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Reactivating cue approached positive personality
traits during sleep promotes positive
self-referential processing

Ziqing Yao,1 Tao Xia,1 Jinwen Wei,2 Zhiguo Zhang,3,4 Xuanyi Lin,1,5,6 Dandan Zhang,7 Pengmin Qin,8

Yina Ma,9,10,* and Xiaoqing Hu1,11,12,*
SUMMARY

People preferentially endorse positive personality traits as more self-descriptive than negative ones, a
positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing,
integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation
(TMR). In the CAT, participants gave speededmotor responses to cued positive personality traits. In a sub-
sequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR).
Upon awakening, CAT+TMR facilitated participants’ speed in endorsing positive traits in immediate tests,
and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these
enhancements were associated with the directionality of cue-related 1–4 Hz slow traveling waves (STW)
that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively
associated with these benefits, whereas forward STW showed negative associations. These findings
demonstrate the potential benefits of integratedwakeful cue-approach training and sleep-basedmemory
reactivation in strengthening positive self-referential processing.

INTRODUCTION

People often perceive themselves through rose-tinted lenses, exhibiting a positivity bias.1,2 This positivity bias is evident in self-referential

judgments, as people preferentially choose positive personality traits to describe themselves and have better memories for positive traits

compared to negative ones.1,3–7 A positive self-referential bias is commonly associated with lower levels of depressive symptoms (e.g.,

self-doubt and worthlessness) and is crucial for mental well-being, especially when facing self-threatening information.8 While the psycholog-

ical benefits of positive self-referential processing are well established,1,9–11 a significant gap exists in understanding how to effectively

enhance this process.10,12 To address this gap, we integrated two procedures that may enhance positive self-referential processing: (1) wake-

ful cued-approach training (CAT, Schonberg et al.13) and (2) a sleep-based targeted memory reactivation procedure (TMR, Oudiette et al.14).

The CAT task prompts participants to give speeded motor responses to cued stimuli, ultimately increasing positive evaluations or pref-

erence toward these trained stimuli.13,15–17 While CAT has been used to alter preferences for various stimuli, such as food, abstract patterns,

and images (for a review, see Salomon et al.15), its impact on higher-order social-cognitive processes such as self-referential processing re-

mains unexplored.

Complementing the wakeful CAT, the TMR aims to promotememory consolidation during post-training sleep, a phase vital for stabilizing

newly acquiredmemories. During sleep, reactivation of prior learning experiences contributes to memory consolidation, notably during non-

rapid eye movement (NREM) sleep characterized by the <4 Hz slow-wave activity.18–22 TMR entails replayingmemory-related sensory cues to

sleeping participants, further strengthening episodic memories or even changing subjective preferences during NREM sleep.23–29 (for a
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meta-analysis of TMR see Hu et al.30) Here, in the context of self-referential processing, we hypothesize that the integration of wakeful CAT

and sleep-based TMR could change how individuals perceive and endorse positive personality traits as self-descriptive. Specifically, while

CAT would increase salience of specific positive traits, TMR consolidates memories for these traits during sleep, potentially enhancing pos-

itive self-referential judgments. Therefore, we tested the joint impact of CAT and TMR on the positive self-referential processing, particularly

focusing on how they influence the immediate and long-term endorsements and retention of positive personality traits.

During NREM sleep, cardinal neural oscillations such as slow oscillations (<1 Hz), delta waves (1–4 Hz) and the 12–16 Hz spindles are instru-

mental in mediating memory reactivation and consolidation.19,20,22,31–34 Specifically, in TMR, research repeatedly shows that the cue-elicited

delta, theta and sigma electroencephalogram (EEG) power changes predicted TMR benefits. However, how propagation of sleep EEG oscilla-

tions, particularly the slow waves, would contribute to memory consolidation remains unclear. In particular, the propagation of EEG oscillations

across various brain regions, referred to as traveling waves, has garnered increasing attention for their potential in bridging neural activity with

behavioral outcomes.35–38 Notably, during sleep, slow oscillations and spindles form pronounced traveling waves, propagating across cortical

regions implicated in memory processing.35 These traveling waves are hypothesized to orchestrate neural communication across different re-

gions during sleep, thereby may play a vital role in the reactivation and consolidation of memory traces.39–42 Despite these insights, sleep

research has predominantly focused on spontaneous traveling waves,39 with significant gaps on the understanding of traveling waves induced

by external cues and their functions in supporting sleep-mediated memory reactivation. To bridge this gap, we aim to investigate how cue-eli-

cited sleep traveling waves may contribute to TMR benefits. Emerging research suggests that during wakefulness, cue-elicited traveling waves,

depending on their direction (backward/anterior-to-posterior or forward/posterior-to-anterior), serve distinct functions in sensory processing

and memory.37,38,43 This bolsters the possibility that during TMR, cue-elicited sleep traveling waves might also support TMR benefits.

Here, we employed an adapted version of the well-established self-referential encoding task (SRET) to quantify participants’ self-referential

processing.6,7,44,45 (for procedure and tasks, see Figure 1). In addition to this SRET, we assessed participants’ recall of self-referential traits from

the SRET in a free recall task and self-referential endorsement preference in a probe task. To examine the immediate and possible long-term

effects of TMR, wemeasured participants’ self-referential processing both immediately after the TMR and one-week later. Our findings revealed

that the integration of CAT and TMR facilitated the endorsement speed of positive personality traits immediately after TMR and enhanced pos-

itive self-referential endorsements one week later.Moreover, analysis of cue-elicited EEG showed that the strength of 1–4 Hz backward traveling

waves predicted the endorsement speed of positive traits during immediate test and the endorsement of positive traits one-week later.

RESULTS

Awake CAT promoted self-referential preferences

First, to examine whether CAT promoted the preferences of positive Go traits, we analyzed the proportion of trials in which participants

preferredGo over NoGo traits as better self-descriptive in the probe task (Figure 1D), using a generalized linear mixedmodel with participant

factor as a random effect (GLMM, see STAR Methods for specific model). In each Go/NoGo pair, both traits had comparable initial endorse-

ment level based on the baseline SRET rating phase. Consistent with previous CAT research,15 we found that participants were more likely to

choose Go over NoGo traits despite their comparable baseline endorsement level: mean proportion = 53.3% (vs. chance level 50%), odds

ratio (OR) = 1.14, 95% confidence of interval (CI) [1.04, 1.25], p = 0.006. This result suggested that the CAT specifically increased participants’

self-referential choice of the Go traits in the probe task.

Awake CAT + sleep TMR enhanced positive self-referential endorsements and speed

Having established that the CAT enhancedpreferences of positiveGo traits, we next examined howCAT+TMR impacts positive self-referential

processing. Specifically, we analyzed two outcome variables from the SRET task, including binary endorsements (self-descriptive or not), and

reaction times (RTs) when endorsing positive traits. We employed Bayesian generalized linear mixed model (BGLMM) to analyze binary out-

comes including SRETendorsement choices (self-descriptive or not) and recall outcome (recalled vs. not recalled).WeemployedBayesian linear

mixed model (BLMM) to analyze continuous outcomes, specifically the reaction times associated with SRET endorsement of positive traits.

Specifically, to examine changes in binary endorsements (self-descriptive or not), we ran a Bayesian generalized linear mixed model

(BGLMM) using pre-TMR baseline endorsement and ratings as covariates, conditions (Go-cued, Go-uncued, and NoGo-uncued) and time

(post-TMR and delay) as fixed effects, and participant as a randomeffect (including both random intercept and slope) to predict endorsement

of positive traits (self-descriptive or not). Our results revealed a significant interaction between CAT+TMR conditions and time such that after

one week delay, participants endorsedmore Go-cued traits as self-descriptive than NoGo-uncued traits (median diff = 0.46, 95% (high density

interval (HDI) [0.03, 0.91], Figure 2A). No differences were found between other comparison contrasts (Go-uncued versus NoGo-uncued, Go-

cued versus Go-uncued traits, Table S1).

Given that endorsement RT could indicate preferences,46 we analyzed item-level RTs when participants endorsed positive traits via a

Bayesian linear mixed model (BLMM) using baseline endorsement RT and rating as covariates, with the same fixed and random factors as

in SRET endorsement model. The results showed a significant interaction between CAT+TMR and time such that in the post-TMR, partici-

pants were significantly faster in endorsing Go-cued traits than NoGo-uncued traits (median diff = �0.05, 95% HDI [-0.08, �0.01], Figure 2B).

Other comparisons were not significant (Table S2). Taken together, these results suggest that the CAT+TMR jointly facilitated endorsement

speed for Go-cued positive traits compared to NoGo-uncued positive traits.

To investigate observed endorsements and RT differences might be solely due to CAT or the joint CAT + TMR effect, we analyzed

data from two additional groups of participants: an active-CAT group and a passive-CAT group. Both groups underwent the SRET and
2 iScience 27, 110341, July 19, 2024



Figure 1. An overview of experimental design and main tasks

(A) The task flow illustrates the baseline tests (phase 1), CAT and post-CAT tests (phase 2), sleep-based TMR (phase 3), and post-TMR tests (phase 4), followed by a

delayed tests phase after one week (n = 35).

(B) Modified SRET, in which participants made speeded binary endorsement task to determine whether a personality trait was descriptive of oneself, followed by

rating the accuracy of specific traits in describing themselves within the same trial (i.e., endorsement level). After completing the baseline SRET, participants

performed a 3-min self-referential free recall task during which they would recall and type out only traits they deemed self-descriptive. In both the post-TMR

and the one-week delay phases, participants completed the self-referential free recall task and the SRET with binary endorsements while omitting ratings.

(C) An exemplar trial of CAT, in which participants either passively viewed positive traits presented visually and aurally (i.e., NoGo trials) or pressed a button when

they saw a semi-transparent white dot (Go-cue) appear immediately after the positive trait onset (i.e., Go trials). TheGSD (go-signal-delay, the delay between trait

onset and Go-cue onset) varied between 0.8 and 1 s.

(D) Probe test, participants were presented with pairs of positive Go andNoGo traits and were asked to select which trait was more self-descriptive. Note that Go

andNoGo traits in each pair werematched on baseline self-descriptive ratings (see STARMethods for a full description of the procedure and experimental tasks).
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self-referential free recall tasks at baseline, immediately and one-week delay tests, yet without the TMR session. Further details on these

groups are available in the supplementary online material (SOM). More specifically, participants in the active-CAT group would respond

to visual Go cues with prompt button presses in the same way as in the CAT + TMR group. In contrast, participants in the passive-CAT group

would view the same traits without motor responses, while their attention was maintained through intermittent catch trials that required but-

ton presses. Including this passive-CAT group was essential for disentangling the effects of mere exposure to positive traits from activemotor

responses to the positive traits as in the active-CAT group. In this analysis, we included CAT conditions (Go vs. NoGo), time (post-CAT, and

delay), and group (active vs. passive) as fixed effects, with baseline performance as covariate, and participants as random effects, focusing on

endorsements and RTs, separately in two models. This analysis revealed no significant effects associated with CAT conditions, as evidenced

by the 95% HDI encompassing zero across all contrasts between Go and NoGo conditions (Tables S3 and S4). These findings, therefore, sug-

gest that it is the joint CAT+TMR effect, rather than CAT alone or solely repetition of positive trait words, that promotes positive self-refer-

ential processing.

Overall enhancement of positive self-referential long-term memory following CAT and TMR

We next investigated whether CAT+TMR would improve the memory of positive traits in the self-referential free recall tests. We used a

BGLMM including TMR (Go-cued, Go-uncued, and NoGo-uncued) and time (post-TMR, delay) as fixed effects, baseline and post-CAT recall
iScience 27, 110341, July 19, 2024 3



Figure 2. Behavioral results across time in the SRET tasks

(A) The probability of endorsing positive traits with group medians and 95% highest density interval (HDI) intervals, with positive differences indicating higher

endorsements.

(B) RT when endorsing positive traits, with negative differences indicating faster responses endorsing positive traits. Dots indicate the median of the posterior

samples and their 95% HDI for each contrast. We considered an effect as significant if the 95%HDI estimated from the posterior distribution did not include zero.

Orange horizontal lines represent significant differences (the 95%HDI does not include 0), whereas the blue horizontal lines indicate non-significant comparisons.
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and baseline endorsement rating as covariates, and participant factor as a randomeffect to predict recall outcomes (recalled vs. not recalled).

Results revealed no significant differences between Go-cue vs. NoGo-uncued or other contrasts in post-TMR or delay sessions (Table S5).

Despite of the non-significant results of CAT+TMR, when examining the main effect of time, we found that in the one-week delayed test,

participants recalled significantly more positive traits compared to baseline (median diff = 0.31, 95% HDI [0.04, 0.59], all contrasts presented in

Table S6). To further ascertain whether this enhanced recall of positive self-referential traits would be attributable to CAT+TMR or CAT alone,

we ran two additional analyses. Given these control analyses aimed to confirm the time effect (delayed vs. baseline), we included all positive

traits irrespective of CAT+TMR conditions in the following analyses.

First, we examined whether the same enhancement would be evident in the active-CAT and the passive-CAT groups. We ran a BGLMM

using recall as dependent variable, group as the fixed effect, time as covariate (i.e., baseline, post-CAT, delay), and participant as random

effect. The analyses revealed no significant time effect on delayed recall in either the active or passive CAT groups, as evidenced by 95%

HDI that encompassed zero in comparisons between baseline and delayed recall (Table S7).

Second, we compared the CAT+TMR group with the active- and passive-CAT groups. We ran a BGLMM using delayed recall as depen-

dent variable, group as the fixed effect, both baseline endorsement level and preceding recall as covariates and participant as random effect.

This analysis showed that participants in the CAT+TMR group exhibited superior recall of positive traits compared to the passive-CAT group

(median diff = 0.50, 95% HDI [0.17, 0.82]) but not higher than the active-CAT group (median diff = 0.30, 95% HDI [-0.02, 0.62]). No significant

differencewas found between the active and passiveCATgroups (median diff= 0.19, 95%HDI [-0.15, 0.51]). This result highlights that the sleep

TMR contributed to the long-lasting impact in facilitating self-referential recall of positive traits.

These behavioral findings demonstrated that CAT first shifted preferences toward positive traits. When combining CAT and subsequent

sleep TMR, CAT+TMR induced faster RTs when endorsing positive traits and promoted positive self-referential endorsements relative to

NoGo-uncued traits. Moreover, compared to a passive-CAT group, the CAT+TMR increased the recall of self-referential positive traits.

Together, these data suggest that CAT and TMR jointed enhanced positive self-referential processing.

Auditory processing of positive traits during sleep TMR

To first validate the neural responses to spoken positive traits during sleep, we quantified cue-elicited event-related potentials (ERPs) and

time-frequency-resolved EEG power changes during the TMR. Consistent with prior TMR research,29,47,48–51,52–54 cue-elicited ERPs showed

two positive clusters over frontal-central electrodes (F1/2, FC1/2, C1/C2, Fz, and Cz) from 0.3 to 0.52 s and from 1.05 to 1.33 s (two-tailed t test,

cluster-based permutation-corrected p < 0.001). In addition, the time-frequency analysis also identified two significant positive clusters over

frontal-central electrodes: the delta-theta-alpha band (1–12 Hz, 0–2.3 s), and the sigma-beta band (10–30 Hz, 0.3–1.64 s, two-tailed t test, clus-

ter-based permutation-corrected p< 0.001, Figures 3A and 3B). We next examinedwhether EEG power changes within these clusters may be

associated with changes in RTs and choices during the positive self-referential processing. We used B(G)LMM with power from these iden-

tified significant clusters as a fixed effect, alongside the number of trait repetitions during TMR and baseline endorsement ratings as cova-

riates, and participant as a random effect, to predict post-TMR endorsements and RTs when endorsing positive traits for delta-theta-alpha

and sigma-beta clusters, respectively. However, we did not find significant associations (Table S8).

Cue-elicited slow traveling waves predicted post-TMR positive traits endorsement speed

Next, we investigated how traveling waves during TMR might influence post-TMR positive self-referential processing. Following traveling

wave analyses in previous research,43 we first analyzed the strength of directionality of both forward (from posterior to anterior brain regions)

and backward (from anterior to posterior brain regions) traveling waves. Specifically, we used 1–4 Hz SWS from midline electrodes (POz, Pz,

CPz, Cz, FCz, Fz, and FPz) within the first 2s post-cue, a significant time window identified in the aforementioned time-frequency analyses.

(Figure 4A–C, see STAR Methods). After obtaining the strength of forward and backward traveling waves, we first examined during TMR
4 iScience 27, 110341, July 19, 2024



Figure 3. Cue-elicited power changes did not predict post-TMR endorsements or positive endorsement speed

(A) Grand averaged ERPs across frontal-central electrodes (Fz/1/2, Cz/1/2, and FC1/2). Shaded area indicates significant time point when comparing ERPs against

zero. Top right panel presents group average scalp topography of ERPs in response to TMR cues in corresponding to the two positive clusters; with black circles

highlighting the electrodes used in the ERP analysis.

(B) Contour plot depicting the temporal and spectral characteristics of the significant clusters. Cluster a represents the low-frequency delta-theta-alpha band (1–

12 Hz), and cluster b represents the sigma-beta band (10–30 Hz), with both clusters showing significant changes across the TMR time course (cluster-based

permutation-corrected p < 0.001).
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cueing, whether backward or forward slow travelingwaves would bemore pronounced; second, we used these directional strength indicators

to predict item-level binary endorsements and RTs for endorsing positive traits, across immediate and delayed tests.

Firstly, we ran a BLMMwith traveling wave direction (backward vs. forward) as fixed effect, repetition number as covariate, and participant

as randomeffect to compare the forward and backward traveling waves strength during TMR cueing. Consistent with previous research,39 our

findings indicated that the anterior-to-posterior backward traveling waves were more pronounced than posterior-to-anterior forward trav-

eling waves (median diff = 0.12, 95% HDI [0.03, 0.21]).

We next examined how cue-elicited backward and forward traveling waves might be associated with post-TMR behavioral performance.

To do this, we used B(G)LMM with strength of traveling waves as a fixed effect, alongside the number of trait repetitions during TMR and

baseline endorsement ratings as covariates, and participant as a random effect, to predict post-TMR endorsements and RTs when endorsing

positive traits on item level. Results revealed that during the post-TMR test, no significant predictions were found for binary endorsements in

the immediate session using either forward (b= 0.28, 95%CI = [-0.70, 1.26], Figure 5A) or backward travelingwaves (b=�0.56, 95%CI = [-1.48,

0.36], Figure 5B). Notably, during the immediate tests, we found that forward traveling waves predicted longer RTs (b = 0.11, 95% CI = [0.03,

0.18], Figure 5C), and backward travelingwaves predicted faster RTs in endorsing positive traits (b=�0.07, 95%CI = [-0.14,�0.00], Figure 5D).

Interestingly, after one week delay, forward traveling waves negatively predicted (b =�1.31, 95% CI = [-2.51 -0.17], Figure 5E), while back-

ward traveling waves positively predicted the endorsement of positive traits (b = 1.15, 95% CI = [0.12, 2.26], Figure 5F). However, during this

delayed test, we did not find any significant predictions from forward (b = 0.02, 95% CI = [-0.06, 0.10], Figure 5G) or backward traveling waves

(b =�0.03, 95% CI = [-0.10, 0.05], Figure 5H) on positive endorsement RTs. Together, our results showed that during sleep and TMR, the cue-

elicited slow traveling waves patterns were associated with post-TMR positive self-referential processing.

DISCUSSION

By combining wakeful cue-approach training (CAT) and sleep-based targeted memory reactivation (TMR), we found that this integrated pro-

cedure effectively enhanced participants’ positive self-referential processing.We first usedCAT to heighten participants’ preferences for spe-

cific ‘‘Go’’ positive traits, extending existingCAT research. During a subsequent nap, TMRwas employed to re-play a subset of theseGo traits,

further enhancing their accessibility and thus promoting positive self-referential processing post-TMR. Specifically, CAT+TMR expedited

endorsement of these Go-cued positive traits immediately after sleep TMR and increased endorsements of positive traits in the delayed

test. Additionally, the presence of 1–4 Hz backward slow traveling waves during TMR was associated with enhanced positive self-referential

processing, indicating an important role of cross-regional backward neural communications in driving behavioral benefits. These new findings

contributed to our understanding of how to modulate and enhance positive self-referential processing.

We first found that the CAT successfully increased participants’ likelihood to choose Go over NoGo traits as self-descriptive in the probe

task, demonstrating CAT’s efficacy in influencing self-referential choices. This finding extends the known effects of CAT on consumables such

as snacks,15,16 revealing its capability to shape high-level self-referential processing.

Following the CAT phase, we re-played a subset of the trained positive traits during sleep to examine the cumulative impact of CAT and

TMR on self-referential processing. Behaviorally, we found that CAT+TMR induced higher positive endorsements and faster endorsement

speed for these Go-cued traits, compared to untrained traits (NoGo-uncued). The lack of significant differences between other contrasts

(e.g., Go-cued vs. Go-uncued and Go-uncued vs. NoGo-uncued) suggests that the benefits were likely due to the joint effect of CAT and

TMR. Apart from positive endorsement speed, we also observed that participants endorsedmoreGo-cued positive traits than NoGo-uncued

traits as self-descriptive after one week delay. Previous CAT research suggests that the CAT enhanced stimulus salience.13,16 TMR during
iScience 27, 110341, July 19, 2024 5



Figure 4. Slow traveling waves analysis after TMR cue onset

(A) The left panel displays simulated EEG waveforms over seven electrodes from POz to Fpz positions, representing forward wave propagation over a 2-s time

frame. The central illustration denotes the scalp with electrode placements; each star’s color corresponds to the EEG waveforms’ color coding, denoting the

anterior-posterior direction of wave travel. The right panel illustrates the simulated EEG waveforms for backward wave propagation across the same time

frame, with wave amplitude (in microvolts, mV) modulating over time (in seconds, s).

(B) The upper panel exhibits the 2D fast fourier transform (2D-FFT) analysis of the original, ordered EEG waveforms. It showcases the temporal frequency domain

from 0 to 15 Hz, specifically emphasizing the delta waves’ analysis due to their relevance to the study’s focus. The spatial frequency is displayed from �3 to 3

cycles/electrode array. Intuitively, the spatial frequency is a measure of how many cycles occur over the span of the entire electrode array (i.e., POz, Pz, CPz,

Cz, FCz, Fz, and FPz). The strength of the forward (FW) and backward (BW) waves are indicated by peak values in the delta band (1–4 Hz) within the

designated quadrants (denoted by the white dashed squares). The lower panel presents the 2D-FFT analysis of surrogate EEG waveforms derived from

shuffled electrode arrangements. Each shuffle iteration yields surrogate forward (SFW) and backward (SBW) wave strengths, calculated analogously to the

process for ordered electrodes. The shuffling process was repeated a hundred times per trial to establish baselines. The actual values for forward and

backward traveling waves (FTW and BTW) were computed by contrasting the FW/BW strength against their respective baselines (detailed methodology

provided in the STAR Methods section).
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post-CAT sleep, on the other hand,may further promotememory reactivation and consolidation, improving the accessibility of the cued stim-

uli.22,28,30,54–56 Together, our CAT+TMR procedural likely augments the salience and the accessibility of the trained positive traits, thereby

improving positive self-referential processing.

Behavioral benefits in self-referential positive processing can be partially explained by neural activity during sleep and TMR. In contrast to

power spectral analysis that often examines regional EEG activity, the concept of traveling waves encompasses a wider array of neural char-

acteristics. These include both spatial propagation and frequency property, offering a more comprehensive view of the spatial-temporal dy-

namics of brain activity during sleep.35,36,39,57 Consistent with previous research, our study similarly reveals more dominant backward over

forward slow traveling waves.39 Intriguingly, we found significant associations between both backward and forward traveling waves and pos-

itive self-referential processing, including post-TMR endorsement speed of positive traits and endorsements after a one-week interval. This

novel insight posits that dominant backward slow travelingwaves play a crucial role thatmay facilitate cue-elicitedmemory reactivation during

sleep.

Recent research in traveling wave dynamics has demonstrated that during wakefulness, posterior-to-anterior forward traveling waves likely

facilitate memory encoding, whereas anterior-to-posterior backward waves contribute to memory recall.37 During TMR, the replay of spoken
6 iScience 27, 110341, July 19, 2024



Figure 5. Slow traveling waves predicted behavioral benefits in post-TMR and delay phases of the SRET task

(A, B, E, and F) Predictions from forward and backward traveling waves on positivity endorsement probabilities in post-TMR phase (A and B) and in delay phase (E

and F).

(C, D, G, andH) Predictions from forward and backward traveling waves on positivity endorsement RTs in post-TMR phase (C andD) and in delay phase (G andH).

In panels (C), (D), (G), and (H), each data point corresponds to the fitted value from a single trial within the BLMM.Where data points overlap, they present a darker

shade. Shaded area indicates 95% confidence interval (CI). Panels C, D, E, and F showed significant predictions, as the 95% CIs do not include 0. SRET: self-

referential encoding task.
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positive traits during sleep may reactivate memories for previously encoded positive traits, mirroring the cued retrieval processes observed

during wakefulness.37 Similarly, we found that the directional strength of backward anterior-to-posterior traveling waves was positively corre-

lated with the behavioral benefits, such as positivity endorsement RTs and positivity endorsement. These results suggest that in addition to

wakefulness, backward anterior-to-posterior traveling waves may support memory even during sleep and during cue-triggered memory re-

activation processing.

When evaluating participants’ self-referential memories using a free recall task, we did not find significant main effects of CAT+TMR.

This result may stem from the experimental design, where participants engaged in the free recall task twice prior to sleep. Repeated recall

may induce fast memory consolidation that makes the self-referential memories less susceptible to TMR.32,49 Notably, a week later, par-

ticipants showed an overall enhanced memories for positive traits compared to the baseline, regardless of CAT+TMR conditions. We

found that this non-selective, general memory enhancement was only observed in the CAT+TMR group but not in the other two groups

without TMR (active CAT or passive CAT). These findings suggest that the post-CAT sleep and TMR may have a generalization effect in

improving positive self-referential memories. Indeed, previous TMR research suggested that memory reactivation during sleep may have

generalized benefits: in addition to enhancing cue-specific memories, TMR also strengthened uncued memories that shared the same

context as the cued memories, leading to overall benefits of both cued and uncued memories.50 (see also Oudiette et al.14 for TMR gener-

alization effects).

In conclusion, our study presents a novel approach in enhancing positive self-referential processing by combining wakeful motor

training and sleep-based memory reactivation. In addition to behavioral benefits, our findings underscore the importance of cue-related

backward slow traveling waves in supporting positive self-referential processing during sleep. By reinforcing positive self-referential pro-

cessing through CAT+TMR, it is possible to alter maladaptive cognitive biases or restore self-esteem, thereby improving mental health

outcomes.
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Limitations of the study

Future directions and limitations shall be discussed. First, our study follows most prior research in administering the TMR during the NREM

sleep, given the established link between NREM sleep and TMR benefits (see Lewis et al.28 and Hu et al.30). However, research also pinpoints

the role of REM sleep in modulating emotional memory and vocabulary learning.58,59 Future research could investigate how TMR during REM

sleep, and how the REM-related neural activity may impact the consolidation of self-referential memories. Second, while positive self-refer-

ential processing is linked with mental wellness,7,60,61 our study did not examine how our procedure may impact outcomes that bear direct

clinical relevance such as depression-related symptoms. Future research is warranted to investigate whether enhancing positive self-referen-

tial processingmay directly alleviate depressive symptoms.10,62 Third, while our research question concerns self-referential processing, we did

not include non-personal traits as a control condition. Future studies could consider including such a control condition to disentangle non-

self-referential from self-referential processing during CAT and sleep TMR. Fourth, our findings underscore that the joint benefits of CAT and

TMR in enhancing positive self-referential trait memories, as compared to the passive-CAT control group. However, given that the TMR was

administered during a 90-min nap, whether sleep alone may also contribute to this observed delayed benefit remains unknown. Future in-

vestigations are warranted to ascertain if post-CAT sleep alone suffices to foster positive self-referential processing. Finally, it is imperative

to acknowledge that our traveling waves analyses were exploratory. As such, the robustness of these observations requires further validation.

Given recent findings establishing the link between traveling waves andmemory encoding/retrieval,37 we urge future research to examine the

pivotal role of traveling waves in memory reactivation and consolidation during sleep.
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and Button, K.S. (2023). Self-processing in
relation to emotion and reward processing
in depression. Psychol. Med. 53, 1924–1936.
https://doi.org/10.1017/
S0033291721003597.
63. Clayson, P.E., Baldwin, S.A., and Larson, M.J.
(2013). How does noise affect amplitude and
latency measurement of event-related
potentials (ERPs)? A methodological critique
and simulation study. Psychophysiology 50,
174–186. https://doi.org/10.1111/psyp.
12001.

64. Lai, M.K., Payne, B.R., and Federmeier, K.D.
(2024). Graded and ungraded expectation
patterns: Prediction dynamics during active
comprehension. Psychophysiology 61,
e14424. https://doi.org/10.1111/psyp.14424.

65. Rosenberg, M. (1965). Society and the
Adolescent Self-Image (Princeton University
Press).

66. Raskin, R., and Hall, C.S. (1981). The
Narcissistic Personality Inventory: Alternative
Form Reliability and Further Evidence of
Construct Validity. J. Pers. Assess. 45,
159–162. https://doi.org/10.1207/
s15327752jpa4502_10.

67. John, O.P., Donahue, E.M., and Kentle, R.L.
(1991). The Big Five Inventory—Versions 4a
and 54 (University of California, Berkeley,
Institute of Personality and Social Research).

68. Beck, A.T., Steer, R.A., Ball, R., and Ranieri, W.
(1996). Comparison of Beck Depression
Inventories-IA and-II in Psychiatric
Outpatients. J. Pers. Assess. 67, 588–597.
https://doi.org/10.1207/
s15327752jpa6703_13.

69. Spielberger, C.D. (1983). State-Trait Anxiety
Inventory, Form Y (STAI) (Consulting
Psychologicals Press).

70. Patton, J.H., Stanford, M.S., and Barratt, E.S.
(1995). Factor structure of the Barratt
Impulsiveness Scale. J. Clin. Psychol. 51,
768–774. https://doi.org/10.1002/1097-
4679(199511)51:6<768::AID-
JCLP2270510607>3.0.CO;2-1.

71. Delorme, A., and Makeig, S. (2004). EEGLAB:
an open source toolbox for analysis of single-
trial EEG dynamics including independent
component analysis. J. Neurosci. Methods
134, 9–21. https://doi.org/10.1016/j.
jneumeth.2003.10.009.

72. Vallat, R., and Walker, M.P. (2021). An open-
source, high-performance tool for automated
sleep staging. Elife 10, e70092. https://doi.
org/10.7554/eLife.70092.

73. R Core Team (2020). R: A Language and
Environment for Statistical Computing (R
Foundation for Statistical Computing).
Version 4.1.3.

74. Bates, D., Mächler, M., Bolker, B., andWalker,
S. (2014). Fitting Linear Mixed-Effects Models
using lme4. Preprint at arXiv. https://doi.org/
10.48550/arXiv.1406.5823.

75. Bürkner, P.-C. (2017). brms: An R Package for
Bayesian Multilevel Models Using Stan.
J. Stat. Softw. 80, 1–28. https://doi.org/10.
18637/jss.v080.i01.

76. Carpenter, B., Gelman, A., Hoffman, M.D.,
Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M.A., Guo, J., Li, P., and Riddell, A.
(2017). Stan : A Probabilistic Programming
Language. J. Stat. Softw. 76, 1. https://doi.
org/10.18637/jss.v076.i01.

77. Botvinik-Nezer, R., Salomon, T., and
Schonberg, T. (2020). Enhanced Bottom-Up
and Reduced Top-Down fMRI Activity Is
Related to Long-Lasting Nonreinforced
Behavioral Change. Cereb. Cortex 30,
858–874. https://doi.org/10.1093/cercor/
bhz132.

78. Oostenveld, R., Fries, P., Maris, E., and
Schoffelen, J.-M. (2011). FieldTrip: Open

https://doi.org/10.1016/j.neuron.2018.05.019
https://doi.org/10.1016/j.neuron.2018.05.019
https://doi.org/10.1038/s41562-024-01838-3
https://doi.org/10.1038/s41562-024-01838-3
https://doi.org/10.1101/2024.03.12.584543
https://doi.org/10.1101/2024.03.12.584543
https://doi.org/10.1523/JNEUROSCI.1318-04.2004
https://doi.org/10.1523/JNEUROSCI.1318-04.2004
https://doi.org/10.1073/pnas.0807933106
https://doi.org/10.1073/pnas.0807933106
https://doi.org/10.1523/JNEUROSCI.1498-11.2011
https://doi.org/10.1523/JNEUROSCI.1498-11.2011
https://doi.org/10.1093/sleep/zsx121
https://doi.org/10.1093/sleep/zsx121
https://doi.org/10.7554/eLife.85035
https://doi.org/10.7554/eLife.85035
https://doi.org/10.1037/0021-843X.90.4.286
https://doi.org/10.1037/0021-843X.90.4.286
https://doi.org/10.1037/pas0000602
https://doi.org/10.1037/pas0000602
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref54
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref54
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref54
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref54
https://doi.org/10.1038/srep39229
https://doi.org/10.1038/srep39229
https://doi.org/10.1101/2023.03.02.530762
https://doi.org/10.1101/2023.03.02.530762
https://doi.org/10.1371/journal.pbio.3002399
https://doi.org/10.1371/journal.pbio.3002399
https://doi.org/10.1016/j.celrep.2023.112331
https://doi.org/10.1016/j.celrep.2023.112331
https://doi.org/10.1016/j.cub.2022.12.004
https://doi.org/10.1016/j.cub.2022.12.004
https://doi.org/10.1038/ncomms9729
https://doi.org/10.1038/ncomms9729
https://doi.org/10.1016/j.nlm.2018.08.007
https://doi.org/10.1016/j.nlm.2018.08.007
https://doi.org/10.1038/s42003-020-01512-0
https://doi.org/10.1038/s42003-020-01512-0
https://doi.org/10.1146/annurev-psych-010419-050815
https://doi.org/10.1146/annurev-psych-010419-050815
https://doi.org/10.1038/s42003-024-05947-7
https://doi.org/10.1038/s42003-024-05947-7
https://doi.org/10.1073/pnas.1913092116
https://doi.org/10.1073/pnas.1913092116
https://doi.org/10.1038/s42003-021-01854-3
https://doi.org/10.1038/s42003-021-01854-3
https://doi.org/10.1016/j.nlm.2017.07.001
https://doi.org/10.1016/j.nlm.2017.07.001
https://doi.org/10.1016/j.cpr.2009.03.003
https://doi.org/10.1016/j.cpr.2009.03.003
https://doi.org/10.3389/fpsyt.2019.00130
https://doi.org/10.3389/fpsyt.2019.00130
https://doi.org/10.1017/S0033291721003597
https://doi.org/10.1017/S0033291721003597
https://doi.org/10.1111/psyp.12001
https://doi.org/10.1111/psyp.12001
https://doi.org/10.1111/psyp.14424
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref68
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref68
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref68
https://doi.org/10.1207/s15327752jpa4502_10
https://doi.org/10.1207/s15327752jpa4502_10
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref70
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref70
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref70
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref70
https://doi.org/10.1207/s15327752jpa6703_13
https://doi.org/10.1207/s15327752jpa6703_13
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref72
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref72
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref72
https://doi.org/10.1002/1097-4679(199511)51:6&lt;768::AID-JCLP2270510607&gt;3.0.CO;2-1
https://doi.org/10.1002/1097-4679(199511)51:6&lt;768::AID-JCLP2270510607&gt;3.0.CO;2-1
https://doi.org/10.1002/1097-4679(199511)51:6&lt;768::AID-JCLP2270510607&gt;3.0.CO;2-1
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.7554/eLife.70092
https://doi.org/10.7554/eLife.70092
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref76
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref76
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref76
http://refhub.elsevier.com/S2589-0042(24)01566-9/sref76
https://doi.org/10.48550/arXiv.1406.5823
https://doi.org/10.48550/arXiv.1406.5823
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1093/cercor/bhz132
https://doi.org/10.1093/cercor/bhz132


ll
OPEN ACCESS

iScience
Article
Source Software for Advanced Analysis of
MEG, EEG, and Invasive
Electrophysiological Data. Comput. Intell.
Neurosci. 2011, 156869. https://doi.org/10.
1155/2011/156869.

79. Mölle, M., Bergmann, T.O., Marshall, L., and
Born, J. (2011). Fast and Slow Spindles during
the Sleep Slow Oscillation: Disparate
Coalescence and Engagement in Memory
Processing. Sleep 34, 1411–1421. https://doi.
org/10.5665/SLEEP.1290.
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� Code: All original code has been deposited at the Open Science Framework repository (https://osf.io/rztdh/) and is publicly available.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement

Human Research Ethics Committee of the University of Hong Kong approved the study (HREC Reference Number: EA1808012). All partici-

pants provided written consent prior to the experiment.

Study participant details from main TMR study

Our final sample included 35 participants with valid behavioral and EEG data (8 males,MageG SD = 20.83G 2.20 years), which is comparable

to recent TMR studies (e.g., Schechtman et al.50). Nine additional participants had inadequate number of cues (<= 3 rounds) due to relatively

short slow-wave sleep (SWS). Because low numbers of trials per cue would significantly increase the noise, compromise the data quality and

the analysis’ reliability,63,64 we excluded these nine participants in subsequent analyses. An additional participant was excluded because he or

she reported hearing the cues during sleep. To facilitate sleep in the lab, we asked participants to wake up 1 h earlier than their usual waking

time and to avoid consuming caffeinated drinks on the day prior to – and of – the experiment. Participants were pre-screened regarding any
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current or history of sleep, psychiatric, or neurological disorders and had normal or corrected-to-normal vision. Participants received mone-

tary compensation for their time (250 RMB, �36 USD).
Study participant details from behavioral study

In this behavioral study, we recruited 74 participants who received monetary compensation at a rate of 50 RMB per hour (�7.8 USD). Partic-

ipants were randomly assigned to either the active- or passive-CAT group. The active CAT was similar like in the CAT in the main study. The

only difference between the active- and passive-CAT group is that participants in the passive-CAT group were only instructed to look at the

words presented on the screen andwere not required to press a buttonwhen thewhite cuewas displayed.We excluded four participants (two

from each group) based on their self-reported lack of attention during the CAT. Additionally, three of these participants withdrew their data

consent and did not attend the scheduled delay test, leaving 34 participants in each group for analysis (active-CAT group: 17 Males,

Mage GSD = 22.57 G 2.25; passive-CAT group, 18 Males, Mage GSD = 22.71 G 1.60). We only included participants with normal or cor-

rected-to-normal vision, no history of mental illness or neurological disorder, and no current or history of sleeping disorders. Only data

from self-referential encoding task were analyzed in this paper.
METHOD DETAILS

Materials

All experimental procedures were implemented in E-Prime 3.0 (Psychology Software Tools, Inc., Sharpsburg, Pennsylvania, USA). A pilot

group of 20 participants rated personality traits (two characters trait words) on a scale from 1 (extremely negative) to 9 (extremely positive).

We selected 60 positive personality trait adjectives (e.g., ‘clever’, M G SD = 6.92 G 0.44) and 60 negative personality trait adjectives (e.g.,

‘lazy’, M G SD = 3.00 G 0.44). Each spoken trait lasted around 1 s (range: 0.72–1.08s, M G SD = 0.91 G 0.08s). During the TMR phase, we

used a neutral trait (valence rating: 4.9) as a control word.

In the experiment, the stimuli were presented in Mandarin. The original versions of the trait adjectives are provided in the Table S10. The

translated version of the document is available as supplementary material on our OSF repository: https://osf.io/rztdh/.
Task overview

Participants attended two lab sessions, scheduled approximately one week apart. In the first session, participants arrived at the lab at approx-

imately 12:00 pm (exact arrival times ranged between 11:30 am to12:30 pm), where they read and signed consent forms and were set up with

EEGs. Subsequently, a series of four task phases began in which participants completed a number of tests, beginningwith baseline tests in the

first phase, followed by CAT and post-CAT tests in the second phase, sleep-based TMR in the third phase, and post-TMR tests in the fourth

phase. In the preliminary baseline phase, participants completed computer-based personality questionnaires, serving as a cover story for the

personality trait words (hereafter, traits) presented to them in the following SRET. During the SRET, participants rated the extent to which

specific traits described themselves. Participants then completed a self-referential free recall test. In the second phase, participants manually

responded to positive traits (i.e., Go traits), prompted by visual and aural cues presented on screen and from a nearby loudspeaker (CAT).

Participants then completed a free recall test and a probe test, in which they were presented with Go and NoGo trait word pairs and asked

to select the trait word that was more self-descriptive. In the third phase, half of the positive traits were aurally re-played to sleeping partic-

ipants during slow-wave sleep (SWS). Then, in the fourth phase, participants completed the same free recall test, probe test, and SRET. In the

second lab visit (�7 days later), participants completed the same free recall test, probe test and SRET as previously completed in the final

phase of the first visit to examine the possible long-term CAT+TMR effects. Thus, they completed four self-referential free recall tests (base-

line, post-CAT, post-TMR, delay), three SRETs (baseline, post-TMR, delay), and three probe tasks (post-CAT, post- TMR, delay).

Baseline tasks

Participants completed preliminary computer-based personality questionnaires, including the Rosenberg Self-Esteem Scale (RSES),65 Narcis-

sistic Personality Inventory (NPI),66 Big Five Inventory (BFI),67 Beck Depression Inventory-II (BDI-II),68 State-Trait Anxiety Inventory (STAI state

and STAI trait),69 and Barratt Impulsiveness Scale (BIS-11).70 Completing these questionnaires served as a cover story for the subsequent self-

referential encoding task (SRET): participants were told that the personality traits that would be presented in the SRET were from their ques-

tionnaire data (for descriptives, see Table S11).

In the SRET (see Figure 1B), a cross symbol was presented on a computer screen at the beginning of each trial for 0.5 s, followed by the

presentation of the sentence ‘I think this word is applicable to me’ in the center of the screen for another 0.5 s. After 1.2 to 1.4 s, participants

were presentedwith a randomword, given visually in written form and aurally from a speaker, from a selection of 120 adjectives for 0.8 s. After,

participants were shown a blank screen for another 0.8 s and then were prompted to select if a trait word applied to themwithin 2.5 s by mov-

ing the mouse cursor continuously. The spatial location of ‘Yes’ and ‘No’ responses were counterbalanced (upper left/upper right or upper

right/upper left). Following a ‘Yes’ response, participants were asked to rate the extent to which a trait word applied to them on a scale

ranging from ‘slightly accurate’ to ‘extremely accurate’, covertly equating to values from 1 to 50; following a ‘No’ response, participants

were asked to rate the extent to which a trait word did not apply to themon a scale ranging from ‘slightly inaccurate’ to ‘extremely inaccurate’,

covertly equating to values from �50 to �1.
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Following the SRET, participants completed a 3-min self-referential free recall task. Unlike previous free recall tasks wherein participants

wrote down as many traits as possible, we asked participants to write down only the traits they had endorsed (i.e., ‘yes’ response) during the

previous SRET. Participants typed each recalled trait on a computer one at a time. Therefore, recalled traits would reflect self-referential

memories.

Traits selection in the probe task

For each participant, we ranked all 60 positive traits in ascending order based on their baseline endorsement ratings (from 1, being the lowest

rating and least self-descriptive, to 60, being the highest rating and most self-descriptive). We next equally divided these 60 traits into ‘Go’

and ‘NoGo’ trials, forming 30 Go-NoGo pairs for each participant. We chose traits for each pair based on each trait rating’s rank orders (i.e.,

from 1 to 60), to ensure that the Go and NoGo traits had comparable baseline ratings (p = 0.64, for details, see Figure S1A). For the post-TMR

probe task, these Go/NoGo pairs were further categorized into cued (Go-cued) and uncued (Go-uncued) conditions, with each condition

having 15 trait pairs (Figure S1F). Full details for the trait allocations in the CAT and the probe task are provided in Figure S1.

CAT and post-CAT probe tests from main study

Following baseline assessments, participants completed a cue-approach training (CAT) task (see Figure 1C). For eachCAT trial, a positive trait

was presented visually and aurally for 1.2 s. For Go trials, a delayed Go cue, manifested as a semi-transparent white dot, was introduced at

least 0.8 s following the onset of the trait word presentation. The appearance of this cue signified that participants were required to press a

button as quickly as possible before the trait’s offset. To maintain participants’ attention, we used an adaptive response window. Specifically,

the go-signal-delay (GSD, the delay between trait onset andGo-cue onset) was approximately 0.9 s. If the participants gave a timely response

(i.e., button press before the offset of the trait), the GSD was increased by 17 ms to increase task difficulty. If participants failed to make a

button press before the offset of the trial, theGSDwas reduced by 50ms to reduce task difficulty.13,15 Conversely, for NoGo trials, participants

merely viewed and listened to the traits without any behavioral responses. All 60 positive traits were presented randomly in each of the five

blocks during the CAT, resulting in a total of 300 trials. Participants could take a 0.5-1-min break between blocks.While previous CAT research

adopts over 10 blocks of training,15 we chose to only include 5 blocks so as to avoid ceiling effect in subsequent memory recall. This CAT task

was followed by a 5-min working memory task, serving as distractions.

Following the workingmemory task, participants proceeded to a 3-min post-CAT self-referential free recall task, which was identical to the

baseline task. Subsequently, a post-CAT probe task was administered to evaluate the impact of CAT.

In the probe task (see Figure 1D), participants were presentedwith Go andNoGo traits in pairs andwere asked to choosewhich trait would

be more self-descriptive. Within each trial, the Go and NoGo traits were matched on baseline endorsement ratings, so that preferential

choices of Go traits would indicate the CAT training effects. The positions of the Go/NoGo traits per pair were randomly assigned to the up-

per-left/right or upper-right/left sides of themonitor in the first block, and were swapped in the second block. Each trial started with a fixation

cross (1 s), followed by the side-by-side presentation of two traits. Participants selected the trait that would best describe them by clicking a

push button below the trait within 2.5 s. The chosen trait was then highlighted by a button-press shaped image for 0.5 s. If participants ex-

ceeded the 4-s response time, a prompt would appear during the confirmation phase, urging them to respond quickly. We excluded trials

with response times exceeding 3 s, accounting for potential mouse delays.

CAT and post-CAT probe task from behavioral study

Based on the previous design,13 we first created a sorted-item list based on initial ratings from 1 (lowest value) to 60 (highest value). In contrast

to the CAT in the CAT+TMR Experiment, we selected half of the words as Go and the other half as NoGo to increase the number of com-

parison pairs. The specific Go and NoGo words were assigned based on the sorted rating order (see Figure S1A). All 60 positive traits

were presented randomly for each participant and each block during the CAT. To avoid a ceiling effect during the recall test, we opted

for five blocks of training, with blocks separated by a 1-min break and participants being able to skip after a 30-s break. Participants were

randomly assigned to either the active- or passive-CAT group.

Active-CAT Group. In the active-CAT group, 30 words (across the entire list of words) were associated with a visual Go cue that required

participants to press a button as quickly as possible before the current trial’s offset. The trait wordswere presented visually for 1.2 s, startingwith

spokenwords (<0.8 s) followedbyGocues.Weusedanadaptive responsewindowtokeepparticipants attentive toGocues. Specifically, thefirst

GocueswerepresentedwithGSD (thedelaybetween trait-wordonset andGo-cueonset)�0.9 s. If theparticipants successfullypressedabutton

before theoffset of the trial, theGSDwas increasedby17ms to increase taskdifficulty. If they failed tomakeabuttonpressbefore theoffset of the

trial, the GSD was reduced by 50 ms to reduce the task’s difficulty. See Figure S2 for the schematic representation of the modified CAT.

Passive-CAT Group. The only difference between the active- and passive-CAT group is that participants in the passive-CAT group were

only instructed to look at the words presented on the screen and were not required to press a button when the white cue was displayed. To

ensure that the participants remained engaged throughout the task, we randomly added six catch trials to each block, during which partic-

ipants were presented with a button-press image and directed to click the button within 1.2 s (the same duration as the presentation of the

visual word) to continue the task.
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Nap targeted memory reactivation (TMR)

Participants took a 90-min nap in a quiet, darkened sleep chamber. Backgroundwhite noise (at�38 dB) was played to participants throughout

the duration of the nap via a loudspeaker placed near the bed. Participants’ brain and physiological activities were continuously monitored

during the map. Upon participants entered SWS for at least 2 min, we presented spoken positive traits (the same spoken traits presented

during the SRET andCAT tasks) at approximately 40 dB. Note that the spoken traits (�40 dB) were played against the background white noise

(�38 dB), yet remained subtle to avoid arousal and waking participants up.

The TMR began with playing a neutral trait (�0.6 s) for three times, ensuring that the auditory stimulation would not wake participants up.

We started playing the spoken traits if participants did not show signs of arousal or changes in NREM sleep stage. During each round of the

TMR, half of the positive Go traits (i.e., 15 traits) were played together with the neutral trait as a control word. Each trait last for about 1 s, with a

randomized interstimulus interval of 5–6 s. TMR continued as participants remained in the SWS, with a minimal repetition of three rounds of

stimulation, resulting in at least 3 ✕ 16 = 48 trials for TMR-related EEG analyses.

Specifically, participants were exposed to spoken traits once they entered a sustained SWS period lasting at least 2 min. The TMR pro-

cedure was discontinued after 30 min, or earlier if EEG recordings indicated micro-arousal or full awakening. If no SWS was detected within

the first 40 min, the presentation of spoken traits commenced during the N2 sleep stage. After a total sleep session of 90 min, participants

were awakened if they were in the N1 or N2 sleep stages, or we waited until they transitioned to these stages before awakening them. A brief

5-min break was provided upon awakening to mitigate the effects of sleep inertia.

Post-TMR tests

Participants completed the self-referential free call task, probe task, and SRET task. Here, the probe task instructions were identical to the

post-CATprobe task, but with randomized ‘Go’ and ‘NoGo’ trait positions. The SRETwas similar to the baseline SRET except that participants

only made a Yes/No binary response to each trait, omitting the rating part.

One-week delayed tests

Participants returned to the lab about one week later to complete the delayed tests in the following order: (1) a 3-min self-referential free call

task; (2) a probe task; (3) an SRET task. The tasks were identical to the tasks in the post-TMR. Participants were not informed of the delayed

tasks ahead of the time. Upon completing all tasks, participants were debriefed and paid.
EEG data pre-processing

Continuous EEGswere recorded using a 63-channel customized capwith passive Ag/AgCl electrodes via a BrainAmp amplifier with a 1000 Hz

sampling rate (Brain Products, Gilching, Germany). Electrodeswere positioned according to the International 10–10 system. The ground elec-

trode was located at AFz, with FCz as the on-line reference electrode. Impedances were kept below 20 kU. We placed one electro-oculog-

raphy (EOG) electrode under participants’ left eyes and bipolar electromyography (EMG) electrodes on their chins tomonitor eyemovements

and muscle activity during sleep.

EEG data were pre-processed using custom-written scripts and theMATLAB Toolbox EEGLAB.71 First, nap EEG data were down-sampled

to 250 Hz, notch-filtered at 50 Hz, and then re-referenced to the averagedmastoids. Second, EEGdata were band-pass filtered at 0.5 to 40 Hz.

While EOG and EMG data were used for sleep staging, these data were not used in the time-frequency analysis.
Offline sleep stage scoring

Sleep stages, including N1, N2, Slow-Wave Sleep (SWS), and Rapid Eye Movement (REM), were scored using EEG (Channel C4), EOG, and

EMG patterns. This process employed algorithms from the YASA open-source Python Toolbox.72 Consistent with YASA guidelines, the EEG

data were initially re-referenced to FPz before conducting the staging analysis. Table S9 presents the sleep staging results and cueing number

within each stage for 34 participants (One participants only reserved 28 min EEG data including TMR stage).
QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis

Statistical analyses were carried out using R (Version 4.2.1., R Core Team (2020).73 For the choice from probe task (Figure 1D), we performed a

generalized linear mixed model (GLMM) fitted via ‘glmer’ function of the ‘lme4’ R package (Bates et al. 2014 June 23)74 to analyze self-refer-

ential endorsement preferences. The significance threshold (alpha level) was set at 0.05. For SRET performance and self-referential free recall

performance, we performed Bayesian (generalized) linear mixed models (B[G]LMMs) via ‘brm’ functions of the ‘brms’ R package75 and the

Stan modeling language.76 Using the default non-information priors, each model was fitted using four chains with 5000 iterations each

with 1000 warmup iterations, thereby yielding 16000 samples for each parameter tuple. The observed Gelman-Rubin diagnostic (Rhat) was

consistently below 1.1 across all models and parameters, indicating satisfactory convergence andmixing of chains.75 We considered an effect

as significant if the 95% highest density interval (HDI) estimated from the posterior distribution did not include zero.
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Self-referential preference choices in the probe task

We ran a paired sample t test analysis on baseline endorsement ratings for Go andNoGo traits. Result confirmed that there was no significant

rating difference between Go and NoGo traits (t (34) = 0.55, p = 0.586).

Following previous CAT research,13,15,77 we ran generalized linear mixed model (GLMM) to compare the odds of choosing Go traits

against the chance level (50%, log odds = 0; odds ratio = 1) during post-CAT phase. Given the alternation of Go/NoGo positions (left and

right) in two blocks, we included Go position as a covariate in our model. The GLMM was defined as:

Preference Choice (Go/NoGo) � 1 + Position +(1|Subject ID)

Self-referential endorsement in the SRET

Weemployed a Bayesian generalized linearmixedmodel (BGLMM) to examine howCAT+TMR conditions (Go-cued,Go-uncued, andNoGo-

uncued) influencedparticipants’ endorsement for positive traits across time (post-TMR anddelay).We usedbaseline endorsement rating, and

baseline performance as a covariate and participant as random effect. The model was defined as:

Endorsement choice (Yes/No)� 1 + Baseline endorsement rating + Baseline Endorsement Choice + Time3 TMRCondition + (1+ Time3

TMR Condition |Subject ID)

Subsequently, we employed a Bayesian linear mixed model (BLMM), incorporating the same factors as used in the preceding GLMM for

binary choice outcomes to analyze RTs when endorsing positive traits:

RTs (via log-transformed) � 1 + Baseline Endorsement RT + Baseline endorsement rating + Time 3 TMR Condition + (1 + Time 3 TMR

Condition |Subject ID)

Lastly, in order to assess whether CAT alone influenced the endorsement for positive traits and response speedduring the endorsement of

positive traits, we employed another BLMM in two additional behavioral samples. These samples comprised one group that underwent only

CAT training (referred to as the ‘active’ group) and another group that received no CAT training (referred to as the ‘passive’ group). Detailed

information on these two behavioral samples can be found in the Supplementary Online Material (SOM). The BLMM incorporated several

fixed effects: group (active vs. passive), time (post-CAT, delay), and CAT (Go vs. NoGo). Additionally, the baseline endorsement rating

and baseline endorsement choices/endorsement RT for positive traits was included as a covariate. The model also accounted for random

effects at the participant level:

Endorsement choice (Yes/No) � 1 + Baseline endorsement rating + Baseline Endorsement Choice + Group 3 Time 3 CAT Condition +

(1 + Time 3 CAT Condition |Subject ID)

RTs (via log-transformed)� 1 + Baseline endorsement rating + Baseline Endorsement RT +Group3 Time3CATCondition + (1 + Time3

CAT Condition |Subject ID)

Self-referential memories in the free recall task

To understand howTMR affect self-referential memories across time, we ran a BGLMMusing TMR (Go-cued, Go-uncued, andNoGo-uncued),

and time (post-CAT, post-TMR, and delay) as fixed effects, baseline recall and endorsement rating as covariate, participant as random effect.

The model was defined as follows:

Recall outcome (Yes/No) � 1 + Baseline Recall outcome + Baseline endorsement rating + Time 3 TMR Condition + (1 + Time 3 TMR

Condition | Subject ID)

Additionally, a BGLMM was applied to analyze overall changes of positive traits, using time as a fixed effect:

Recall outcome (Yes/No) � 1 + Baseline endorsement rating + Time + (1 + Time | Subject ID)

Finally, incorporating data from two additional samples — one with only CAT training and another with no training (see SOM for details

regarding behavioral samples)—we expanded our analysis to encompass three distinct groups. To assess delayed recall across these groups,

we employed a BGLMM on delayed recall performance with baseline and post-CAT recall as covariate, training groups (i.e., CAT+TMR,

active-CAT, passive-CAT) as fixed effect:

Recall outcome (Yes/No) � 1 + Baseline recall + Post-CAT recall + Baseline endorsement rating + Group + (1 | Subject ID)

EEG data analysis

Event related potentials (ERPs) and time-frequency analysis

Before analyzing cue-elicited ERPs and time-frequency EEG power changes, the cue-elicited EEG data were epoched into �1.5 to 5.5 s seg-

ments, relative to the onset of each cued trait word. This long epoch ensured that we had enough edge artifact-free segments for each clean

epoch to assess TMR benefits (�1 to 3 s). Epochs with artifacts were visually inspected and removed.

Time-frequency decomposition was performed in the Fieldtrip open-source MATLAB toolbox.78 We used 3 to 10 cycles in a step of 0.5 Hz

Morlet wavelet and baseline corrected using z-transformation of all trials from�1 to�0.1 s relative to the cue onset. Following previous sleep

and TMR studies,51,79–81 we calculated the mean EEG power over frontal-central channel (F1/2, FC1/2, C1/2, Fz, Cz) to ensure the robustness

of results. The calculated time-frequency decompositions were then down-sampled to 50 Hz. To investigate cue-elicited EEG activity, we em-

ployed the rigorous cluster-based one-sample permutation t test82 to identify the significant cluster against zero across all participants in both

the time domain (ERPs, cluster-thresholding p at 0.05) and the time-frequency domain (cluster-thresholding p at 0.001).
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Traveling wave analysis

We employed a traveling wave analysis approach similar to that used by Alamia et al.43 To investigate the cue-elicited traveling waves, we first

used EEG data from the interval after cue onset [0, 2000] ms during NREM stage 3 (based on YASA staging result) spanning from posterior to

anterior scalp midline regions (POz, Pz, CPz, Cz, FCz, Fz, FPz) to create time-electrode EEG representations (illustrated by Figure 4A). Note

that FCz was interpolated using spehericalmethod in EEGLAB toolbox to ensure the symmetry of the 2D-FFT spectrum, which would require

an odd number of electrodes (e.g., 7). The time window [0, 2000] ms was chosen given significant ERP and ERSP responses (Figure 3). Sub-

sequently, we quantified travelingwave propagation (illustrated by Figure 4A) using the 2D Fast Fourier Transform (2D-FFT) on time-electrode

EEG signals. The 2D-FFT segregated signals into temporal and spatial frequency components. For temporal frequency, it conveys the same

meaning as spectral frequency in the analysis of the power spectrum of EEG time series. For spatial frequency, it measures how many cycles

occur over the span of the selected electrode array. In the 2D-FFT spectrum, the power within the upper and lower right quadrants of the 2D-

FFT spectrum indicated the original strength of backward (BW) and forwardwaves (FW), respectively (Figure 4B upper right panel). The spatial

frequency of 0 indicating a neutral point with neither FWnor BW. Subsequent to the analysis of the ordered electrode sequence, we randomly

shuffled the order of electrodes for 100 times. This shuffling served as a control by disrupting the spatial pattern, thus helped distinguish

genuine, directional traveling waves from traveling patterns that could occur due to the spatial structure of electrode placement. For each

shuffle, surrogate forward and backward waves (SFW and SBW) were computed using the same method applied to the data from ordered

electrode sequence (Figure 4B lower panel). The mean of the surrogate values served as the baseline against which actual traveling waves

were measured. The resultant amount of backward and forward traveling waves (BTW and FTW) in decibels [dB] was quantified as follows:

FTW = 103 log10FW =meanðSFWÞ; BTW = 103 log10BW =meanðSBWÞ (Equation 1)

Given previous studies showed that slow traveling waves are dominantly backward during sleep,39 we used BLMM to compare the differ-

ence of backward and forward travelingwaves.We ran this analysis on each TMR trial and then averaged trials within each cue to obtain single-

item forward and backward traveling waves values. The BLMM included the type of traveling waves (i.e., backward vs. forward) as fixed effect,

number of trial repetition as covariate, participants as the random factor.

The model was defined as:

Traveling wave strength� 1 + Type + Repetition + (1 + Type | Subject ID).

Brain-behavior association analysis

To establish a direct link between TMR-induced behavioral changes and TMR-elicited EEG activity, we extracted the averaged power within

the identified significant positive clusters, and also calculated mean traveling waves averaged across repetitions of each cue to obtain item

level data. Then we performed a series of B(G)LMMs using EEG power and traveling waves to predict post-TMR SRET performancemetrics at

the item level, including endorsement choices and positive endorsement RTs. All EEG metrics were centered before being included as fixed

effects. We used BGLMM to predict endorsement choice (Yes/No) and BLMMs to predict RTs for endorsing positive traits. We considered an

effect as significant if the 95% confidence interval (CI) estimated from the posterior distribution did not include zero.The models were

defined as.

(1) Post-TMR endorsement choice (Yes/No)� 1 + Positive delta-theta-alpha cluster/Positive sigma-beta cluster/Forward traveling wave/

Backward traveling wave + Baseline Choice + Repetition + (1|Subject ID).

(2) Delay endorsement choice (Yes/No)� 1 + Positive delta-theta-alpha cluster/Positive sigma-beta cluster/Forward traveling wave/Back-

ward traveling wave + Baseline Choice + Post-TMR choice + Repetition + (1|Subject ID).

(3) Post-TMR RTs for endorsing positive traits �1 Positive delta-theta-alpha cluster/Positive sigma-beta cluster/Forward traveling wave/

Backward traveling wave + Baseline RTs + Repetition + (1|Subject ID).

(4) Delay RTs for endorsing positive traits �1 + Positive delta-theta-alpha cluster/Positive sigma-beta cluster/Forward traveling wave/

Backward traveling wave + Baseline RTs + Post-TMR RTs + Repetition + (1|Subject ID).
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