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Abstract

The direct ‘‘metagenomic’’ sequencing of genomic material from complex assemblages of bacteria, archaea, viruses and
microeukaryotes has yielded new insights into the structure of microbial communities. For example, analysis of
metagenomic data has revealed the existence of previously unknown microbial taxa whose spatial distributions are limited
by environmental conditions, ecological competition, and dispersal mechanisms. However, differences in genotypes that
might lead biologists to designate two microbes as taxonomically distinct need not necessarily imply differences in
ecological function. Hence, there is a growing need for large-scale analysis of the distribution of microbial function across
habitats. Here, we present a framework for investigating the biogeography of microbial function by analyzing the
distribution of protein families inferred from environmental sequence data across a global collection of sites. We map over
6,000,000 protein sequences from unassembled reads from the Global Ocean Survey dataset to 8214 protein families,
generating a protein family relative abundance matrix that describes the distribution of each protein family across sites. We
then use non-negative matrix factorization (NMF) to approximate these protein family profiles as linear combinations of a
small number of ecological components. Each component has a characteristic functional profile and site profile. Our
approach identifies common functional signatures within several of the components. We use our method as a filter to
estimate functional distance between sites, and find that an NMF-filtered measure of functional distance is more strongly
correlated with environmental distance than a comparable PCA-filtered measure. We also find that functional distance is
more strongly correlated with environmental distance than with geographic distance, in agreement with prior studies. We
identify similar protein functions in several components and suggest that functional co-occurrence across metagenomic
samples could lead to future methods for de-novo functional prediction. We conclude by discussing how NMF, and other
dimension reduction methods, can help enable a macroscopic functional description of marine ecosystems.
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Introduction

Metagenomics – large-scale sequencing of DNA isolated directly

from environmental samples – has greatly facilitated the study of

microbial communities [1–6]. This wealth of information has

created a new set of challenges in understanding the factors

underlying the functional processes mediated by microbes at

community, regional and global scales [2]. For example, many

variants of proteins with similar functions have been identified [7],

but little is known about whether such differences have meaningful

effects on ecosystem-level function. Further, genome resequencing

has revealed that the genetic composition of microbes is highly

variable [8–12], which suggests that information on taxonomic

diversity is insufficient to characterize functional diversity. Thus, a

complementary series of analyses are necessary to quantify the

functional properties of microbial communities and to explain how

differences in their functional properties relate to environmental

and geographic factors. Such analyses have the potential to help

form the empirical foundation for the study of microbial

biogeography [13–16].
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Data from the Global Ocean Sampling (GOS) [5] expedition

has been previously used to investigate the relationship between

microbial function and environmental variables. The GOS is

appealing for such studies, since it includes samples from diverse

locations and habitats, allowing investigation of the interplay

among biogeography, environment, and microbial functions. The

GOS data set also has important technical advantages, including:

numerous samples; consistent and extensive metadata; and long,

information-rich, sequence reads. Gianoulis et al [17] introduced a

canonical correlation analysis (CCA) framework that was used to

identify ‘‘metabolic footprints’’ associated with particular environ-

ments. A follow-up study [18] by the same group limited their

analysis to 151 membrane protein families and used CCA again to

identify relationships between protein families and environmental

variables. The most recent functional analysis of GOS uses similar

pathway/protein mappings and CCA methods as Gianoulis et al.

[17,18], but incorporates several additional environmental mea-

sures [19]. This study found that, of the climatic factors measured,

temperature and sunlight were the major determinants of putative

biological functions within each sample. Additionally, this study

found that environmental, but not geographic, distance between

samples was correlated with function.

Eigenvector methods such as CCA and principal component

analysis (PCA) are powerful tools for dimensional reduction, but

pose problems for biological interpretation, because they represent

data by adding and subtracting multiples of components with

positive and negative elements, even when the original data has no

negative entries (as with functional abundance counts). Here we

use non-negative matrix factorization (NMF) [20] methods to gain

a complementary perspective on relationships between functions,

environment, and biogeography. Using either approach, a

community can be represented as a combination of components.

NMF approximates samples using components without negative

elements, and combines these components by adding positive

multiples. In the context of metagenomic profiles, the components

represent groups of functional or taxonomic categories that tend to

co-occur in samples. Such ‘‘parts-based’’ representations have

been useful for the recognition of features in human faces, text and

gene expression [20,21]. In eigenvector-based decompositions,

most components have positive sign for some categories and

negative sign for others, and samples are also described with

positive contributions from some components and negative

contributions from others, preventing a straightforward parts-

based interpretation.

The lower-dimensional structure identified by NMF methods is

often very different from that of eigenvector-based methods. In

particular, if microbial communities really are composed of

fundamental components that combine in different proportions

to make observed communities, NMF will use the data to

approximate these underlying ‘‘parts’’, whereas PCA will find

more abstract components which have both positive and negative

weights. NMF is an efficient dimension-reduction method that has

been previously used in biology, especially in identifying biolog-

ically meaningful clusters of co-expressed genes in high dimen-

sional gene expression data sets [21–23]. The disadvantage of

NMF is that – unlike eigenvector-based methods – it provides only

an approximate decomposition, and this decomposition is sensitive

to the choice of ‘‘rank’’ – the number of components for NMF

factorization.

The starting point for analyses of microbial function biogeog-

raphy is a matrix containing abundance counts of functional

groups or protein families for each of the sites sampled in the

study. Previous studies have focused mainly on using the KEGG

[24] database since it contains mappings between ortholog groups

(KOs) and higher level groupings (KEGG Modules/Pathways),

combined with using CCA as their data reduction technique.

Here, we instead use the Pfam database [25] which, in addition to

full length protein families, contains many shorter protein domain

families.

In this study, we make Pfam assignments for over 6,000,000

protein sequences from the GOS, resulting in 8214 unique protein

families distributed across 45 sample sites. We then apply an

NMF-based framework to investigate patterns of protein family

distribution and their correlation with environmental variables.

We illustrate how NMF can be used as an effective data reduction

method and identify Pfams with common functionality in several

of the NMF components. We suggest that future methods could

possibly use patterns of co-occurence of protein families across

metagenomic samples as a novel non-homology based method for

protein function annotation. In addition, we examine the site

profiles of the components, and look for associations with

geographical and environmental patterns, showing that using

NMF as a filter provides further evidence that functional distance

correlates better with environmental factors than geographical

distance of metagenomic oceanic samples.

Results

NMF decomposes high-dimensional data into a small
number of components

We selected a subset of 45 out of a total of 79 GOS samples to

avoid known problems involving contamination and outliers (see

Materials and Methods). Our selection criteria were similar to

those used in other studies [17–19]. These 45 samples represent a

wide geographic and environmental range (Table S7). We then

made Pfam assignments for all proteins found in the 45 samples,

counted the Pfam assignments for each sample, and normalized

these counts by the total number of assignments in the sample (see

Materials and Methods). The end result is a ‘‘profile matrix’’ with

45 columns representing the samples and 8214 rows representing

Pfams. This profile matrix gives the estimated relative abundance

of Pfams in each site and is the starting point for NMF

decomposition.

The NMF decomposition can be thought of as an empirical

attempt to describe observed Pfam patterns in terms of a small

number of functional ‘‘components’’ (see Figure 1). Each

component is associated with a ‘‘functional profile’’ describing

the average relative abundance of each Pfam in the component,

and with a ‘‘site profile’’, describing how strongly the component is

represented at each site. Thus, the observed Pfam distribution at a

site is approximated as a weighted sum of the functional profiles of

our components, with each component’s profile weighted by its

site profile at that site. In explicit terms, we approximate the

observed p|s Pfam read matrix (X ) as the product of: a p|k

matrix whose k columns are functional profiles for our compo-

nents (W ); and a k|s matrix whose k rows are the corresponding

site profiles (H). The demonstrative example in Figure 1, uses a

factorization of rank 2 (k) to reduce a 10|3 matrix of Pfam

abundances (X ) into 10|2 matrix of functional profiles (W ) and a

2|3 matrix of site profiles (H ). In this example, the best

approximation found by NMF has one component with a

functional profile very similar to that of the first site, and one

that is similar to the remaining two sites.

We applied a concordance method (see Materials and Methods

and [26]) to compare possible decomposition ranks, and found

that 5 is a suitable rank for the NMF decomposition of the GOS

data (Figure 1 in Text S1). This means that the observed Pfam

Functional Biogeography of Ocean Microbes with NMF
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profile matrix (8214|45) can be stably approximated using 5

functional profiles and associated site profiles.

Identifying and interpreting the biological basis of
functional profiles of components

The functional profiles for each of our five components are

shown in Figure 2a. Each component has one or more sets of

‘‘characteristic’’ Pfams, which have relatively high abundance

within that component and low abundance in other components

(See blocks labelled by arrows in Figure 2a). However, unlike some

traditional clustering approaches, NMF does not restrict Pfams to

be assigned to a single component, and in fact some Pfams are

found in high concentration in multiple components. For example,

Figure 2a shows areas of overlap occurring on the same row

between the large blocks of high concentration near the top of

components 2 and 4 (The blocks indicated by blue and green

arrows in Figure 2a).

We then constructed a Pfam similarity matrix, using NMF as a

filter (Figure 2b). This filtered similarity matrix shows clearer

patterns of clustering than we find using ‘‘direct’’ similarity or

PCA-based filtering (Figure 2 in Text S1). These clusters naturally

overlap in many cases, illustrating the advantages of not relying on

a strict clustering algorithm. Most of the clusters in the similarity

matrix correspond to Pfam blocks dominated by a single

component, as can be seen by comparing with Figure 2a.

However, the third cluster instead corresponds to Pfams that are

broadly distributed across all of the components. This can be seen

by comparison with Figure 2a (the Pfam block indicated by black

arrows), or by the mid-intensity cross that encompasses the white

core of the cluster in in Figure 2b.

To better understand the functional relevance of the NMF

components, we identified Pfams that were strongly associated

with each component. We applied NMF on the whole Pfam

profile and we selected Pfams based on the correlation between their

spatial distribution and the site profile of each component

(Figure 3a). We contend that this correlation-based approach is

preferable to ‘‘specificity-’’ [26] or ‘‘projection-’’ [27,28] based

methods, because it avoids undue bias toward either rare or

ubiquitous Pfams (see Materials and Methods and Figure 4 in Text

S1).

We found that some of our components had a suite of strongly

associated Pfams whose distribution across sites was strongly

correlated with the site profile of the component. Component 2

had the clearest group of strongly associated Pfams (126 Pfams

have a correlation w0:8 to this component). Components 1 and 5

also had groups of Pfams with relatively high correlation values (28

and 52 Pfams have a correlation w0:8 to component 1 and 5

respectively), while Components 3 and 4 did not have any strongly

associated Pfams (Figure 7 in Text S1).

To determine if there are particular functions that are

associated with each of the components, we manually inspected

the lists of Pfams that were most strongly correlated with their

respective component. Interestingly, we found commonality in the

functional annotation of Pfams associated with components that

had strongly associated Pfams (i.e., Components 1, 2, and 5)

(Table S1, S2 and S5). Using the 100 most strongly associated

Pfams for each component, we found that 40% of the Pfams with

known function were related to transport and signalling in

Component 1 (which we call ‘‘Signalling’’) (Table S1); 37% of

the Pfams with known function were photosystem-associated in

Component 2 (‘‘Photosystem’’); and 22% of the Pfams with known

function were phage-associated in Component 5 (‘‘Phage’’) (See

Table S5). In Components 3 and 4, which did not have strongly

associated Pfams (Tables S3, S4), we could not identify any

functional patterns. Components 3 and 4 may represent combi-

nations of different ecological components that are not separated

in this particular decomposition.

Figure 1. A conceptual illustration of NMF decomposition. Left: We start with a sample of p~10 Pfams across s~3 sites, and perform a rank
k~2 factorization, X&WH . In real applications the reduction in rank is more dramatic. Color codes show Pfam relative abundance. Right: The
subfigures illustrate different ways of looking at the decomposition using rows and columns.
doi:10.1371/journal.pone.0043866.g001

Functional Biogeography of Ocean Microbes with NMF
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The proportion of Pfams without any annotations ranged from

15% (Component 4) to 54% (Component 2: Photosystem).

Unidentified Pfams with high association to Components 1, 2

and 5 may have similar functional themes to other Pfams seen in

these components, or they may have functions that are ecologically

linked to the identified theme, or they may be associated

taxonomically rather than functionally (ie., they may be expressed

by the same taxa that express the identified Pfams). In the future,

we suggest developing statistical methods to identify groups of

strong associations, and associated false discovery rates.

Additionally, we inspected the Pfams that were associated with

the ‘‘ubiquitous’’ cluster previously identified in Figure 2. Many of

these Pfams are associated with bacterial primary metabolism and

only 1% of these had unknown functions (Table S6). This is a

striking difference compared to the 15–54% proportion of

unknown Pfams seen in the five NMF components.

Figure 2. Functional profiles of NMF generated components and the corresponding similarity matrix. a) Five ecological components
identified by using NMF across Pfam functional profiles (rows). Colored arrows roughly indicate the clusters of ‘‘characteristic’’ Pfams corresponding
to each of the five components; black arrows roughly indicate the cluster of ‘‘ubiquitous’’ Pfams. b) Pfam profile similarity matrices generated using
NMF filtering. The matrices are aligned so that the same row corresponds to the same Pfam in each matrix. Pfams with similar profiles are grouped by
applying spectral reordering to the similarity matrix (see Materials and Methods). Due to visualization and computational limitations, a random subset
of 1000 Pfams are used for ordering and display.
doi:10.1371/journal.pone.0043866.g002

Figure 3. Components across sites. a) Weight for each of the five components at each of the 45 sites (HT ); b) the site-similarity matrix (ĤHT ĤH); c)
environmental variables for the sites. The matrices are aligned so that the same row corresponds to the same site in each matrix. Sites are ordered by
applying spectral reordering to the similarity matrix (see Materials and Methods). Rows are aligned across the three matrices.
doi:10.1371/journal.pone.0043866.g003

Functional Biogeography of Ocean Microbes with NMF
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Characterizing the site profiles of components
Figure 3a shows the estimated site profile for each of the five

components. Components 2 (Photosystem) and 4 (Unidentified)

are broadly distributed; Components 1 (Signalling) and 5 (Phage)

are largely restricted to a handful of sites; and component 3

(Unidentified) shows an intermediate pattern. There is a great deal

of overlap between site profiles for different components. For

example, component 3 has relatively high similarity to compo-

nents 2 and 4 (0.57 and 0.65 respectively, see Figure 2 in Text S1

for a similarity heatmap among components).

Figure 3b shows the pattern of filtered similarity between sites.

We see clear patterns of grouping, which do not emerge when we

calculate functional distances without filtering, or use PCA rather

than NMF filtering (Figure 3 in Text S1). As with the Pfams, we

see clusters roughly associated with our components, but there is

more overlap than with the Pfam clusters (Figure 2b).

Figure 3c shows the distribution of environmental variables

measured at each site. Inspection of Figure 3 reveals qualitative

correspondence between environmental factors and clusters of

similar sites in the similarity matrix. For example, the ‘‘North

American East Coast’’ samples are divided into two groups in the

bottom right of the similarity matrix (See Figure 3b). Inspection of

the environmental features suggests that the split in these samples

also corresponds with differences in insolation and water depth.

We can also examine patterns of similarity between the

components themselves, using site profiles or functional profiles

(see Figure 5 in Text S1). All 5 components have strikingly high

similarities in their functional profiles, indicating a lot of Pfams

which are well represented in many components. Similarity in site

profiles is much lower on average, indicating that many pairs of

components do not tend to overlap within samples. Overall

patterns of similarity also differ: for example, the Phage

component (5) and Signalling component (1) have a very high

level of functional similarity, but very low similarity in their site

profiles.

Measuring functional distance using an NMF filter
Based on the clear patterns in Figure 3, we hypothesized that

NMF-filtered Pfam distance would be a useful metric for

functional distance between sites. To test this idea, we compared

how well different measures of functional distance were modeled

by a combination of environmental distance and geographic

distances in a naive regression model. Using adjusted R2 as a

measure of overall correlation, we found that the correlation of

NMF-filtered Pfam distance with environmental and geographic

distances (overall adjusted R2~0:24) was comparable to that of

unfiltered Pfam distance (adjusted R2~0:25), and higher than that

of PCA-filtered Pfam distance using the same number of

components (adjusted R2~0:15). This suggests that the NMF

filtering retains more information relevant to these correlations

than PCA filtering.

Therefore, we used NMF-filtered Pfam distance to ask about

patterns across sites. Specifically, how did functional distance

between sites correlate with environmental and geographic

distance? Environmental distances were calculated as Euclidean

distances of normalized environmental variables (see Materials

and Methods), while geographic distances were calculated using

great circles. We used logged geographic distances as our main

predictor so as not to give too much emphasis to large distances in

our linear models.

We found that our measure of functional distance was more

correlated with overall environmental distance (Figure 4a) than

with logged geographic distance (Figure 4b). We confirmed this

result with a multivariate Mantel test; when both distances were

used as predictors, the partial correlation between Pfam distance

and environmental distance (r~0:45, Pv0:001) was much higher

than that between Pfam distance and logged geographic distance

(r~0:11, P~0:02). This result was similar to that found by [19],

although our partial correlation for environmental distance was

substantially higher (0.45 vs. 0.27). Although it was also statistically

significant, the partial correlation with geographic distance (0.11)

seems so low as to be biologically negligible. These results were

robust to different choices of ranks in the NMF decomposition

(Figure 8 in Text S1).

Next, we superimposed the Pfam similarity matrix S on a global

map to visualize how functional differences were influenced by

environmental conditions and geographic location (see Figure 5).

In the global map we connected sites based on their functional

similarity and their environmental similarity respectively. The

number of lines connecting sites depended on an arbitrary choice

of similarity threshold. A movie showing how this pattern changes

over a wide range of thresholds is available as Movie S1. Many

early links were established between sites that were well-separated

geographically, consistent with our result that the Pfam similarity

of microbial communities was more strongly associated with

environmental differences than with physical distance.

Discussion

A significant challenge in metagenomic data analysis is

distinguishing important functions and informative patterns from

the thousands of functions and/or taxa that are initially identified.

In this study, we illustrated how NMF could be used to find

functional patterns without supervision. We approximated the

GOS dataset of over 6,000,000 unique protein sequences,

representing 8214 Pfam abundances distributed across 45 sites,

as a combination of five components, each with a characteristic

functional profile and site profile. We showed that using this NMF

decomposition as a lens allowed identification of novel patterns of

clustering of Pfams, and overlaps between these clusters. We

looked for groups of Pfams whose distribution across sites was

strongly correlated with the identified components, and found

three examples of components in which there were identifiable

trends in functional annotation corresponding to signalling,

photosystem, and phage-associated Pfams.

The NMF lens also allowed us to identify overlapping clusters of

the 45 sites in our study. Again, this gave us a novel view on the

relationship between sites. In particular, NMF filtering yielded

sharper patterns of site similarity than are seen with directly

measured similarity or PCA-based similarity (Figure 3 in Text S1).

We also found evidence that functional profiles of sites were more

strongly correlated with environmental distance than with

geographic distance. This correlation has been observed before

in the GOS dataset [19], where function was inferred using the

KEGG database, rather than the Pfam database used here. In this

case, we found that the use of NMF filtering greatly increased the

amount of overall correlation seen. This is likely due to filtered

distances being less dependent on differences in ubiquitous Pfams.

We suggest that filtered distances, and NMF filtering in particular,

may provide an improved means to measure the functional

distance between sites.

Although we have focused primarily on the use of NMF as a

means to analyze function at a community level, NMF may also

help to make specific biological predictions in assigning functions

to domains of unknown function (DUFs). For example, we found

that many Pfams that are strongly associated with component 2

(photosystem-related) and component 5 (phage-related) using our

Functional Biogeography of Ocean Microbes with NMF
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correlation approach (Figure 4 in Text S1) are Domains of

Unknown Function (DUFs). Follow-up analysis of the closest

taxonomic matches to these DUFs is consistent with many of them

sharing function with other members of the component, i.e., DUFs

from component 2 have close matches to photoautotrophs (largely

cyanobacteria) whereas DUFs from component 5 have close

matches to phages.

This clustering of Pfams is similar to the idea of phylogenetic

profiling [29], which detects proteins that have similar co-

occurrence profiles across hundreds or thousands of genomes

Figure 4. Pairwise correlation between distances. a. Environmental distance vs. functional distance (cor = 0.451, Pv0:001, regular Mantel test).
b. Logged geographic distance vs. functional distance (cor = 0.127/P = 0.014).
doi:10.1371/journal.pone.0043866.g004

Figure 5. Functional and environmental similarity on a global map. The 120 pairs of sites with highest functional (environmental) similarity
are linked in blue (green). Environmental similarity is calculated from the environmental distance matrix D using the transformation 1=(1zD). A
movie showing this pattern over a range of similarity thresholds is available as Movie S1.
doi:10.1371/journal.pone.0043866.g005

Functional Biogeography of Ocean Microbes with NMF
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and has been used to generate hypotheses for functional

annotation of unknown proteins [30]. In contrast, our approach

works by associating genes across communities from metagenomic

samples. It is important to note that genes associated by this

method may be from the same or different organisms; further

refinement and testing are needed before any novel annotation

can be assigned. For example, it will be of interest to investigate

how correlation between DUFs and protein families with known

function change as the NMF rank is increased. Moving forward,

this sort of ‘‘community profiling’’ could provide a useful tool,

which would improve as more metagenomic samples are analyzed.

Metagenomic data provide remarkable detail coding for the

functionalities of the species that comprise ecosystems, but much

of that detail is likely irrelevant to the robustness of the properties

that characterize those systems at macroscopic levels. As we have

shown, NMF can help link the microscopic to the macroscopic as

part of a statistical framework that extracts the signal from the

noise; however more work is needed. Here we have focused on

protein families, but deeper understanding of function will require

linking these protein families to metabolic pathways. Bridging

from metagenomic reads to pathways in broad-scale analyses will

allow us to work toward a point where quantitative predictions of

community functions can be made based on sequence data as a

starting point for detailed biogeochemical analysis. This approach

provides hope for developing a macroscopic functional description

of marine ecosystems, broadly analogous to so-called ‘‘life-zones’’

in terrestrial ecosystems [31,32], in which the broad characteristics

of ecological communities can be inferred from physico-chemical

parameters.

Materials and Methods

Datasets
Pfam profile. The Global Ocean Sampling expedition [5] is

a complex data set. We selected a subset of samples which had

been processed in similar ways. In particular, we used only samples

with filter size 0:1{0:8mm, and excluded samples that appeared to

represent completely distinct environmental conditions, such as

those from freshwater environments. An additional ten samples

with very few reads were deleted, while another six samples were

excluded due to no hits being found in a preliminary search

against the SEED protein database on the MG-RAST server [33].

Lastly, four samples that were extreme outliers in a preliminary

NMF analysis (GS000a, GS020, GS032 and GS033) were not

included. The final dataset is composed of 45 samples, summa-

rized in Table S7.

A total of 20,729,138 protein sequences from unassembled

reads for the 45 samples were downloaded from CAMERA [34],

and searched using HMMER 3.0 (http://hmmer.org) against all

11,912 protein families from the Pfam database version 24 [25]

using Pfam’s per-family gathering threshold cutoffs. The Pfam

database has since been updated to version 26, but due to the large

computational requirements of the original annotation, version 24

of Pfam was kept for analysis. Multiple Pfams were allowed to be

mapped to the same protein since Pfams often represent protein

domains and many proteins are multi-domain. In all, 8,040,951

Pfam assignments were identified in 6,010,368 protein sequences

and 8214 different Pfams were found at least once in the 45

samples. The number of assignments for each Pfam was counted

per sample, and the counts were normalized to the number of

Pfams assignments in the sample. The result is a matrix of Pfam

relative abundances (Pfam profile matrix) with 8214 rows (one for

each Pfam) and 45 columns (one for each sample), whose column

sums are equal to one.

Geographic distance. Geographic distances were calculated

as pairwise distances among sample locations using the great circle

route as well as the latitude and longitude recorded in the GOS

sample metadata. We used log-transformed geographic distances

in correlation analyses so as to not give undue weight to very large

distances.

Environmental factors. We extracted salinity, sample

depth, chlorophyll level, temperature and water depth from the

GOS metadata [5], and these values are shown in Table S8. Total

incident solar insolation at the surface was obtained from the

NASA Surface meteorology and Solar Energy (SSE, http://

eosweb.larc.nasa.gov/sse/) Release 6.0 Data Set (Jan 2008) 22-

year Monthly & Annual Average (July 1983–June 2005). Missing

environmental values were estimated as the average value for the

respective variable. We used the square root of water depth in

correlation analyses to avoid over-weighting samples taken over

the very deep ocean.

Non-negative matrix factorization (NMF)
If we have p Pfams and s samples, then the size of the profile

matrix X is p|s. NMF decomposition finds matrices W and H,

(with dimension p|k and k|s, respectively, where k is the rank of

our factorization) such that WH&X . We search for non-negative

approximations that minimize the Kullback–Leibler (KL) diver-

gence between X and WH [20,21].

Selecting the rank for NMF decomposition. We have

introduced a method based on the H matrix for choosing an

appropriate rank (k) for NMF analysis in the presence of overlap

[26]. Approximate factorizations are typically found iteratively

from a random starting point [20], and rank is often chosen based

on the stability of different realizations of this process. We

constructed a symmetric similarity matrix S~ĤHT ĤH, where ĤH was

column-normalized so that S had ones down the diagonal; thus

each off-diagonal entry gave the similarity of two samples as seen

by our NMF decomposition. We then defined the ‘‘concordance

index’’ C~1{D, where D was the mean squared difference

between off-diagonal entries of Sj obtained from different

realizations of the decomposition [26]. The concordance index

C reflected the stability of this matrix across different realizations

of the factorization, and was used to select a good decomposition

rank k.

Normalization of H and W . Appropriate normalizations

are employed for different purposes. In order to construct sites and

Pfams similarity matrices from the results of NMF, we normalize

the columns of H (which are sites) and the rows of W (which are

Pfams) respectively so that each similarity matrix has ones down

the diagonal.

Spectral reordering. To investigate the clustering patterns

of samples and Pfams, we employed spectral reordering instead of

clustering technology because spectral reordering offers an

attractive alternative for clustering [35]. We treated the symmetric,

positive, similarity matrix S~ĤHT ĤH as a weighted graph-

adjacency matrix, and applied spectral reordering after an

‘‘affinity’’ transformation [35]. Choosing the scale r of the affinity

transformation is a complex problem [36,37]. We chose the value

of r that minimized the Laplacian distance criterion for the

untransformed matrix.

Selecting Pfam similarity groups
We and others [26,28] have used specificity-based methods (i.e.,

W -based) to select observed elements similar to NMF basis

elements. Specificity-based methods, however, can be sensitive to

sampling density (under-sampled Pfams will have a tendency to

look specific). Here, therefore, we instead proposed two methods
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based on similarity and correlation respectively. Given a Pfam f
and a component h, we defined the similarity between them as

hfh~�ff :�hh, where �ff and �hh denoted the normalization of them by

their Euclidean norms. In the ‘‘correlation’’ method, we used the

Pearson correlation coefficient for the correlation between a

component profile and a Pfam profile. We found that the

correlation method was better than specificity- and similarity-

based methods in selecting Pfams. To investigate the possible

function of components, we selected the 100 most strongly

associated Pfams for each component to investigate their known

functions.

Measuring functional distance between sites
We propose a method for measuring sample distance based on

NMF filtering of Pfam profiles. The matrix H gives the coefficients

that approximate each site’s functional profile as a linear

combination of site profiles. We thus used Euclidean distances

between columns of the normalized matrix ĤH as a measure of

functional distance. We called functional distance calculated using

H a ‘‘filtered’’ functional distance. We also calculated ‘‘unfiltered’’

distances, based on Euclidean distances between columns of the

original Pfam matrix X .

Mantel statistics and permutation tests
Mantel tests are used to test the significance of correlations

between dissimilarity or distance matrices, while controlling for

underlying correlation structure. The statistical method is widely

used in ecology studies to test the linear or monotonic

independence of the elements in two distance matrices [13,19].

Furthermore, a recent study suggested that Mantel test is a robust

and powerful tool to be used in ecological analysis [38]. The

‘‘ecodist’’ and ‘‘vegan’’ packages in R were used to compute

Euclidean distance for the Mantel and partial Mantel statistical

analysis. 999 permutations in each test were used to obtain the p-

value.

Pfam function mining
Pfams within the 5 components were manually inspected for

possible trends and common functions by looking at the Pfam

annotations as well as Gene Ontology annotations using

Pfam2GO.

Scripts and data
All of the data and scripts used in our analysis are available at

http://yushan.mcmaster.ca/theobio/GOS_NMF/.
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