected trios with Pfixed = 0.01 when N = 100. The cyan area was selected based on the density >0.6, and fixed
permutation P values were around 10−3, when N = 10,000. For trios covered by the cyan area, GPD-estimated P values (N = 100) were shown in the floating
boxplot. (B) Time cost for analyzing the same set of trios under various permutation schemes. The color legend represents whether GPD estimation process is used.
P values were −log10-transformed.
FIGURE 2 | Significance level in mediation analysis estimated under fixed permutation schemes with or without GPD approximation strategy. X-axis represents P
values derived by different fixed permutation schemes (N = 10,000, 5,000, and 1,000, respectively) without GPD approximation. Y-axis represents P values derived
with GPD approximation under certain fixed permutation scheme. P values were −log10-transformed.
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fixed permutation scheme, while the same resolution could be
achieved with only 103 permutations with GPD estimation (see
Figure 2). Figure 3B intuitively shows the time cost for
analyzing the mediation effect of a trio under different
permutation schemes. One hundred, 1,000, 5,000, and 10,000
permutations were performed in the mediation analysis of the
same collection of trios. We can see that the run time is
significantly correlated with permutation times. We also tested
the time cost caused by the GPD estimation under 10,000
permutations (the two right-most boxplots in Figure 3B). We
can see that the GPD estimation process only adds a few time
cost burden than without GPD estimation, which shows the
number of permutations are the most time-consuming.
However, P value estimates have larger variance for small N
and converge to the real Pperm when N is getting larger
(Knijnenburg et al., 2009). Experimentally, we recommend
users to use N ≤ 1,000, and the larger N will result in more
accurate estimated P values. In conclusion, by applying GPD
approximation strategy, eQTLMAPT can accurately estimate the
significance level with fewer permutation operations, which
makes the mediation analysis much more efficient.

Discover cis-Mediators of trans-eQTLS
Using ROSMAP Dataset
To test the speed and discovery performance, we compared
eQTLMAPT, combining adaptive permutation scheme and GPD
approximation strategy, with GMAC in the discovery of eQTL
mediation effects using ROSMAP dataset. For each unique gene
pair, we first selected the best trio showing the strongest mediation
effect based on the nominal P value, resulting in 6,217 candidate
trios. Then, we performed mediation analyses using eQTLMAPT
andGMACseparatelyon those6,217candidate trios. Bothmethods
adopt permutation tests to adjust P values for each trio, and FDR
procedure described by Storey and Tibshirani (ST) (Storey and
Tibshirani, 2003) to control for multiple testing of gene pairs. To
make the comparison comparable, both methods applied the
adaptive confounders selection strategy, taking all of the PCs
derived from expression profiles as the selection pool of hidden
confounders. And bothmethods adjusted the same fixed covariates
(age, sex, RIN, PMI, and batch). We performed N = 10,000
permutations for GMAC and performed N = 10,000, 5,000, 1,000,
and 500 permutations for eQTLMAPT, respectively. In our
program, we set a = 0.05 in adaptive permutation scheme.

Table 1 summarizes the performance between eQTLMAPT
and GMAC. Both methods detected similar number of trios with
suggestive mediation effects (permutation P ≤ 0.05) and similar
number of significant trios with FDR ≤ 0.25 (Storey and Tibshirani
multiple-test controlling method). The Venn diagram in Figure 4
demonstrated that most significant trios (with suggestive
permutation P ≤ 0.05 or FDR ≤ 0.25) detected by GMAC can
be discovered by eQTLMAPT with N = 10,000, 5,000, 1,000, and
even 500. For example, among the 113 significant trios with FDR ≤
0.25 detected by GMAC, 110 (97%) can be discovered by
eQTLMAPT with N = 10,000, and 104 (92%) can be discovered
by eQTLMAPT with N = 500. With the similar ability in
discovering significant trios, eQTLMAPT is about 90, 40, 8, and
4 times faster than GMACwhenN = 500, 1,000, 5,000, and 10,000,
Frontiers in Genetics | www.frontiersin.org 8
respectively (Table 1). We also noticed that some significant trios
detected by eQTLMAPT were missed by GMAC, which might be
due to improved P value resolution. However, since there is no
“true” set of trios with mediation effects, we are not able to
compare the true positive rate and false positive rate. In
summary, with similar discovery ability, eQTLMAPT is order of
magnitudes faster than GMAC. The 519 trios intersected from the
five compared strategies with suggestive permutation P ≤ 0.05
were available in Supplementary Table 1.

Enrichment Analysis for eQTLs Among
GWAS SNPs
We first performed GWAS enrichment analyses for genome-wide
significant cis-eQTLs (FDR≤ 0.05) and trans-eQTLs (P≤ 1 × 10−8).
From the NHGRI GWAS catalog (July 2019), 70,971 unique SNPs,
reportedly associated with traits and genotyped in ROSMAP
dataset, were downloaded (Welter et al., 2013). After pruning
correlated SNPs in LD (r2 > 0.3) using PLINK and ROSMAP
genotype data, 30,894 independent trait-associated SNPs were left,
ofwhich, 16,398SNPshadGWASP≤5×10−8 and14,496SNPshad
GWASP≤ 5 × 10−8, respectively.Among SNPswithGWASP≤ 5 ×
10−8, 28%were cis-eQTLs comparedwith 18% inSNPswithGWAS
P ≤ 5 × 10−8 (Fisher’s exact test OR= 1.75, with 95%CI = 1.66–1.85
and P = 1.83 × 10−93; Figure 5A). To be noted, the GWAS
enrichment method was the same as described in previous work
(Westra et al., 2013). In addition, we also observed GWAS
enrichment for trans-eQTLs (Fisher’s exact test OR = 2.58, with
95% CI = 1.8–3.76, and P < 2.51 × 10−8; Figure 5B). This
demonstrated that SNPs known to be associated with traits were
more likely to be cis/trans-eQTLs, which was consistent with
previous findings (Fehrmann et al., 2011; Pierce et al., 2014).

Next, we performed GWAS enrichment analysis for eQTLs
with significant mediation effects. Among the 999,725 candidate
trios, 67,906 trios, representing 27,100 unique SNPs, showed
suggestive mediation effects with permutation P ≤ 0.05 under
fixed permutation scheme (N = 10,000). Using the same GWAS
enrichment method, we found GWAS SNPs were more likely to
have mediation effects (Fisher’s exact test OR = 4.19, with 95% CI
= 2.16–8.9, and P = 1.47 × 10−6; Figure 5C), indicating that
mediation analysis can help to explain GWAS findings.

Transcription Factors May Act as
cis-Mediators
The 519 trios with suggestive permutation P ≤ 0.05
(Supplementary Table 1) represent 351 unique cis-mediators
(cis-eGenes). Among those cis-mediators, we found 14 are TFs,
including ZNF488, ZSCAN26, ZNF254, TBX1, FOXS1, ZFP57,
TABLE 1 | Summary table of performance on speed and discoveries of
eQTLMAPT and GMAC.

Software No. of
permutation

No. of trios
(adjusted P ≤ 0.05)

No. of trios
(FDR ≤ 0.25)

Time cost
(mins)

GMAC 10,000 578 113 4,438
eQTLMAPT 10,000 580 118 1,131

5,000 583 115 532
1,000 577 108 101
500 596 123 51
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ZNF568, ZNF260, ZNF14, GTF2I, ZFX, CSDC2, GTF2IRD2B, and
GTF2IRD2. For example, we observed the trio (rs77969091, TBX1,
MSC), where TBX1 is the cis-eGene and MSC is the trans-eGene,
and MSC has been predicted to be the target of the transcription
factor TBX1 in brain tissue and central nervous system (Marbach
et al., 2016). This indicates that trans-eQTLs can exert their effects
on distant target genes through affecting TFs which act as
mediators. However, we did not observe overrepresentation of
TFs among cis-mediators (Fisher’s exact test P = 0.15, compared
with 1,665 TFs downloaded from HumanTFDB) (Hu et al., 2018).
DISCUSSION

There has been intense efforts to identify causal genes and other
biomarkers such as RNA, protein, and microbiota underlying
complex diseases (Cheng and Hu, 2018; Cheng et al., 2019). One
of these efforts is to discover genes regulated by GWAS variants
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through eQTL analysis. However, less is known regarding how
trans-eQTLs work on distant genes. The eQTL mediation analysis
is a promising tool to uncover the mechanisms underlying trans-
eQTLs. In order to discover the eQTL mediation effects in whole
genome, millions of candidate associations of (eQTL, cis-eGene,
trans-eGene) trios need to be tested, which requires the
computational methods to control for multiple testing
appropriately. In practice, there are hundreds of variants on
average associated with eGenes in both cis- and trans-manner,
which result in huge numbers of candidate trios. For example, in
the ROSMAP dataset, nearly 1 million candidate trios need to be
tested, which only represent 6,217 unique (cis-eGene, trans-
eGene) pairs. To determine the genome-wide significance of a
nominal testing statistics, we need to account for two multiple-
testing levels: multiple genetic variants are tested per (cis-eGene,
trans-eGene) pair, and multiple (cis-eGene, trans-eGene) pairs are
tested genome-wide. We used permutation test to correct for the
former and FDR estimation to control for the latter.
FIGURE 5 | Diagram of two-way contingency tables for Fisher’s exact tests.
FIGURE 4 | Venn diagram of significant trios at suggestive permutation P ≤ 0.05 (A) and FDR ≤ 0.25 (B) derived by GMAC and eQTLMAPT with different numbers
of permutations.
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The traditional permutation scheme,which runs afixed number
of permutations, has to balance the time cost and the P value
resolution, which is limited by a lower bound. And there is no
efficient built-in permutation scheme in current tools aiming at
analyzing eQTL mediation effect. To fill this gap, we present
eQTLMAPT, which implements a fast and accurate eQTL
analysis method with efficient permutation procedures to control
for multiple testing. eQTLMAPT can correct for the multiple
correlated variants tested via three different permutation schemes:
the fixed permutation scheme, the adaptive permutation scheme,
and the generalized Pareto distribution (GPD) approximation,
which models the null distribution of no mediation effects using
GPD trained froma fewpermutation statistics and could accurately
estimate the adjusted P values without the limitation of lower
bound. These strategies implemented in eQTLMAPT greatly
accelerated the efficiency of multiple test controling in mediation
analyses and provided users higher resolution of estimated
significance which would help them distinguish the best signals.

In the analyses of the ROSMAP dataset, we detected 519 trios
with suggestive mediation effects (permutation P ≤ 0.05),
representing 351 unique cis-eGenes. Among those cis-mediators,
we found 14 are TFs, including ZNF488, ZSCAN26, ZNF254,
TBX1, FOXS1, ZFP57, ZNF568, ZNF260, ZNF14, GTF2I, ZFX,
CSDC2, GTF2IRD2B, and GTF2IRD2. This proves that TFs might
play a role in the mediation effects. We also tried to replicate these
significant trioswithmediation effects in theGTExdataset analyzed
by Yang et al. (2017), and 70 trios, identified by gene pairs, can be
replicated withmediationP ≤ 0.05 inmultiple tissues. For example,
the gene pair (MZT2A, AC018804.6) was observed with mediation
effects in multiple tissues including brain putamen, fibroblast,
colon, esophagus, lung, muscle, pancreas, pituitary, skin, thyroid,
and vagina. And the significance of themediation effect can reach 2
× 10−7 in GTExmuscle tissue. Thismight suggest a common trans-
eQTL regulatory mechanism across tissues.

There are some limitations of our method and discoveries in
the ROSMAP dataset. The discovery of trans-eQTLs requires a
large sample size because of smaller effect size of trans-eQTL
associations. A small sample size might cause less replicable
trans-eQTL signals across studies. The effective sample size of the
ROSMAP dataset used in the discovery study is relatively small,
which might be the reason that some trios were not able to be
replicated in the GTEx dataset, whose sample size is also limited.
Besides the transcription factors found in the cis-mediators, non-
coding genes such as long non-coding RNA (lncRNA),
microRNA, snRNA, antisense RNA, and pseudogene, were also
detected. The top 3 gene classes are protein coding, pseudogene,
and lncRNA genes. Although many studies have shown that
non-coding RNAs play key roles in the complex regulatory
networks in cell system, most of their functions are still
missing (Cheng et al., 2018a; Cheng et al., 2018d; Peng et al.,
2019b). Further computational methods and biological
experiments are still needed to understand these unknown
markers, such as using phynotypes, ontologies, deep learning
methods, etc. (Cheng et al., 2016; Cheng et al., 2018c; Peng et al.,
2019c; Peng et al., 2019d). In addition, since the gene expression
is tissue-specific and cell type-specific, the mediation effects
found in brain tissue might not show up in other tissues and
Frontiers in Genetics | www.frontiersin.org 10
cell types. Thus, with the development of single-cell RNA
sequencing technologies, further studies should put more
attention on cell type-specific mediation effects.

In conclusion, we present eQTLMAPT, an R package which
aims to perform eQTL mediation analysis with efficient
permutation procedures in multiple testing correction
(Supplementary Figure 1). Experiments demonstrate that our
method provides higher resolution in estimated significance and
is an order of magnitude faster than the compared methods. Our
method will be helpful in identifying mediation effects, which
could allow us to better understand the biological mechanisms
underlying trans-eQTLs and the regulatory network in the cell.
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