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A B S T R A C T

A simple driven bipolar junction transistor (BJT) based two-component circuit is presented, to be used as didactic
tool by Lecturers, seeking to introduce some elements of complex dynamics to undergraduate and graduate
students, using familiar electronic components to avoid the traditional black-box consideration of active elements.
Although the effect of the base-emitter (BE) junction is practically suppressed in the model, chaotic phenomena
are detected in the circuit at high frequencies (HF), due to both the reactant behavior of the second component, a
coil, and to the birth of parasitic capacitances as well as to the effect of the weak nonlinearity from the base-
collector (BC) junction of the BJT, which is otherwise always neglected to the favor of the predominant but
now suppressed base-emitter one. The behavior of the circuit is analyzed in terms of stability, phase space, time
series and bifurcation diagrams, Lyapunov exponents, as well as frequency spectra and Poincar�e map section. We
find that a limit cycle attractor widens to chaotic attractors through the splitting and the inverse splitting of
periods known as antimonotonicity. Coexisting bifurcations confirm the existence of multi-stability behaviors,
marked by the simultaneous apparition of different attractors (periodic and chaotic ones) for the same values of
system parameters and different initial conditions. This contribution provides an enriching complement in the
dynamics of simple chaotic circuits functioning at high frequencies. Experimental lab results are completed with
PSpice simulations and theoretical ones.
1. Introduction

Introducing complex dynamics in electronics at undergraduate level
can be demanding, when complex electronic devices and complex
mathematical formulas are in use. To overcome the didactic barrier that
can result from too complex components, black-box models are often
used, so that only the mathematical output functions of various blocs are
considered. This hinders sometimes students to go deep in the under-
standing of the physics beyond the black-boxes. In the present paper, we
use two components that are very familiar to students, to give a tool that
can help to uncover the origin of complex phenomena often found in very
complex circuits. This is like “opening” the black-box for undergraduates,
hoping to inspire engineering skills in them.

In 2002, Aissi proposed an autonomous Colpitts oscillator and a
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driven RL-Diode circuit as examples of chaotic circuits for un-
dergraduates [1]. His paper was limited on the basics. The schema was
not analyzed in term of equivalent circuit. A few years later, Perc used
nonlinear time series analysis in a more consistent paper for a similar
purpose [2]. Those two contributions confirmed that the subject can be
introduced at that educational level.

The present paper goes more in details. It is understood as helping tools
for didactic purpose. Dynamic systems to be characterized as chaotic
must be third or higher-order nonlinear differential equations, or driven
second or higher-order ones, with at least one positive Lyapunov expo-
nent [3]. Since Lorenz [4] found the first chaotic attractor in 1963 while
describing the simplified Rayleigh–Benard problem, the theory of chaos
has obtained recognition in many fields of science and engineering. It can
be encountered in medicine [5], in chemistry [6] in electromechanical
er 2019
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Fig. 1. Circuit diagram of the proposed driven two components oscillator;
eðtÞ ¼ Esinð2πftÞ is a sinusoidal source with amplitude E and frequency f; T is
the bipolar junction transistor and L is the inductance of the coil.
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[7, 8, 9] and in optical systems [10], in control, secure communications
and crypto systems [11, 12, 13], or in neurosystems [14, 15], just to
name some. One of the most active fields for chaos and applications re-
mains that of electronic circuits. Apart from the groundbreaking Chua's
circuit [3], many other chaotic circuits have been found, or existing os-
cillators used to introduce sinusoidal oscillations in curricula have been
modified for chaos [16, 17, 18, 19, 20, 21], so that proposing new circuits
can now make sense according to Sprott [22], only if they fulfill at least
one of the following requirements:

(i) Credibly modeling some important unsolved problem in nature
and shed insight on that problem;

(ii) Exhibiting some behavior previously unobserved or
(iii) Being simpler than all other known examples exhibiting the

observed behavior.

Recently, Ref. [16] presented a Hartley's chaotic oscillator based on
one JFET and one tapped coil, qualified as the simplest chaotic circuit,
with experimental realization. The authors demonstrated that their cir-
cuit generates chaotic oscillations through periods doubling scenarios.
However, the phenomena of antimonotonicity and multistability were
not revealed in that simple circuit. Two other research groups proposed
other simple chaotic circuits based on a nonlinear active memristor [23,
24]. They too showed attractors from their respective circuits along with
an illustration of period doubling route to chaos. But for experimental
realization, commercial memristors are not yet very accessible, obliging
the used of analog calculators in most of the cases and therefore, many
components to realize it [23, 24, 25, 26]. The present circuit combines
simplicity both in the topology and in the realization.

Authors of some pioneering diodes or transistors based driven simple
circuits [1, 27, 28, 29] have ignored the high frequency (HF) behavior of
these nonlinear elements. In our case, this aspect is rather essential to
justify and explain how an effective two-component circuit with only one
physically observable degree of freedom can turn into multistable dy-
namics. Complementary virtual degrees of freedom needed for chaos
finds their origin in the Giacoletto description of the “strange” behavior
of semiconductors’ junctions at high frequencies [30], known as parasitic
capacitances. On the other hand, HF chaotic sources are imperative in
many telecommunication applications, including broadband communi-
cations, broad-spectrum techniques, high-entropy source cryptography,
etc... that require carriers at high frequency. The design of such systems
requires a more detailed description of its elements and a precise char-
acterization of the spectral band of the sources. The literature gives ex-
amples of experimental chaotic circuits operating in the microwaves
domain [31] and [32], but with reduced details in modeling and analysis.
The use of a bipolar junction transistor as active and nonlinear element of
our circuit is justified by its characteristics and availability for any
scholar: small size, low cost, low power dissipation, possible operation at
HF, high current drive and high reliability in severe environmental
conditions for engineering applications. It is therefore advisable to avoid
as far as possible the reduced equivalent circuits of BJTs when the fre-
quency of the circuit is in the range of MHz and higher, which are rather
suitable at low frequencies. In the following, we are going to consider the
global equivalent defined in Ref. [31].

The BJT-coil circuit of the present paper has a zero BE voltage and
only the effect of BC junction gives rise to rich chaotic oscillations. The
model, although simple, works at resonant frequencies in the range of
microwaves. From the equations that describe the dynamics of this sys-
tem, a study of the stability and the performances of the system in HF are
done. Chaotic motions are justified using the Lyapunov exponent, bi-
furcations diagrams and Poincar�e map section. This extremely simple
circuit has a particular and significant imprint of multi-stability marked
by the coexistence of different (periodic and chaotic) attractors obtained
with the same values of system parameters on the different initial
2

conditions. The experimental and analogical analyses on the proposed
simple driven circuit are also carried out to confirm our theoretical
results.

The structure of the paper foresees in Section 2 the model description
followed by the stability analysis in Section 3. In the next section, the
experimental setup and PSpice simulation are depicted whereas numer-
ical investigations are proposed in Section 5, just before the conclusion in
the last section.

2. Design

2.1. Description of the circuit

Fig. 1 depicts the resonant circuit consisting of a BJT with short-
circuited BE electrodes, and a coil. This circuit, in the absence of the
driving force cannot generate oscillations, even in the presence of a
biasing direct voltage source connected at the collector of the BJT, since
the circuit has no feedback loop. The possible control parameters
accessible to any experimenter can be the sinusoidal voltage source
driving the circuit, and the inductance L of the coil that can be chosen as
variable component.
2.2. Model and theoretical analysis

Many equivalent models of BJTs do exist in the literature [31, 32, 33,
34, 35, 36, 37]. One of the most appropriate for our study is the hybrid-π
model for frequencies up to 500 MHz. Fig. 2 shows the complete
equivalent circuit of the proposed circuit (Fig. 1) using the modified
equivalent hybrid-π transistor model presented in [35], which takes into
account:

� the BE capacity CBE; (this capacity is the sum of a depletion capacity,
that of diffusion proportional to the emitter current and of the tran-
sition capacity);

� the BC capacity CBC, which essentially depends on the BC voltage;
� the base distributed resistance RB (linear and measurable resistance,
independent of the oscillation frequency), and

� the active internal resistance RC.of the collector's region.

The dynamic operation of the BJT is modeled by diffusion and
depletion layer components. Consider vBE the voltage across the capac-
itorCBE, vBC the voltage across the capacitor CBC and iL the current
through the coil with inductance L.

Kirchhoff's laws applied to the small-signal equivalent circuit in Fig. 2
lead to the system of ordinary differential equations (ODEs) below
describing the complete dynamics of our circuit:



Fig. 2. Complete Small-signal equivalent circuit of the proposed two components driven oscillator. iB and iC are the voltage controlled current sources (VCCS).
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8>>>>>CBE
dvBE
dt

¼ � ð 1
RB

ÞvBE þ iL � ðiB þ iCÞ
>><
>>>>>>>:

CBC
dvBC
dt

¼ iL � iC

L
diL
dt

¼ � ðvBE þ vBCÞ � RCiL þ Esinð2πftÞ

(1)

In several works the expression of current in the transistor is a func-
tion of the voltage between the base and the emitter [13, 16, 17, 18, 21,
31, 32, 36]. But this is actually a simplified form and can hide some
phenomena. The general shape of currents in transistors take into ac-
count both the BE junction effects and the BC one as considered in Eqs.
(2) and (3). Here the current sources iB and iC are controlled by the BE
and the BC voltages (vBE, vBC):

iB ¼ f ðvBE; vBCÞ ¼ Is
βF

�
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�
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VT

�
� 1

�
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βR

�
exp

�
vBC
VT

�

� 1
�
; (2)

iC ¼ g ðvBE; vBCÞ ¼ Is

�
exp
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vBE
VT

�
� 1

�
þ Is

�
exp

�
vBC
VT

�

� 1
�

� Is
βR

�
exp

�
vBC
VT

�
� 1

�
(3)

where VT¼ KbT=q, IS is the reverse saturation current, T the junction
absolute temperature, q the electrical charge, Kb the Boltzmann constant,
vBE and vBC denoting the BE and the BC voltages respectively. Note that
VT � 26 mV at the ambient temperature (300 K).

In order to highlight the vectors of nonlinear behavior of the functions
f ðvBE; vBCÞ and g ðvBE; vBCÞ, let us note here the dependence of the
saturation current IS with respect to certain quantities such as the density
of the charge carriers (efficiency injection), the substrate dimensions and
the diffusion constant. Thus, the reverse saturation current takes the form

IS ¼ q2niA0Dnb

QB
: (4)

Here A0 represents the emitter area, ni is the concentration of the
intrinsic carriers in the base and Dnb denotes the average diffusion con-
stant of the minority carriers in the Base. QB is the charge per unit area of
doped atoms in the neutral base. This charge density can be defined as

QB ¼ q
Z xC

xE

NabðxÞdx: (5)

Nab is the doping concentration in the base, xC and xE are spatial co-
ordinates that delimit the neutral base with zero bias. It should be
emphasized that these limits vary according to the junction voltages,
giving rise to a so-called basic width modulation phenomenon.
3

Assuming some changes of variables and parameters as in Eq. (6), the
dimensionless system of ODEs (7), suitable for numerical simulations, is
obtained:

vBE ¼ x V0; vBC ¼ y V0; iL ¼ z
V0

ρ
; ρ ¼

ffiffiffiffiffiffi
L
C1

r
; γ ¼ ρI0

V0
; αB

¼ ρ
RB

; αC ¼ ρ
RC

; e ¼ E
V0

; μ ¼ ω
ω0

; 2

¼ CBE

CBC
; t ¼ τ

ffiffiffiffiffiffiffiffiffiffiffi
LCBE

p
(6)

and
8<
:

_x ¼ � αBx þ y � γðfðx; yÞ þ gðx; yÞÞ
_y ¼2 ðz � γgðx; yÞÞ
_z ¼ esinðμτÞ � ðx þ y þ z=αCÞ:

(7)

Here the nonlinear functions are given by Eq. (8):

fðx; yÞ ¼ α1ðex � 1Þ þ α2ðe�y � 1Þ; and gðx; yÞ
¼ ðex � 1Þ � ð1� α2Þ ðe�y � 1Þ: (8)

The complete dynamic of the system can be investigated through the
system of first order nonlinear differential Eq. (7) with (8).

3. Theory

The equations of the system can be written as the smooth nonlinear
third order differential equation:

�
dX
dt

¼ hðX; t; PÞ; t2R; X2Rn and p2Rr : (9)

X ¼ ½x; y; z�T is the vector field of states' variables.
hðX; t; PÞ ¼ ½f1ðX; t; pÞ; f2ðX; t; pÞ; f3ðX; t; pÞ�T is a smooth

function and P ¼ hðαB; αC; γ; 2; μ; eÞ are the elements of the
parameter space.

The fixed points of system (7) or (9) can be found by solving the
nonlinear system (10), after cancelling the effect of the external driven
source,

hðX; t; PÞ ¼ 0: (10)

This leads to the origin as unique equilibrium point of the present
system: E0ð0; 0; 0Þ.

The perturbation analysis described in [38] is used to investigate the
stability of solutions around the fix point E0. Thus, Eq. (7) can be per-
turbed by adding a small perturbation δX ¼ ðδx; δy; δzÞ to the steady
state X0 ¼ ðx0; y0; z0Þ. The dynamic differential Eq. (11) at the equi-
librium point E0ð0; 0; 0Þ is obtained:
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dδX
dt

¼ MJδX (11)
Where MJ is a 3� 3 Jacobian matrix giving in Eq. (12) that describes the
vector field along the solution δXðtÞ:

MJ ¼
0
@� αB � γð1þ α1Þex γð2α2 � 1Þe�y 1

� 2 γex � 2 γð1 � α2Þe�y 2
�1 �1 �1=αC

1
A: (12)

At the equilibrium point E0ð0; 0; 0Þ, MJ becomes:

MJðE0Þ ¼
0
@� αB � γð1þ α1Þ γð2α2 � 1Þ 1

� 2 γ � 2 γð1 � α2Þ 2
�1 �1 �1=αC

1
A: (13)

The corresponding characteristic equation is

A0λ3 þ A1λ2 þ A2λþ A3 ¼ 0; (14)

where the coefficients A0, A1, A2 and A3 are defined as:

A1 ¼ 2 γð1� α2Þ þ γð1þ α1Þ þ αB þ 1
αC

;

A3 ¼ ð� αB � γ � γα1

��2 γ
αC

�2 γα2

αC
þ 2

�
� 2 γα2;

A0 ¼ 1; A2 ¼ ð1�α2Þð 2 γαB þ 2 γ2α1 þ 2 γ
αC

Þ

þ γ
αC

ð1þ α1Þ þ αB

αC
þ 2 � 1:

(15)

The analysis shows that the coefficients A0, A1 and A2 are positive
while the coefficient A3 is negative; thus the system is unstable around
the fixed point E0ð0; 0; 0Þ according to the Routh-Hurwitz criterion. It
should be noted that the systemmay change the behavior under the effect
of the external driven voltage source.

The analysis of the steady states and the local bifurcations susceptible
to occur in our system when varying the parameters is done by solving
Eq. (14) using the Newton–Raphson method, for the parameters' values
αB ¼ 0:0988, αC ¼ 0:3953, γ ¼ 4:9411, α1 ¼ 0:3, α2 ¼ 2:95
and ε in the range 0 � ε � þ 5. The graphical results are depicted in
Fig. 3. From this figure it is observed that the roots of characteristic Eq.
(14) include complex conjugate with negative and positive real parts,
pure positive and negative real numbers, and pure imaginary numbers. It
Fig. 3. Representation of the eigenvalues solutions of (14) in the complex plane (R
4:9411, α1 ¼ 0:3, α2 ¼ 2:95 and 0 � ε � 5.
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then gives an idea on both the stability of periodic solutions as well as
different types of bifurcation likely to appear in the system [38, 39]. Thus
for the eigenvalues λwith all negative real parts, the rate is of contraction
type, else of expansion's. For the pure real eigenvalues, contraction or
expansion is observed near the steady state while contraction or expan-
sion of spirals is observed for complex eigenvalues of the Jacobian ma-
trix. For the eigenvalues having real parts with different sign, the
equilibrium state is called saddle; an equilibrium point whose eigen-
values have nonzero real parts is called hyperbolic while we have a
center if the eigenvalues are complex conjugate with zero real part (this is
one of the conditions for Hopf type bifurcation to occur). By setting λ ¼
� 1 in Eq. (14), we can find the value of the control parameter for

which period doubling bifurcation type is obtained.

4. Experimental

Fig. 4 depicts the real experimental implementation of the circuit in
Fig. 1 using a transistor of type BC107 and a self-inductance L ¼ 75μH.
The circuit is not biased and therefore, it is not an oscillator. Further-
more, it possesses no effective feedback loop and cannot oscillate, even if
it were biased with a DC voltage source. Instead, it is a nonlinear resonant
circuit driven by a Voltcraft TNG 235 sinusoidal voltage generator which
provides the necessary energy to the system. The experimental chaotic ðþ
eðtÞ; vBÞ-phase portrait is displayed at the frequency f � 4:87 MHz and
amplitude E � 5V: The graphical result on the figure was visualized on a
dual channel 20 MHz HM 205–3 Hameg oscilloscope. Similar experiment
via PSpice simulations gave the ðiL; vBÞ-phase diagrams in Fig. 5 for the
same Transistor and inductance value, the driven source having a fre-
quency of 5MHz and amplitude of 4:5V: It is worth mentioning that other
transistor types (e.g. BC108, Q2N2222A etc…) have given almost similar
results. This generator plays at the same time the role of control
parameter through the variation of its frequency or its amplitude.

5. Results & discussion

5.1. Method and detection of chaos

The numerical simulations for the investigations of the system's
behavior were done in MatLab environment, using the four-order Runge-
Kutta (RK4) algorithm. For the fixed set of parameters' values, αB ¼
e (λ), Im (λ)). The parameters' values are αB ¼ 0:0988, αC ¼ 0:3953,γ ¼



Fig. 4. Experimental setup of the BC107-type BJT based two components circuit in operation. The oscilloscope displays the double-band chaotic attractor captured
from the experimental circuit mounted on a breadboard as indicated in the same figure.

Fig. 5. PSpice's Phase diagram showing the Base-voltage as function of the current through the inductor, the amplitude and frequency of the driven source are
respectively E ¼ 4:5 V and f ¼ 5 MHz, while the inductance of the coil is L ¼ 75 μH:
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0:0988; αC ¼ 0:3953; γ ¼ 4:9411; ε ¼ 4:80; μ ¼ 3:140; α1 ¼ 0:3;
and α2 ¼ 0:95, and control parameter e (normalized amplitude of the
driven source) varying from 20 to 75, we have calculated spectrum of
Lyapunov exponents numerically, using the algorithm proposed by Wolf
and collaborators [40]. The bifurcation diagram and that corresponding
5

spectrum of Lyapunov exponents are presented in Fig. 6A, B. The system
under investigations is a third order one with a driven source. When
calculating the Lyapunov exponents following the algorithm proposed in
[40], the phase of the driven source is considered as another dynamic
quantity and therefore the four Lyapunov exponents are calculated. It is



Fig. 6. Bifurcation diagram ðAÞ showing the local maximum of the coordinate zðτÞ and the corresponding spectrum of four Lyapunov exponents ðBÞ versus the
normalized amplitude e in the range 20 � e � 75. The rest of parameter values are taken to be αB ¼ 0:0988, αC ¼ 0:3953, γ ¼ 4:9411, ε ¼ 4:80, μ ¼
3:140, α1 ¼ 0:3, α2 ¼ 0:95. Notice the positive values of the Lyapunov exponent λ1 where the system is in chaotic motion.
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observed on the Fig. 6B that the Lyapunov exponent in the fourth di-
rection (related to the phase of the driven source) is approximately equal
to zero. As the amplitude of the external source increases, it can be
denoted that the dynamic of the circuit evolves from regular to chaotic
behavior, or vice versa through the splitting and reverse splitting of pe-
riods. To facilitate the reproduction of our results, complementary Mat-
Lab files are made available, also for didactic purpose. This include the
programming codes entitled Dynamic_Bifurcations_BJTL, containing the
files (Dynamic_BJTL.m, BJT_L.m, BIF_BJT_L.m, f1.m, f2.m and f3.m).
Similarly, for the calculation of the Lyapunov exponent, the Fortran90
code file entitled Lyapunov_Exponents_BJTL.f90 is provided.

These observations are furthermore sustained by the phase portraits
in the ðx; zÞ-phase space and the corresponding graphs of fast Fourier
transform (fft), for some values of e (Fig. 7). As e increases, phase por-
traits and fft-graphs change from quasi-sinusoidal oscillations to chaos
via period doubling sequences (period-1 —— period-2 ——— period-4
——— chaos), identical to similar sequences seeable on the bi-
furcations diagrams in Fig. 6A, for the same parameter's values. A perfect
match is observed on Fig. 6 between the bifurcation diagram and the
Lyapunov exponent, which is positive when the system has infinite pe-
riods in the phase space, a signature for chaotic motions.

To obtain more information on the complexity of this simple circuit,
6

we provide in Fig. 8, the two-dimensional projections ðy; xÞ and ðy; zÞ
-phase diagrams, a temporal representation, as well as the double-sided
Poincar�e section projected onto the plane x ¼ 0. The shapes of the
Poincar�e map section as well as the wide spectrum of infinite periodicity
are also some characteristics of chaotic motions.

5.2. Multistability and coexistence of attractors

The detection of hysteretic dynamic windows on bifurcation dia-
grams is a signature of the existence of multistability, when the param-
eters or initial conditions of a system vary. Such effect can be noted in our
case when the amplitude of the external source varies. Let us consider the
bifurcation diagrams in Fig. 6 and do a suitable zoom on the window of e
in the range 30 � e � 34. The result is depicted by Fig. 9. Here, it can be
observed that the long-term behavior of the system depends essentially
on the choice of the initial conditions, which leads to the interesting and
striking phenomenon of multistability marked by the coexistence of
attractors. To justify that the present circuit exhibits multiple coexisting
solutions, parallel branches bifurcations and the corresponding largest
Lyapunov exponents have been plotted (Fig. 9). This figure denotes the
superimposed graphical results where the diagram in magenta (resp.
blue) is plotted by increasing the values of e for the initial



Fig. 7. - phase portraits and the corresponding jxj- Fast Fourier Transform showing routes to chaos through the inverse splitting of periods in the circuit. This is
obtained by varying the normalized amplitude's parameter e: ðA1;A2Þ Period-1 for e ¼ 23, ðB1;B2Þ Period-2 for e ¼ 24, ðC1;C2Þ Period-4 for e ¼ 25:5, and
ðD1;D2Þ chaotic motion for e ¼ 27.
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statesX01 ¼ ð4:0; � 10:0; 0:0Þ (resp. X02 ¼ ð2:0; � 10:0;0:0Þ).
To confirm the previous results, it is shown in Fig. 10 (A1, A2, B1, B2)

the coexistence of different asymmetric periodic and chaotic attractors
obtained for the same set of parameters values and the corresponding
different initial conditions.

According to [41], it is important to identify the presence of such
attractors to avoid unexpected and potentially sudden transitions to un-
desirable dynamics that can be disastrous to some structures or systems
in engineering.
5.3. Influence of the parasitic capacitances with the frequency of driven
source

The present circuit can be used to better show and explain to scholars
7

differences in small signal equivalent circuits of a BJT at low respectively
at high frequencies. Driven by an external source, two different behaviors
of the semiconductor junctions in the BJT can be observed. At low fre-
quencies, the voltage-current relation of the whole circuit is limited to
one single ODE due to the presence of the coil:

L
diL
dt

¼ � ðvBE þ vBCÞ � RCiL þ Esinð2πftÞ: (16)

Thus, the required conditions for chaotic oscillations will not be
satisfied. At high frequencies (~MHz), the parasitic capacitances appear
due to the Miller effect at the BE and BC junctions of the active element
(BJT) according to Giacoletto model. Their presence completes the
condition for obtaining two more ODEs, so that the system can be
described by Eq. (1) which justifies the appearance of chaotic motions.



Fig. 8. Two dimensional projections of the asymmetric chaotic attractor (a)–(b) illustrating the complexity of the system in the plan ðy; xÞ and ðy; zÞ respectively;
ðxÞ-plan time series (c) and the corresponding double-sided Poincar�e section (d) in the plane x ¼ 0 for e ¼ 50.

Fig. 9. (a) Coexisting bifurcations' windows and (b) the
corresponding largest Lyapunov exponents ðλmaxÞ for the
normalized amplitude in the range 30 � e � 34. Two
different coexisting asymmetric solutions can be obtained
depending on the value of parameter e as well as the choice
of initial states. Magenta (resp. blue) diagrams correspond
to increasing the values of e starting from the different
initial states X01 ¼ ð4:0; � 10:0; 0:0Þ (resp. X02 ¼ ð2:0;
� 10:0; 0:0Þ). The remaining parameter values are αB ¼
0:0988, αC ¼ 0:3953, γ ¼ 4:9411, ε ¼ 4:80, μ ¼
3:140, α1 ¼ 0:3, α2 ¼ 0:95.
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8



Fig. 10. Coexistence of different asymmetric attractors: Chaotic attractor ðA1Þ and period-8 limit cycles ðA2Þ for e ¼ 31 with initial conditions ð4:00;�10; 0:00Þ and
ð2:00;�10:0;0:00Þ respectively; ðB1;B2Þ two different period-1 limit cycles for e ¼ 33:63 with initial conditions ð� 1:40; � 10:0; 0:00Þ,ð�5:00;�10:0; 0:00Þ
respectively. The rest of parameters are the same used to plot Fig. 6.
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Hence, the effects of parasitic capacitances are directly related to the
frequency of the external source.

Maintaining the parameter values to αB ¼ 0:0988, αC ¼ 0:3953,
γ ¼ 4:9411, ε ¼ 4:80, μ ¼ 3:140, α1 ¼ 0:3, α2 ¼ 0:95., a
gradual increase of the frequency (increase of μ) until the order of ~MHz
drives in resonance and the circuit becomes a potential seat of quasi-
periodic oscillations and chaotic motion, through the sequences of the
inverse splitting of periods (See Fig. 11).

A qualitative changing behavior (bifurcation) is also observed for a
critical value of μ between 1.358 and 1.359. The richness of the dynamic
Fig. 11. Bifurcation diagram showing the local maximum of the coordinate zðτÞ vers
values are defined in the text. Notice four different phase portraits with no oscillati
value at which a bifurcation occurs and chaotic motion forμ ¼ 2:95.
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of our circuit can be seen in another phenomenon which appears when
we monitor the bifurcation diagrams thanks to the ratio of the BE and the
BC parasitic capacitances (parameter “ε”). This leads to the sequence of
appearance and disappearance of periodic or chaotic orbits [42].
Period-doubling scenario including period-2 primary bubbles to chaotic
bubbles through period-4 bubbles is presented in Fig. 12 for the control
parameter in the range 2 � ε � 7 and a systematic variation of the
parameter e. For e ¼ 24, a period-2 bubble is observed and the branch
develops a stable period-4 bubble at e ¼ 25:2. As e is further
increased, more bubbles are created at e ¼ 25:4 until an infinitely
us the normalized frequency μ in the range1:0 � μ � 3:2. The rest of parameter
on for μ ¼ 0:001 (low frequency): μ ¼ 1:358 and μ ¼ 1:359 to show the critical



Fig. 12. Bifurcation diagrams showing local maximum of the coordinate zðτÞ versus the control parameter ε for remerging Feigenbaum trees (bubbling): (a) primary
bubble fore ¼ 24; (b) period-4 bubble fore ¼ 25:2; (c) chaotic bubbles for e ¼ 25:4 and (d) Full Feigenbaum remerging trees ate ¼ 27. The parameters
values are: αB ¼ 0:0988, αC ¼ 0:3953, γ ¼ 4:9411, μ ¼ 3:140, α1 ¼ 0:3, α2 ¼ 0:95and ε in the range 2 � ε � 7.

Fig. 13. First-return map of the maxima of the coordinate yðτÞ. This map is
indicative of one-dimensional maps with two critical points confirming the
occurrence of antimonotonicity phenomenon in our circuit. The parameters
values are the same as in Fig. 12.
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Feigenbaum trees finally occurs fore ¼ 27.
We provide the first return map of the coordinate y, this is

Mnþ1ðyÞ ¼ fðMnðyÞÞ in Fig. 13. This map is typical of one-dimensional
Fig. 14. Abstract black-box model of Fig. 1.
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map with two critical points P1 and P2 which support the occurrence of
antimonotonicity in our system [42, 43].

6. Conclusion

In this scientific contribution, we have presented an experimental
simple two-components circuit consisting of a coil and a BJT with short-
circuited BE electrodes, and adequate for didactic purpose. In case of a
black-box consideration of Fig. 1, the whole system could be reported as
Fig. 14 with following description of the functioning: when parameter
equal HF, then Eq. (1), else Eq. (16).

We could answer without abstraction and in details the ambiguous
‘WHY question’ following the change in the output with that of the
parameter. To achieve this, we used Fig. 2, to make the inner of the
system available for inspection, and therefore to prove that, although the
circuit is basically not an oscillator, it generates very complex signals at
resonant frequencies, under the effect of an external sinusoidal driving
force. Using an appropriately HF model transistor, the circuit could be
modeled mathematically. This model circuit can help scholars to expe-
rience the appearance of high frequency dependent virtual capacitances
at semiconductors' junctions. The analysis of the system has shown a
great influence of the effect of stray capacitances internal to the BJT, on
the operation of the proposed circuit. They can give rise to harmonic and
chaotic oscillations or destroy them appropriately according to the fre-
quency of oscillations. Despite the simplicity of the circuit, it exhibits the
unusual characteristics of antimonotonicity and coexisting attractors,
materialized by parallel bifurcations for a set of circuit parameters and
different initial conditions. By using two components that are simple and
familiar to scholars to expose various aspects of nonlinear dynamics
through the exploitation of classical nonlinear analysis tools such as the
bifurcation diagrams, the calculation of Lyapunov exponents, the sta-
bility analysis, phase space trajectories, Poincar�e map section and fre-
quency spectra, we hope to give a supplementary tool for the
introduction of nonlinear dynamics at lower academic level. The present
circuit is surely one of the simplest that can suitably work at HF and
present a very complex dynamic under the effect of parasitic
capacitances.
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