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In brief

In this article, sample-free Bayesian

neural networks are applied to

bioacoustic call detection in order to

improve both predictive and calibration

performance. The authors further explore

the use of Bayesian predictive uncertainty

to guide the training process to focus less

on samples for which the model predicts

higher uncertainty and show promising

results on two animal call-detection

datasets, one of which is introduced here.
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THE BIGGER PICTURE Uncertainty awareness in deep learning enables models to focus on learning from
well-annotated data and to place less confidence on uncertain predictions. This has the potential to foster
trust in algorithmic decision making and enhance policy making in applications pertaining to conservation
using recordingsmade by on-site passive acoustic monitoring equipment. Such analyses can automate the
annotation process and reduce human presence in the field.
SUMMARY
Along with propagating the input toward making a prediction, Bayesian neural networks also propagate un-
certainty. This has the potential to guide the training process by rejecting predictions of low confidence, and
recent variational Bayesian methods can do so without Monte Carlo sampling of weights. Here, we apply
sample-free methods for wildlife call detection on recordings made via passive acoustic monitoring equip-
ment in the animals’ natural habitats. We further propose uncertainty-aware label smoothing, where the
smoothing probability is dependent on sample-free predictive uncertainty, in order to downweigh data sam-
ples that should contribute less to the loss value. We introduce a bioacoustic dataset recorded in Malaysian
Borneo, containing overlapping calls from 30 species. On that dataset, our proposedmethod achieves an ab-
solute percentage improvement of around 1.5 points on area under the receiver operating characteristic (AU-
ROC), 13 points in F1, and 19.5 points in expected calibration error (ECE) compared to the point-estimate
network baseline averaged across all target classes.
INTRODUCTION

Effective wildlife monitoring can guide action to ameliorate the

effects of the global biodiversity crisis but poses an enormous

scalability challenge.1,2 A potential solution for scalable bio-

acoustic data modeling3 is offered by the combination of audio

sensing infrastructure4 and deep learning (DL), i.e., methods

consisting of hierarchical stacking of linear processing layers

and nonlinear pooling and activation operations. The monitoring

of wildlife and environments using sound recorders—i.e., pas-

sive acoustic monitoring (PAM)4—allows for an automated,

continuousmonitoring solution thatminimizes the duration of hu-

man presence in the field and, thus, the impact such presence

can have on the behavior of the animals. Furthermore, the re-

cordings no longer need to be limited to how much experts

can reasonably listen, leading to great scalability both spatially
This is an open access article under the CC BY-N
and temporally. DL for bioacoustics offers the possibility of

distilling the detection and categorization experience of ecology

experts into a DL computational model. This can automate and

expedite relevant labor, alleviating spurious annotation errors

(as DL is known to be capable of doing5), such that the time of

experts can be invested in a more fruitful manner. This scaled-

up data enrichment can improve contributions to conservation-

and ecology-related policy making.6

Many DL architectures that perform well in detecting specific

signals in sound recordings—i.e., acoustic event detection

(AED)—were originally designed for the visual classification

domain.7 For a recent example, residual networks (hence

ResNets,8 i.e., deep convolutional networks with residual con-

nections every few layers for facilitating backwards propagation

of the error signal for training) were shown to outperform the

competition in a study on AED.9 A ResNet similar to the winning
Patterns 5, 100932, March 8, 2024 ª 2024 The Authors. 1
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method from the aforementioned study was also shown to be the

best performer specifically for bioacoustic call detection in an

extensive comparative study10 against a non-residual deep con-

volutional network,9 shallower networks of around two or three

(1D or 2D) convolutional layers commonly used for AED,11–14

as well as a combination of convolutional and recurrent (i.e., de-

signed for sequential data) layers previously used for the bio-

acoustic detection of Bornean gibbon calls.15 The success of

the winning model of Rizos et al.10 was also due to the incorpo-

ration of attention methods, i.e., methods that entail the learning

of weights that allow the model to focus on particular time

frames16,17 or convolutional filters.18 Although both the former

mechanism—attentive global sequence pooling—and the

latter—squeeze and excitation (SE)—have been shown to be

contribute to improvements in the acoustic domain as

well,12,19 including to the previously mentioned improved variant

of ResNet for call detection,10 they have not necessarily been

adopted in later acoustic ResNet-based call-detection

studies.20,21 A recent alternate approach is BirdNET,20 an appli-

cation of the Wide ResNet22 model (a variant of ResNet using

larger filter numbers) on a large composite dataset on detection

of calls from 984 bird species that achieves competitive results

compared to other methods that have been tested on similar da-

tasets with much fewer species. The pretrained BirdNet model

has since been extensively applied on various datasets.23

Finally, although in this study we focus on the task of call detec-

tion, related tasks include cross-24 or within-species25 call type

classification and individual identification.26 Such liberally

selected applications exist across a wide range in animal spe-

cies, e.g., on primates,10,14,15,27 whales,24 and birds.28,29

It is important, however, that the predictions made by the DL

model are understood and trusted. Unfortunately, during this

near-decade of DL advancement, a fixation by the DL community

toward deeper andmore complicated architectures, as well as on

traditional predictionperformanceevaluationmeasures, has led to

an insidious DLmodel behaviormanifesting overconfident predic-

tions,30 i.e., predictionsmadeat a probability nearing 1, regardless

of whether they are correct or not. Downstream softwaremodules

orpolicymakersmakingcatastrophicdecisionsdue to theseover-

confidently predicted misclassifications can foster deep mistrust

in DL,30–32 something that has also been noted with respect to

bioacoustics.3 However, early prediction calibration fixes30 are

based on learning a transformation of the model outputs that re-

quires the existence of a validation set of labels, something that

cannot be safely assumed in general. Another approach is label

smoothing,33 a regularization method that has also been used

with the intentionof improvingcalibration.34A smoothingprobabil-

ity hyperparameter, selected a priori, allows us to treat a ground-

truth label annotation as noisy instead of binary (e.g., probability

of 0.9 of a call being present, instead of a fully confident 1).

Although it was originally proposed as ameans to improve predic-

tive performance,33 its success in that regard35,36 has also been

inconsistent, as it has in other cases been shown to deteriorate

it,34,37 without necessarily improving calibration.34 Label smooth-

ing has also shown promise21 in some cases on a call-detection

study; however, no evaluation of calibration was made.

Ameans of designing DLmodels with the ability to accompany

their standard predictive output with a measure of uncertainty is

Bayesian inference. Predictive uncertainty is a signal that the
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input sample may have potentially been mislabeled.38 Bayesian

neural networks (BNNs)39 have been shown to naturally offer

better calibrated outputs as well as regularization compared to

non-Bayesian, point-estimate versions of the same underlying

architectures40 (see related surveys on in-depth discussion for

why this happens,41 as well as lists of domain applications42).

This is due to the predictive uncertainty, which describes a dis-

tribution from which less overconfident predictions can be

sampled. BNNs employ distributional weight parameters, of

which the posterior distributions are calculated via Bayes’ rule

and dependent on the observed training set and a prior distribu-

tion assumption.39 Since, however, the integration for these pos-

teriors is intractable (due to containing high dimensionality fac-

tors, see Blei et al. and Zhang et al.43,44), marginalizing the

weights in order to get the statistical distribution of the outputs

is often approximated via Monte Carlo (MC) sampling. As the un-

certainty of stochastic parameters informs the output of each

layer, and, hence, the input of each subsequent layer, we can un-

derstand the uncertainty information being propagated through

the entire network until the final layer calculates the output (or

epistemic) uncertainty. Using MC-based approximation to

calculate it, one has to use K MC samples, something that in-

creases the computational load by K. MC-based approaches

comprise Bayes by backprop45 and MC dropout,46 and have

been applied on a wide range of data domains, including

audio.13,47

Uncertainty propagation in an MC sample-free manner can be

performed by the approximation of the first two moments (i.e.,

expectation and variance) of the layer output pre-activations by

leveraging the central limit theorem (CLT). This approach was

used first for fast dropout,48 where it allowed for sampling from

the much fewer pre-activations instead of the layer weights, and

later in the context of BNNs.49 Later sample-free BNNs use

closed-form, uncertainty-propagating, nonlinear activation func-

tions50–54 andeschewtheneed for samplingeven frompre-activa-

tions.Apart fromavoidingcostlyweight sampling, this approach is

also not subject to the stochasticity of MC-based approaches.

This has been hypothesized to be the reason behind their

improved performance compared to MC-based methods in pre-

diction and calibration performance.53–55 Propagation of more

than twomoments has been shown to bebeneficial, e.g., in resist-

ing adversarial attacks (i.e., target distortion of test data such that

the output is misclassified56) but also requires sampling for cuba-

ture,57 or unscented55 and particle58 filtering. Such models have

been applied on computer vision tasks such as image classifica-

tion and segmentation, on data ranging from standard bench-

marks54 such as CIFAR,59 to medical and radar images,55 but

never to audio, and, specifically, to bioacoustic call detection.

That being said, many recent moment-propagating BNN

studies constitute Bayesian treatments of DLmodels with simple

mechanisms, such as dense52,53,58 and convolutional51,55 layers

interweaved by nonlinear activation functions,50,52,53,55 even in

non-Bayesian uncertainty propagation.60 Although a sample-

free Bayesian version of a dense layer-based network with

ResNet-like skip connections has been proposed in Wu

et al.,53 less consideration has been given on doing the same

for more advanced concepts such as convolutional ResNets,

SE, and attention. Furthermore, even though the sample-free

Bayesian approach has been shown to be superior to MC-based
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Figure 1. This is an abstraction of the sample-free, moment-propagating variational Bayesian SE-ResNet model with multi-head attention

we use as a basis throughout this study

The point-estimate version follows the same architecture, but each layer, block, and nonlinearity does not use variational learning for inference or make affor-

dances for propagating uncertainty. The outputs of the Bayesian SE-ResNet are used to parameterize a label-smoothing operation, and the loss calculation is

performed using the smooth label.
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BNNs,53–55 only the latter approach has been used in bioacous-

tics13 (and, in fact, on a shallower three-layer network of the kind

that has been shown to underperform compared to deeper

ResNets10).

Despite the demonstrated promise of sample-free BNNs,

there does not exist an explicit utilization of sample-free predic-

tive uncertainty as a signal for data-specific regularization during

training. We believe that such an explicit usage can guide the

model to not place as much weight on the learning of data that

it calculates as noisily annotated, something that can potentially

improve both predictive and calibration performance. We also

believe that this is a very timely topic for investigation in the

domain of bioacoustic call detection, a domain where the need

for calibration of model output probabilities (along with tradi-

tional accuracy-based performance evaluation) has been

repeatedly suggested.3,61 This is especially important as proba-

bilistic, instead of categorical, outputs are considered to bemore

informative for downstream decision making.62

The contributions we make in this article are summarized as

follows.

(1) We perform the first exploration of sample-free, uncer-

tainty propagating, variational Bayesian DL on bioacous-

tic call detection in order to exploit the regularization and

the better calibration that such models exhibit. Specif-

ically, we provide a sample-free Bayesian treatment of a

complex DL architecture that has excelled in the call-

detection task.10 It propagates activation expectations

and variances through mechanisms such as global atten-

tion pooling and SE blocks. To our knowledge, this is the

first time a moment-propagating version of the SE mech-

anism has been proposed and evaluated, although MC-

based Bayesian methods have done so before.63 We

further consider two variants of the underlyingmodel con-

cerning the type of local pooling: one using the known55,64

moment-propagating version of max-pooling, and a

moment-propagating version that we first use of an atten-

tion-pooling method inspired by recent studies.65,66 Our

results indicate that opting for a sample-free Bayesian
DL method is indeed the most promising approach as it

outperforms the corresponding point-estimate baseline

in most cases.

(2) Wepropose a regularizationmethod that explicitly uses the

propagated predictive uncertainty of a sample-free BNN

model as a signal for adaptive label smoothing that is spe-

cific to each data sample. The rationale is that the impor-

tance of highly uncertain samples could be attenuated in

the loss calculation. An overview of the whole approach is

depicted in Figure 1. This approach achieves generally

higher predictive and calibration performance compared

to our other baselines when the underlying model uses

maximum local pooling. In the case of attention local pool-

ing, the comparison is less conclusive, as the best

performer is either a variant in which the same smoothing

probability is used for all samples in a batch (hence, data-

sample agnostic) or no label smoothing at all. Our results

indicate, however, that deterministic,moment-propagating

BNNs—including our proposedmethod—exhibit high cali-

bration performance also in bioacoustic call detection

compared to point-estimate networks.

(3) Our methodology is evaluated on challenging, real-world,

‘‘in-the-wild’’ datasets, as literally is the case in bioacous-

tics for wildlife PAM. The recordings may contain multiple

background sounds other than the target calls. We obtain

the best reported results on a spidermonkey call-detection

dataset previously used in Rizos et al.,10 and further intro-

duce a newdataset with annotations for 30 distinct species

(29 bird species, and Bornean gibbons) with potentially

overlapping calls. The latter, which we call the SAFE Proj-

ect67 Multi-Species Multi-Task (SAFE-MSMT) dataset,

is available at Zenodo: https://doi.org/10.5281/zenodo.

7740620.
RESULTS

The common type of task between our two animal call-detection

datasets is binary classification (i.e., positive class when one or
Patterns 5, 100932, March 8, 2024 3
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Table 1. SE-ResNet withmultiple-head attention implementation

Model operation Shape

Log-Mel spectrogram (300, 128)

(ConvBlock @ 64, ReLU) & Pool (150, 64, 64)

(SEBlock @ 64, ReLU) 3 2 & Pool (75, 32, 64)

(SEBlock @ 128, ReLU)3 2 & Pool (37, 16, 128)

(SEBlock @ 256, ReLU)3 3 & Pool (18. 8, 256)

(SEBlock @ 512, ReLU)3 2 & Pool (9, 4, 512)

(ConvBlock @ 1024, ReLU) (9, 4, 1024)

Reshape embedding (9, 4096)

4-head attention-based pooling (4096 3 4)

Dense layer per task (1) 3 tasks

The sample-free variational versions share the same architecture, albeit

by propagating moments throughout.
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more calls of a particular type are found in a recorded clip, nega-

tive class otherwise). The Osa Peninsula Spider Monkey Whinny

(OSA-SMW) dataset was first introduced and described in Rizos

et al.,10 and a single binary call-detection task is defined on it,

where the focus is specifically the whinny call of Geoffroy’s spi-

der monkey (Ateles geoffroyi). We first introduce here the SAFE-

MSMT dataset, of which the description and preprocessing de-

tails can be found in supplemental experimental procedures

(sub-section ‘‘SAFE-MSMT Dataset’’). We consider the detec-

tion of calls for each species identified within the dataset as a

separate binary task and have identified 30 species such that,

for all tasks, there are positive examples for each class in all of

the training, development, and testing sets. It is possible that

there are zero, one, or more species’ calls audible per audio

clip, which constitutes a multi-label classification problem. We

approach this via a multi-task framework where each indepen-

dent task is binary classification. This is realized by having one

prediction layer per task, responsible for predicting the probabil-

ity of the presence of a corresponding species call.

For evaluating our experiments, we opted to report the non-

interpolated area under the precision-recall (AU-PR) curve of

the positive class, and the area under the receiver operating

characteristic (AU-ROC) curve as prediction performance mea-

sures that average over all possible probability thresholds for

classification. Test performance is measured using the model

that achieved best validation performance according to AU-

PR, which is a stricter measure in class-imbalanced cases where

the positive class is a minority, as AU-ROC is known to inflate

due to the abundance of true negatives. We also report the un-

weighted average of F1 of the positive and negative classes at

a probability threshold of 0.5 (F1) as well as the expected calibra-

tion error (ECE) for measuring calibration quality, as suggested

by Guo et al.,30 with 10 probability buckets. In order to provide

a summary performance profile for the 30-task SAFE-MSMT da-

taset, we report here the weighted average of the per-task per-

formance measures, where each weight is proportional to the

number of positive instances per task. Even so, this is a quite

austere evaluation as, for some species, there are only a handful

of positive samples (as low as four), which heavily restricts the

predictive potential of supervised-learning-based approaches.

As the baseline in our comparisons, we used a variation of a

modern, complex DL model that was the best-performing
4 Patterns 5, 100932, March 8, 2024
method in a comparative study on the bioacoustics domain.10

It combines a ResNet architecture, SE blocks, and multi-head

global attentive pooling of sequential embeddings, and an

output dense layer per binary task, for a total depth of 21 layers

(instead of 28 in Rizos et al.10); hence, base SE-ResNet. A sum-

mary of its architecture, including parameter values and tensor

shapes, can be found in Table 1, and more details are given in

section ‘‘description of multi-attentive SE-ResNet.’’ It is de-

signed to process log-Mel spectrograms as input, i.e., two-

dimensional audio representations.

We compare the performance of the base SE-ResNet with

those of the (1) uncertainty propagating, variational Bayesian

version developed for this article in section ‘‘crafting a competi-

tive Bayesian SE-ResNet baseline’’) variant with the addition of

our sample-free, uncertainty-aware label-smoothing technique

in section ‘‘benefits of uncertainty usage in label smoothing,’’ a

pictorial overview of which can be seen in Figure 1. In an effort

to show whether our proposed approach is robust to variations

in the base architecture, we identify the local pooling operation

as a point of interest. This is due to it being less explored in cited

related literature on sample-free Bayesian DL,52–55 where only

the max-pooling (max-pool) equivalent operation is considered.

We further consider an attentive pooling (att-pool) operation that

is similar to the recent eMPool66 and local importance pooling65

operations. Our att-pool employs an additional dense layer and a

softmax nonlinear activation that learn a weighted average of the

activations to be pooled. More details on the implementation of

core mechanisms, the considerations made toward a Bayesian

treatment, and technical propositions can be found in section

‘‘experimental procedures,’’ and full technical details in the sup-

plemental experimental procedures. We summarize in Table 2

the predictive and calibration performance measure results

that arose from our comparative analysis on animal call detec-

tion, which includes sample-free BNNs (for a higher granularity

report of certain endangered species from SAFE-MSMT; see

Table S1). In all cases, we performed eight trials for which we

report mean and standard deviation.

SE-ResNet is a competitive point-estimate baseline
Although our goal is to show the benefits of sample-free Bayesian

DL (with and without uncertainty-aware label smoothing) on bio-

acoustic call detection, we nevertheless performed one point-es-

timate neural architecture comparison, with a Wide ResNet22 that

was used in a bird call classification study (BirdNET20). We made

our own implementation of the architecture, and train it from

scratch on the datasets we include in our study using the same

setupasourownmethods.This isdone in the interestof a fair com-

parison and because the pretrained BirdNET is trained to predict

neither all the bird species in our SAFE-MSMT dataset nor spider

monkey whinnies from OSA-SMW. The results of the comparison

withour SE-ResNet (both themaximumand attention-pooling ver-

sions) are summarized in Table 3.We continue, thus, with sample-

free, Bayesian treatments of only SE-ResNet in the following.

Crafting a competitive Bayesian SE-ResNet baseline
As a first step toward a more uncertainty-aware approach, we

modify base SE-ResNet such that it becomes a variational

Bayesian, uncertainty-propagating version of itself. Linear oper-

ators such as dense and convolutional neural layers are replaced



Table 2. Comparative study on twodatasets between point-estimate neural networks and their sample-freeBayesianDL versionswith

and without uncertainty-aware label smoothing

SAFE Project Multi-Species Multi-Task

SE-ResNet W-AU-PR [ W-AU-ROC [ W-F1 [ W-ECE Y

max-pool base 21:16± 2:16 78:45±2:35 36:31± 11:94 35:86± 11:31

variational 22:44 � ±2:00 79:16±1:75 46:68± 4:33 22:63± 4:77

smooth 22:25± 1:11 79:83±2:89 52:43 � ±3:35 17:00± 7:19

ua-smooth 20:76± 2:57 80:05 � ±2:81 49:61± 3:71 16:21 � ±3:19

att-pool base 16:01± 2:25 72:15±3:19 39:51± 13:37 29:36± 12:74

variational 20:38 � ±2:70 77:97 � ±2:09 47:96 � ±3:61 21:63± 4:67

smooth 15:53± 3:33 65:35±7:90 47:86± 7:85 18:96 � ±13:66

ua-smooth 16:94± 2:11 69:82±4:44 38:75± 10:83 31:81± 11:72

Osa Peninsula Spider Monkey Whinny

SE-ResNet AU-PR [ AU-ROC [ F1 [ ECE Y

max-pool base 81:81± 2:46 97:01±0:79 82:95± 4:44 3:51±1:30

variational 82:74± 1:14 97:14±0:34 80:31± 3:14 4:56±1:16

smooth 82:55± 1:60 97:26±0:43 82:79± 4:17 3:66±1:35

ua-smooth 83:79 � ±2:42 97:47 � ±0:38 83:40 � ±3:22 3:46 � ±1:21

att-pool base 84:81± 0:93 97:41±0:34 84:38± 3:79 3:32 � ±1:63

variational 84:82± 1:94 97:28±0:55 78:74± 6:82 5:18±3:36

smooth 85:83 � ±0:60 97:47 � ±0:37 84:89 � ±5:85 3:53±2:49

ua-smooth 82:24± 5:42 96:68±1:54 81:32± 4:90 3:99±1:72

The proposed ua-smooth method distinguishes itself in the case where max-pool is used by the SE-ResNet. In case att-pool is used, the highest

performer is either variational for the SAFE-MSMT dataset or smooth for OSA-SMW. The choice of max-pool works better for SAFE-MSMT, whereas

att-pool works better for OSA-SMW, thus the use of label smoothing and whether it is uncertainty aware or not should bemade depending on dataset.

We denote by asterisks the best value (%) for each performance measure per dataset and per pooling type choice in order to more easily track the

comparisons among methods based on the same backbone architecture. We further denote by italics the highest value per dataset, regardless of

pooling choice.

ll
OPEN ACCESSArticle
with locally reparameterized versions, as described respectively

in Kingma et al.49 and Shridhar et al.51 The first two moments of

the outputs are given in closed form and are linearly dependent

on the, also stochastic, respective layer inputs and weights, yet

independent among themselves. The stochastic layer outputs

are transformed by nonlinear activation functions such as

ReLU and sigmoid, where the first two moments of the activa-

tions are approximated as previously described else-
Table 3. Comparison of point-estimate neural network baselines

SAFE Project Multi-Species Multi-Task

Model W-AU-PR [ W-AU-R

SE-ResNet (max) 21:16 � ±2:16 78:45 � ±

SE-ResNet (att) 16:01± 2:25 72:15± 3

Wide ResNet 19:75± 2:00 77:82± 1

Osa Peninsula Spider Monkey Whinny

Model AU-PR [ AU-ROC

SE-ResNet (max) 81:81± 2:46 97:01± 0

SE-ResNet (att) 84:81 � ±0:93 97:41 � ±

Wide ResNet 74:79± 2:15 95:62± 0

The comparison is among our implementations of a Wide ResNet previously

SMW dataset,10 and a variation of the latter using attention local pooling.

W-ECE for the SAFE-MSMT dataset, it is surpassed by SE-ResNet with m

both SE-ResNet variants in all measures in the OSA-SMW dataset. We de

dataset.
where.48,50,52,60 Regardingmax-pooling of such normally distrib-

uted variables, the authors of several studies55,64 independently

proposed co-pooling of the two moments, i.e., propagating only

the moments of the random variable with the highest expected

value. As for attention pooling, the weighted sum of normally

distributed variables is well known, andwe learn the probabilistic

weights using attention. This way, information on the first two

moments of all pooled variables is propagated.
OC [ W-F1 [ W-ECE Y

2:35 36:31± 11:94 35:86± 11:31

:19 39:51± 13:37 29:36± 12:74

:88 52:51± 3:99 12:32 � ±5:01

[ F1 [ ECE Y

:79 82:95± 4:44 3:51± 1:30

0:34 84:38 � ±3:79 3:32 � ±1:63

:57 76:22± 5:97 5:30± 2:69

used for bird classification,20 an SE-ResNet previously used on the OSA-

Although the Wide ResNet achieves the best performance in W-F1 and

ax-pooling in the other two measures. Furthermore, it is surpassed by

note by asterisks the best value (%) for each performance measure per
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Table 4. Training and prediction batch execution times in

milliseconds for a batch size of eight on the SAFE-MSMT dataset

SE-ResNet Training time Prediction time

max-pool base 112 32

variational 706 166

smooth 714 166

ua-smooth 713 166

att-pool base base 134 40

variational 753 176

smooth 763 176

ua-smooth 760 176

We measure both training time (including backpropagation) and predic-

tion time. Regarding training times, the Bayesian methods are � 6:3

and � 5:6 times slower compared to the point-estimate baseline in the

max-pool and att-pool cases, respectively. Regarding prediction times,

the factors are, instead, � 5:2 and � 4:4.
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In the results shown in Table 2, the Bayesian, uncertainty-

propagating version of SE-ResNet with max co-pooling (varia-

tional max-pool) exhibits a slightly higher performance than

base max-pool in terms of AU-PR, and AU-ROC for the OSA-

SMW dataset, and an improvement across all measures for

SAFE-MSMT, including the highest AU-PR among all max-

pool-based methods.

As for the attention-pooling variant (variational att-pool), we

observe a higher performance compared to the point-estimate

baseline in all measures for SAFE-MSMT but at the same or

lower performance in all measures for OSA-SMW.
Benefits of uncertainty usage in label smoothing
Label smoothing33 in loss calculation is the use of a label distri-

bution that is an interpolation between the true distribution, as

given by the annotators, and the uniform distribution. In the bi-

nary classification task, the latter corresponds to 0.5 probability

for both the negative and the positive classes:

ysmooth
i;c = ayuniformi;c + ð1 � aÞytruei;c ; (Equation 1)

where yi;c refers to the label probability that class c is correct for

data sample i, and a denotes the smoothing probability hyper-

parameter. The latter quantifies the degree to which we want

themodel to not overexert in trying to learn to classify that partic-

ular sample as per the ground truth ytruei;c .

Here, we propose a solution for data-specific label smoothing

that is dependent on the uncertainty propagated throughout a

BNN model, and is also MC sample free. A description of the

means bywhichwe define such an uncertainty-aware smoothing

probability ai for sample i, is found in section ‘‘experimental pro-

cedures,’’ and a schematic overview is depicted in Figure 1.

As seen in the results in Table 2, our uncertainty-aware label-

smoothing method (ua-smooth) used on the BNN described in

section ‘‘crafting a competitive Bayesian SE-ResNet baseline’’

outperforms the max-pool-based variational method in terms

of all measures except for W-AU-PR on the SAFE-MSMT data-

set. In the att-pool case, we do not observe a similar behavior,

as the only improvement is on F1 and ECE in the OSA-SMW da-

taset. In the max-pool case, the ua-smooth method also
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achieves better performance compared to the baseline in

all cases.

Smoothing should be specific to data samples

How can we be sure, then, that the propagated model uncer-

tainty contains information about which samples should use

higher smoothing probabilities and that it is not simply a case

of label smoothing being beneficial in general?

To answer this question, we perform onemore series of exper-

iments, with a label-smoothing variant (hence, smooth) that

keeps the smoothing probability fixed across the training batch.

Specifically, we calculate for every batch the average of the un-

certainty-aware smoothing probabilities as per our proposed ua-

smooth method and apply that to all batch samples instead. This

is not a hyperparameter-based, fixed-value label smoothing, as

is commonly used, since it benefits from the uncertainty quanti-

fication provided by the BNN, the values of which change per

training step as the model learns to model the training data,

and it tracks the average value of the uncertainty-aware smooth-

ing probability, thus allowing for a stricter comparison with the

ua-smooth method, which we propose as the better means of

performing uncertainty-aware label smoothing using a BNN.

We observe from Table 2 that, in the max-pool case, ua-

smooth always outperforms smooth for all measures on OSA-

SMW, whereas on SAFE-MSMT this holds only for W-AU-ROC

and W-ECE. In the att-pool case, it is instead smooth that out-

performs ua-smooth for all measures on OSA-SMW, whereas

the comparison is also inconclusive on SAFE-MSMT, with ua-

smooth performing better in terms of W-AU-PR and W-AU-

ROC only.

Sample-free BNN outputs are calibrated

A recommendation on which Bayesian approach to use agnosti-

cally is not easy to make, although, on the SAFE-MSMT dataset,

the calibration performance of the point-estimate baselines are

worse compared to all corresponding Bayesian versions. We

do not observe the same behavior on the OSA-SMW dataset,

although, in the max-pool cases on both datasets, it is our pro-

posed ua-smooth method that achieves the best ECE perfor-

mance among the corresponding competing methods.

Locally pooling normal random variables

Apart frommax-pooling, we have also showcased the efficacy of

a BNN approach based on newer, more elaborate local pooling

methods.65,66 Although we see that, on the OSA-SMW dataset,

attention pooling brings a clear improvement on all performance

measures over the use of max-pooling, on SAFE-MSMT the

behavior is reversed; i.e., max-pooling is overall the best-per-

forming local pooling operation. We find that our proposed ua-

smooth method manages to achieve best performance

compared to corresponding competing methods for the max-

pooling case, but not for attention pooling, where either the naive

smooth method works best on OSA-SMW or the sample-free

BNN without any label smoothing in SAFE-MSMT.

Execution times
We further perform a wall-clock execution timemeasurement for

all the competing methods on a machine equipped with an Nvi-

dia GeForce GTX 1080 Ti graphics processing unit (GPU) with 11

Gb of memory. The results are summarized in Table 4. The in-

crease in execution times for the sample-free Bayesian methods

is well known in relevant literature.53–55
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The time per epoch of training is dependent on dataset size.

For example, for SAFE-MSMT and using the max-pooling vari-

ants, an epoch of training requires � 21 s and � 140 s for

point-estimate and Bayesian versions, respectively, whereas

for OSA-SMW it is� 88 s and� 560 s. For SAFE-MSMT and us-

ing max-pooling, training requires around 20 min and 3 h for

point-estimate and Bayesian versions, respectively. For OSA-

SMW, the training times are, correspondingly, 1.5 h and 10 h.

The higher overall training times for Bayesian methods can be

explained by the fact that they require more epochs as they

generally reach better parameter set optima.

DISCUSSION

We now discuss (1) the insights extracted from our experiments

regarding our proposed methodology in section ‘‘propagated

uncertainty should be explicitly used’’; (2) relations to similar

methods and means by which our method should engender a

re-evaluation thereof in section ‘‘rethinking label smoothing’’;

and (3) potential extensions, criticisms, and opportunities in sec-

tions ‘‘should we focus on the easy data then?’’ to ‘‘conclusions

and future work.’’

Propagated uncertainty should be explicitly used
Propagated predictive uncertainty, as per our variational variant of

SE-ResNet, affects loss value calculation as it describes a predic-

tive distribution from which multiple prediction instances can be

sampled. This leads to an expected loss value calculation that is

based on softer, less overconfident prediction outputs compared

to a loss value based on point-estimate predictions; the utilization

of epistemic uncertainty involving all potential output samples has

been cited as a major regularizing strength of BNNs.41

In addition to the point-estimate base, we have designed the

sample-free variational method to be amore advanced baseline,

to more strictly compete with our proposed uncertainty-based

label-smoothing method.

That being said, by means of an insight from our experiments

with the moment-propagating ‘‘flavor’’ of BNNs, i.e., the varia-

tional Bayesian SE-ResNet, we observed promising (e.g., overall

improvement on the OSA-SMW dataset) yet inconclusive re-

sults. As such, we recommend that the Bayesian property, as

well as the type of uncertainty-aware label smoothing, should

be considered to be types of hyperparameters, not to be em-

ployed agnostically but only after experimental validation on

the task under examination, including consideration of the rele-

vant performance measures thereof.

However, the Bayesian formulations offer us another highly

informative signal, something exclusive to them and unavailable

to the baseline: the value itself of predictive variance, i.e., a proxy

of epistemic uncertainty. There is a more explicit manner of uti-

lizing it, which can, and indeed should, be used in the loss calcu-

lation, as, in our experiments, the ua-smooth method performs

better than the corresponding variational in most performance

measures in the case of models using max-pooling.

Usually, predictive uncertainty is used in downstream tasks,

e.g., as a signal for data acquisition in active learning,52,68 or to-

ward the design of uncertainty-aware (e.g., risk-averse) rein-

forcement learning agents.69 Inversely, we believe that uncer-

tainty should be used as a signal that guides learning in the
self-same task, and by the self-same model that is undergoing

training; as per our experiments, not doing so may lead to

missing the opportunity given by the usage of a BNN and is

also disregarding one-half of the BNN output. The sample-free

manner of uncertainty offers a more elegant and less stochastic

means of doing so compared to MC-based methods.

More than that, our experiments with the batch-wide fixed

smoothing method (smooth) indicate that a higher degree of la-

bel smoothing can be beneficial to data samples for which the

BNN is less confident in modeling, and that, thus, the ua-smooth

variant is preferrable. That being said, for the OSA-SMW dataset

in the att-pool case, it seems that smooth performs better than

the other corresponding methods, indicating that Bayesian reg-

ularization may be beneficial for that dataset in any shape or

form, most probably due to the positive class sample scarcity

in all binary classification tasks of this dataset.

Rethinking label smoothing
That being said, label smoothing has been considered as one of

the reasons for the high performance achieved by the student

model in knowledge distillation70; i.e., a learning framework

involving a student model learning from the predictions of a

teacher model that is itself trained with the true labels. Knowledge

distillation utilizes the smooth prediction probabilities output by

the teacher model in place of ground-truth labels. These output

distributions are smoother, i.e., closer to the uniform, for data

samples that the teacher model finds difficult to model, thus

constituting data-specific smoothing. Moving away from the

two-step, teacher-student framework (that is focused on model

compression), in this study, we have shown the usefulness of a

means for smoothing that requires no more than a single model,

a single training process, and is alsoMC sample free. As indicated

by our experiments, we believe that the underlying conception of

label smoothing is still promising,with the caveat that they need to

be made in an adaptive, intelligent, and data-specific manner; a

fortiori in the uncertainty-propagating BNN context, where a guid-

ing signal is provided by design.

The study that is closer conceptually to our own, in terms of at-

tempting to improve accuracy and calibration, is the one per-

formed in Seo et al.,71 in which the authors use the MC-based

BNN approach proposed in Gal and Ghahramani46 called MC

dropout and focus on image classification. They calculate a loss

value as an interpolation of the cross entropy between the predic-

tions and the true labels, and the cross entropy between the pre-

dictions and the uniform distribution, where these two factors are

weighed based on a value that is a normalization of theMC-based

estimate of the variance. Even though their loss calculation uses

the predictions of a single execution, it also requires K executions

for estimating the variance. As such, the authors use fiveMCsam-

ples and, subsequently, five propagations of the input through the

entire model during training. Instead, we use both the expectation

and the variance of the outputs in our loss calculation, as propa-

gated through the entire network in closed form approximation,

constituting a more deterministic and elegant solution. Given the

long-standing criticisms of MC dropout on whether its assump-

tions and approximations truly constitute a Bayesianmethod,72–74

and the fact that sample-free Bayesian methods have outper-

formedMC-dropout before,53,54wedid not consider a direct com-

parison with this method necessary.
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Should we focus on the easy data then?
The underlying philosophy of our uncertainty-aware smoothing

method is that high predictive uncertainty implies a training

data sample that is, for whatever reason (e.g., difficulty, subjec-

tivity, scarcity), difficult to model, and, as such, that our BNN

should not over-penalize itself trying to memorize it. Similar as-

sumptions have been made by past studies that focus on alea-

tory uncertainty,38 and soft labels due to rater disagreement,75

or label smoothing.33,71 That being said, there has also been

an alternate way of thinking, such as data samples that are too

easy to model should be the ones either ignored or down-

weighed, such that we avoid a flood of common samples domi-

nating the loss calculation. A method that follows this paradigm

is the focal loss,76 of which newer versions are also heterosce-

dastic, i.e., dependent on the input, as the degree of focus is it-

self dependent on an auxiliary output of the model.77 This is

similar to our approach, albeit we are not using a separate output

‘‘head’’ but leverage the Bayesian predictive uncertainty. A com-

bination of these two philosophies, and a means by which

we can learn the degrees to which we should downweigh

both the easy as well as the difficult samples side by side is

something we would like to focus on in a future extension of

this study, potentially by incorporating uncertainty decomposi-

tion methods.38

Generality of method
Although, in the study performed in Wu et al.,53 the authors vali-

dated their moment-propagating BNNs on small scale, tabular

datasets, in Schmitt and Roth54 such models have also been

applied on standard image classification datasets such as

MNIST,78 CIFAR,59 and ImageNet.79 Dera et al.55 have gone

further to image segmentation on both radar sensor and medical

magnetic resonance images. Finally, Haußmann et al.52 have

used the sample-free output uncertainty in a downstream active

learning framework for budgeted image classification labeling.

We not only build upon such models methodologically with our

adaptive label smoothing but we also apply them to a new

domain, that of bioacoustic animal detection. Given the above,

we see it as highly likely that the performance of our method

can be transferrable to any data domain in which it is beneficial

to model uncertainty, including speech and textual language

processing, multimodal domains such as video, as well as graph

data.

Limitations of method
Even though the parameter space required for the sample-free

Bayesian models is almost equivalent to the baseline (just one

additional parameter per trainable layer, as described in the sup-

plemental experimental procedures for variance parameteriza-

tion), the prediction and training times are longer (see section

‘‘execution times’’). Furthermore, the activation space is double

compared to the baseline as we are propagating the variances

as well as the expectations. That being said, this is a known

and accepted behavior in the sample-free Bayesian DL litera-

ture.52–55 This is also reasonable, since other Bayesian consider-

ations also require an increase in resources: e.g., MC sampling-

based methods perform a number of propagations through the

network that is equal to the number of MC samples, something

that also introduces stochasticity in training.54
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Conclusions and future work
Although the predictive uncertainty signal calculated by BNNs is

often used to make decisions in a downstream task, such as

identifying samples to annotate in active learning or addressing

risk in reinforcement learning, in this article, we have used it to

guide learning in the self-same task the neural network is being

trained on. To that end, we have focused on deterministic (i.e.,

non-MC-based) BNNs that propagate feature variances along

with expectations and utilized the end-to-end propagated output

uncertainty to inform the degree of label smoothing that is

applied in a data-specific manner. Our proposed sample-free

variational Bayesian SE ResNet yields inmost cases an improve-

ment over the point-estimate baseline. Furthermore, our recom-

mended variant with uncertainty-aware label smoothing brings

further improvement in cases in which the maximum operation

is used for local pooling.

Our methodology has been evaluated on two animal call-

detection bioacoustics datasets, one of them introduced here

for the first time, as well as in two variations pertaining to local

hidden unit pooling. We find that the choice of pooling affects

performance depending on the dataset, and it affects the suc-

cess of uncertainty-aware label smoothing. As such, we submit

that the use of uncertainty-aware label smoothing is a promising

method that should be considered as a hyperparameter, to be

incorporated based on validation performance. By using it, one

incorporates the uncertainty value that is available to sample-

free BNNs in the loss value calculation.

This work both advances work on moment-propagating BNNs

that are of great use in the domain of DL and is of special interest

to the application field of bioacoustics, where low signal-to-noise-

ratio data often also receiveweak annotation, leading to a need for

soft, modest predictions that are highly calibrated (noted so far to

be missing).3,61,62 Well-calibrated model outputs with meaningful

prediction probabilities are required for downstream processing

either by automatic decision-making software or human experts,

especially in a collaborative human-machine setting, such as

active learning. Althoughother types ofBNNare known to perform

well in terms of calibration,40,80 we have shown here that this also

holds for the moment-propagating variety, with and without the

use of our intelligent label smoothing.

It is important to note that this study has not been an extended

comparative study of neural network architectures for acoustics

as in Rizos et al.10 Many promising point-estimate DL architec-

tures exist, potentially focused on other data domains, that could

prove to be excellent performers on one (e.g., see the experi-

ment with the WideResNet-based BirdNET in section ‘‘SE-

ResNet is a competitive point-estimate baseline,’’ as well as

Table S1) or even both the datasets we considered. Our results

indicate that a sample-free Bayesian treatment of any existing

point-estimate architecture is highly likely to bring further

improvement, with or without our proposed uncertainty-aware

label-smoothing approach. We further believe this study can

stimulate research in uncertainty-aware local pooling and atten-

tion methods, in identifying informative data samples47 in an in-

tegrated manner with focal loss,77 and in trustworthy decision

making in bioacoustics. Finally, we believe it is of interest to

approach the newly introduced SAFE-MSMT dataset via a

few-shot learning framework,81 to extract as much information

as possible from the limited size labeling.



Figure 2. The value of our proposed adaptive, uncertainty-aware

smoothing probability given the expectation and variance of the logit

For close to 0 logit uncertainties, the smoothing probability at
i is also close to 0.

For higher logit uncertainties V½hti;L�, at
i is higher for predictions that are closer

to the extreme values of either 0 or 1. For moderate predictions close to 0.5, at
i

is closer to 0, thus encouraging learning from the true signal instead of re-

inforcing a moderate prediction behavior.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information regarding the computational methodology and use of co-

debase should be directed to and will be fulfilled by the lead contact, G.R.

(georgios.rizos12@imperial.ac.uk). Information regarding the SAFE-MSMT da-

taset should be addressed to R.E. (r.ewers@imperial.ac.uk), and regarding

OSA-SMW to J.L. (j.lawson17@imperial.ac.uk).

Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

The latest version of the code can be found at https://github.com/glam-

imperial/sample-free-uncertainty-label-smoothing underDOI throughZenodo:

https://doi.org/10.5281/zenodo.10253149 82 and is publicly available as of the

date of publication. The SAFE-MSMT dataset introduced in this paper is to be

found at Zenodo: https://doi.org/10.5281/zenodo.7740620 83; the contact for

this dataset is R.E. The OSA-SMW data reported in this paper will be shared

by J.L. upon request.

Description of multi-attentive SE-ResNet

The base DL architecture we use in this study is a close variant of the best per-

forming method from the comparative study in Rizos et al.10 The sample-free

Bayesian treatment is applied on the same architecture, whether uncertainty-

aware label smoothing is used or not. Table 1 summarizes the number of layers

used and related parameters.

We can divide the architecture in threemodules: (1) the core, audio processing

module, which produces a sequence of learnt audio embeddings and is based

on convolutional layers, residual blocks, local pooling (maximum or attentive),

and SE blocks; (2) themultiple-head, attentionmechanism for weighted average

pooling of the embeddings; and (3) the top module, a set of dense layers that

process the averaged, recording-wide neural representation, where each layer

makesa prediction corresponding to a separate binary call-detection task. There

is one such layer for the OSA-SMW and 30 for the SAFE-MSMT dataset. We

extract spectrograms from sound waveform sampled at a rate of 16 kHz, by us-

ing a fast Fourier transform window of 128 ms, sliding at a hop length of 10 ms.

Given a 3-s clip, we extract 128Mel coefficients and end upwith a log-Mel spec-

trogram with sequence length equal to 300.

As seen in Table 1, the log-Mel spectrogram is first processed by a block

(ConvBlock) of two convolutional layers, each with 64 filters and ReLU activa-

tions, and followed by a pooling operation without padding. The pooling oper-

ation can be either max- or attentive pooling. Then, the hidden units are pro-

cessed by four blocks (SEBlock), where each is composed of two residual

layers with SE mechanisms, and is followed by a pooling operation. The

core module concludes with another ConvBlock, where the convolutions learn

1,024 filters, but this time not followed by pooling. In all cases, the convolu-

tional layers learn 333 filters and corresponding biases, and the pooling oper-

ations are subsampling at a 232 ratio.

The above module transforms a log-Mel spectrogram input into a hidden

tensor with sequence length of nine, width of four, and 1,024 features. We

want to perform global pooling across the sequence length, and so first reshape

the tensor to ð9;4096Þ. We then learn four weighted sequence-averaging opera-

tions, using four attention heads. Each head corresponds to a learnt linear trans-

formation of each embedding frame to a single energy value, and the calculation

of a probability vector bypassing the energy values from the sequence througha

softmax function.Theseprobabilitiesare used forweightedaveraging, leading to

anaveragedembeddingper attention head; thoseare thenconcatenated topro-

vide a single, sequence-wide representation of the input audio clip. This is pro-

cessed by the top module, where the dense layer that corresponds to each

task avails of the commonbasemodel for shared feature extraction. Eachdense

layer produces one logit per data sample, which is passed through a sigmoid

function such that we obtain the probability that the sample is positive.

Epistemic uncertainty-aware label smoothing

We need to quantify the belief that an input sample has been noisily annotated,

and as such the prediction error for it should contribute less to the loss value

calculation. We design such a measure by adhering to the following desid-

erata: (1) it is in the ½0; 1� range, such that it can serve as the label-smoothing
probability; (2) it is positively correlated to the propagated, predictive variance

in order to reflect BNN uncertainty about the input sample categorization; and

(3) it is also positively correlated to overconfident (i.e., close to 1) predictions,

such that moderate predictions do not receive feedback reinforcement.

Consider the expected logit outputE½hti;L� of a denseprediction layer for the i-th
acousticdata sample,whereLdenotes the last layer indexand tdenotes the task

corresponding to thatprediction layer. Ifwedoutilize the logit varianceV½hti;L�and
transform the normally distributed random variable via a sigmoid function (as

detailed in thesupplemental experimentalprocedures, section ‘‘sample-freevari-

ational attentiveSE-ResNet’’), weget the fully propagated, Bayesian expectation

and variance of yt;Bayesi;POS , i.e., the probability that the input sample is from the pos-

itive (POS) class. Inversely, if we opt for a maximum a posteriori (MAP) approach

for that final layer, by not utilizing the logit variance, we transform the logit expec-

tation via the sigmoid and denote the probability by yt;MAP
i;POS .

yt;MAP
i;POS would still benefit from the moment propagation up until the final layer

in terms of the learnt features and logits hl (for l up to but excluding L), as well as

from the Bayesian regularization for all layers. However, final-layer MAPmakes

the information encoded in the propagated uncertainty unavailable in the

calculation of the predictive probability distribution. Inversely, yt;Bayesi;POS gets

the full benefits of the Bayesian approach. A fully Bayesian treatment of

even just the final layer has been shown to have a positive benefit on address-

ing overconfidence, even when the rest of the model is parameterized with

point-estimate weights.84

We, thus, attempt to capture this additional, Bayesian uncertainty informa-

tion by defining the data-sample-specific smoothing probability as

at
i =

�
�
�yt;MAP

i;POS � yt;Bayesi;POS

�
�
�: (Equation 2)

For a binary call-detection task, this is equivalent to the Manhattan distance

between the corresponding two-element discrete predictive probability distri-

butions multiplied by two. A visualization of our adaptive smoothing probability

given ranges of logit expectations and variances can be found in Figure 2.
SUPPLEMENTAL INFORMATION
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