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Abstract 

Background: Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as 
we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. 
Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to 
assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to 
compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). 
We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimen-
sion to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess 
whether these arise from different processes in each of these groups.

Results: There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the 
mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F 
(2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than 
both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was 
found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differ-
ences between groups for the detrended fluctuation analysis or fractal dimension.

Conclusions: The underlying nature of mood variability is in keeping with that of a chaotic system, which means 
that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex 
modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window 
for episode prediction in BD will be inevitably short.
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Background
Bipolar disorder (BD) is a mood disorder character-
ized by (hypo)manic, mixed, or depressive episodes, 
interspersed with low amplitude mood fluctuations 
or, at times, with subsyndromal mood symptoms. 

Understanding how mood is regulated is important in 
BD, as we are only starting to conceptualize it as a more 
complex disorder than simply one of recurring manic and 
depressive episodes.

Mood regulation is a complex and poorly understood 
process, which can be conceived as a “buffer” system 
that allows flexible responses to changing conditions 
(Ortiz and Alda 2018). All complex systems, including 
mood, are continuously subject to stochastic variations 
in external conditions. From a dynamic point of view, 
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the properties that enable the system to adapt to these 
stochastic variations are considered “complex”. These 
properties include: (i) nonlinearity, i.e., systems do not 
respond in a way that is proportional to the amount they 
are stimulated; (ii) the lack of a single or characteristic 
scale, i.e., fractal organization; and (iii) emergent proper-
ties, i.e., properties that emerge from the whole but were 
not present in the parts. Nonlinearity, however, does not 
imply a lack of underlying structure; on the contrary, 
nonlinear systems have organized, discoverable princi-
ples. The challenge is that these principles are difficult to 
uncover by conventional analyses and require nonlinear 
methods for their study.

Nonlinear methods offer new tools to quantify, model, 
and predict the behavior of complex systems (Ehlers 
1995; Pincus 2001). Time-series analysis is a type of non-
linear method employed to study a collection of obser-
vations made sequentially in time (Chatfield 2016). Its 
special feature is that successive observations are not 
independent, and that the analysis must take into account 
the time order of the observations. Using time-series 
analysis, we have recently described higher regularity—
a “pathologically stable” or organized mood in patients 
with BD (Ortiz et  al. 2015) and their unaffected first-
degree relatives (FDR) (Ortiz et al. 2019). Other authors 
have also described that mood in patients with BD is a 
process that becomes more organized over a longer 
time scale, as opposed to processes in healthy controls 
(Gottschalk et al. 1995; Bayani et al. 2017; Bonsall et al. 
2012).

Although this increased degree of organization of 
mood in BD may seem paradoxical, these data fit an 
increasingly apparent pattern in Biology, where aging 
(Goldberger et  al. 2002a, b), cardiovascular  diseases 
(Jelinek et  al. 2013; Olde Rikkert et  al. 2016; Peng et  al. 
1995a), metabolic diseases (Wu et  al. 2013; Gomolka 
et al. 2018), and psychiatric diseases (Cowdry et al. 1991; 
Golier et  al. 2001; Katerndahl et  al. 2007; Pincus et  al. 
2008) are marked by increasing degrees of organization. 
In other words, these systems are less flexible and able to 
cope with the demands of a constantly changing environ-
ment. These observations have led to hypothesize that 
mood variability might be better described in terms of 
chaotic dynamics (Bonsall et al. 2012; Bonsall et al. 2015; 
Huber et al. 1999, 2000).

In this paper, we aim to further characterize the non-
linear dynamics of mood and energy regulation in time-
series data from 90 participants (30 healthy controls 
(HC), 30 euthymic  patients with BD, and 30 unaffected 
FDR) using nonlinear methods. While our research 
shares a foundation with our previous work using paper-
based time-series analysis to compare mood regulation 
in HC, unaffected FDR, and euthymic patients with BD, 

in this study we analyzed mood and energy series using 
three nonlinear indicators (Lyapunov exponent, detend-
red fluctuation analysis, and fractal dimension), with the 
aim of understanding whether mood fluctuations stem 
from different processes in each of these groups.

Material and methods
Participant recruitment
As per our previous papers (Ortiz et  al. 2015, 2019), 
we obtained data from 90 participants: 30 HC, 30 
euthymic  patients with BD, and 30 unaffected FDR. 
Euthymia was operationalized as at least 3  months of a 
Young Mania Rating Scale (YMRS) score ≤ 5 (Young et al. 
1978) and a Hamilton Depression Rating Scale (HDRS) 
score ≤ 7 (Hamilton 1960). All participants were inter-
viewed by the same investigator (AO), using the Sched-
ule for Affective Disorders and Schizophrenia-Lifetime 
version (SADS-L) (Endicott and Spitzer 1978); diagnosis 
was confirmed in a blind fashion in consensus meetings 
with the research team. The investigation was carried out 
in accordance with the latest version of the Declaration 
of Helsinki. The study design was approved by the local 
ethical committee and written informed consent of par-
ticipants was obtained after the nature of the procedures 
had been fully explained.

Measurements
We used paper-based visual analog scales (VAS) to 
measure mood, energy,  anxiety, and sleep. The scale 
ranges from ‘1’ to ‘9’, with ‘5’ being ‘their usual’. Partici-
pants provided measurements on these variables over a 
three-month period, twice each day. The first rating was 
completed 1 h after waking up, and the second rating 1 h 
before bedtime. For incomplete data in the VAS scale 
(2 days in a row), we used interpolation methods; if more 
than 2  days were missing consecutively (usually at the 
end of the study), the rest of the data were removed from 
the calculations.

Analytical consideration for nonlinear analyses

1. Time-series analyses

 The analyses performed relies on three assumptions:

 (i) The character of the collected data: the data-
points Si (for i = {1, 2,9}), represent an interval scale. 
This means that we consider the data not only to be 
a totally ordered set {Si} (Si < Si+1 for all measured 
quantities) but also that the differences between i and 
j (i ≠ j) do have a specific meaning. This is a strong 
assumption, given that the underlying process(es) we 
try to shed light on need not be proportional to the 
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measurement scale and most likely are logarithmic, 
as seen in other human phenomena (Varshney and 
Sun 2013).

 (ii) The validity of a model to which we try to fit the 
data. The collected data are noisy, and the resolution 
in both the domain and range of the time series is 
low. We were cautious not to overfit the data by using 
simple models (i.e., first-order departure from a com-
pletely random process (white noise) or the autore-
gressive process AR (Ortiz and Alda 2018).

 (iii) Finally, given the character of the data, we can-
not verify the requirement of strict stationarity, but 
we may relax this notion and ask the time series to 
satisfy weak stationarity. That is, we require only the 
first two moments (mean and variance) to be time 
invariant. The requirement of at least weak stationar-
ity is crucial for time-series analysis. For a complete 
description of the analyses, please see (Ortiz et  al. 
2015).

 In summary, we assumed that the difference between 
intervals in the scale has a specific meaning and that 
the time series are weak non-stationary. We were 
cautious not to overfit the data by using simple mod-
els.

2. Lyapunov exponent (LE)
 LE is a quantitative measurement of a parameter’s 

sensitive dependence on initial conditions, which 
provides a quantitative indication of the chaotic level 
of a system. In medicine, LE has been used to analyze 
heart rate variability (Hu et al. 2009 and EEG signals 
(Hu et al. 2009; Hu et al. 2010). LE defines the average 
rate of divergence or convergence of two neighbor-
ing trajectories in the state-space (Nayak et al. 2018). 
Positive LE values indicate that the phase space tra-
jectories are diverging (i.e., the closely located points 
in the initial state are quickly separating from each 
other in the i direction), and the system is losing 
its predictability, exhibiting chaotic behavior. Con-
versely, a negative LE represents the average rate 
of the convergence of the phase space trajectories. 
Additional file 1 describes specific analytical consid-
erations for LE.

3. Detendred fluctuation analysis (DFA)
 DFA is used to measure long range dependence in a 

time-series (Peng et  al.  1994, 1995b). A parameter 
referred as “Hurst exponent” (H) describes the cor-
relation properties of the dataset; it quantifies the 
relative tendency of a time series cluster in a direc-
tion over time. A value H in the range 0.5–1, indi-
cates a time series with positive autocorrelation, 

which means that a high value in the series will prob-
ably be followed by another high value. A value in the 
range of 0–0.5 indicates a time-series with long-term 
switching between high and low values in adjacent 
pairs, which means that a single high value will be 
probably followed by a low value and that the value 
after that will tend to be high, with this tendency to 
switch between values lasting a long time into the 
future. Additional file  1 describes specific analytical 
considerations for DFA.

4. Fractal dimension (D)
 D is a ratio providing a statistical index of complexity, 

and a highly sensitive measure for detecting hidden 
information contained in physiological time series 
(Raghavendra and Dutt 2010). There are many meth-
ods used to calculate D, but the most accurate esti-
mate is achieved by Higuchi’s method. Higuchi’s frac-
tal dimension originates from chaos theory and for 
almost 30 years it has been successfully applied as a 
complexity measure of artificial or physiological sig-
nals, including EEG and EKG (Gomolka et al. 2018; 
Skinner et al. 1992; Kesic and Spasic 2016; Ma et al. 
2018). Values associated with natural phenomena are 
estimated to be between 1 and 2 (Higuchi 1988). A 
value of 1 corresponds to a regular time-series; while 
for Gaussian-type noise, it might attain higher values; 
i.e., 1.5 for Brownian, 1.8 for pink noise, and 2.0 for 
white noise (Gomolka et  al. 2018). For information 
on the calculation of D, please refer to Additional 
file 1.

Statistical analyses
After all nonlinear parameters had been calculated, we 
conducted analyses of variance for each of them (LE, 
DFA, and D) to determine whether there were any differ-
ences between the three groups in mood or energy series. 
All analyses were performed using MATLAB ®.

Results
Demographic and clinical characteristics of the sample
Ninety participants were included in the analyses: 30 HC, 
30 euthymic BD and 30 FDR. In the BD subgroup, 76.6% 
were BD type I and all patients were on long-term phar-
macotherapy (see Table 1). With proportions of partici-
pants completing >84 days of consecutive entries of 96% 
in the HC group, 93.3% in the BD group, and 86.6% in the 
FDR groups, we analyzed 14,980 datapoints (5200 in the 
HC group, 4970 in the BD group and 4810 in the FDR 
group). Please refer to our original paper for the com-
plete description of the sample and distribution of indi-
vidual measures (Ortiz et al. 2019).
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Lyapunov exponent (LE)
Table  2 describes LE for all groups, for both mood and 
energy series. For the mood series, the largest LE was 
found in HC (1.84), compared to BD (1.63) and FDR 
(1.71). An ANOVA yielded a statistically significant dif-
ference between groups (F (2, 87) = 8.42, p < 0.005), with 
a post-hoc Tukey test showing that LE was significantly 
higher in HC than in the BD (p = 0.003) and FDR groups 
(p = 0.03). Similarly, for the energy series, HC showed 
a LE of 1.85, compared to 1.76 for BD and 1.61 for FDR 
(F (2, 87) = 11.02; p < 0.005), with a post-hoc Tukey 

test showing that LE was significantly higher in HC 
group compared to FDR group (p < 0.001), but not the BD 
group (p = 0.1).

Detrended fluctuation analysis (DFA)
Table 2 describes the Hurst (H) exponent for all groups, 
for both mood and energy series. There were no statis-
tically significant differences between groups for either 
mood or energy series (p > 0.5).

Fractal dimension (D)
Table  2 describes D for all groups, for both mood and 
energy series. There were no statistically significant dif-
ferences between groups for either mood or energy series 
(p > 0.05).

Discussion
The underlying nature of mood variability is in keeping 
with that of a chaotic system, rather than noise, which 
means that fluctuations are generated by deterministic 
nonlinear process(es) in HC, BD, and FDR participants. 
The three different techniques used in these analyses 
have all demonstrated that chaotic behavior can originate 
from deterministic systems that have simple mathemati-
cal descriptions (Klonowski 2007).

Our main findings include a positive, short-term, auto-
correlation in the time-series for mood and energy series 
in all groups; with a more chaotic pattern in the time-
series for mood in HC, than in BD or FDR participants, 
which is in keeping with our previous results.

The limitations of this analysis include using one-
dimensional time-series, as these may not not sufficient 
to reconstruct the complex dynamics of mood regula-
tion. However, despite the ‘low resolution’ of the visual 
analog scale employed, this is a measure that has been 
validated in mood disorders and it meets the assump-
tions needed to validate the analysis employed. More-
over, using nonlinear methods allowed us to detect 
hidden information in physiological time-series, which 

Table 1 Pharmacotherapy (patients with BD, N = 30)

MAOI: monoamine oxidase inhibitor; SNRI: serotonin–norepinephrine reuptake 
inhibitor; SSRI: selective serotonin reuptake inhibitor

Medication % of patients

Mood stabilizers 90

 Lithium carbonate 50

 Lamotrigine 20

 Valproic acid 13.3

 Carbamazepine 6.7

 None 10

Combination treatment with antidepressants 30

 SSRI 3.3

 SNRI 3.3

 MAOI 13.3

 Other 10

 None 70

Combination treatment with antipsychotics 50

 First-generation 6.7

 Second-generation 43.3

 None 50

Other treatments 43.2

 Sleep-inductors/benzodiazepines 16.6

 Thyroid supplementation 20

 Tryptophan 3.3

 Atomoxetine 3.3

 None 56.8

Table 2 Nonlinear coefficients for mood and energy series

LE: Lyapunov exponent; DFA: Detrended fluctuation analysis; HC: Healthy controls; BD: bipolar disorder; FDR: Unaffected first-degree relatives

Coefficient Series HC
(mean ± SD)

BD
(mean ± SD)

FDR
(mean ± SD)

Statistic

LE Mood 1.84 1.63 1.71 F(2, 87) = 8.42; p < 0.005

Energy 1.85 1.76 1.61 F(2, 87) = 11.02; p < 0.005

DFA Mood 0.53 ± 0.03 0.50 ± 0.01 0.52 ± 0.03 F(2, 87) = 0.14, p = 0.86

Energy 0.54 ± 0.04 0.54 ± 0.04 0.53 ± 0.03 F(2, 87) = 0.02; p = 0.97

Fractal Dimension Mood 1.54 ± 0.11 1.51 ± 0.05 1.52 ± 0.04 F(2, 87) = 1.48, p = 0.2

Energy 1.42 ± 0.12 1.41 ± 0.05 1.41 ± 0.06 F(2, 87) = 0.18, p = 0.8
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supports conceptualizing mood variability as an inher-
ent nonlinear process.

LE showed differences between the three groups: for 
both mood and energy series, LE was higher in HC than 
in BD and FDR participants, which is indicative of a more 
chaotic pattern. As mentioned above, LE is a nonlinear 
parameter that quantifies the sensitivity to initial con-
ditions. The existence of a positive exponent for almost 
all initial conditions in a bounded dynamic system is a 
widely used definition of deterministic chaos (Zhong 
et al. 2007; Gao et al. 2007). Positive values (as shown in 
all groups) mean that two trajectories starting very close 
together will rapidly diverge from each other, and there-
after have totally different futures. The practical implica-
tion is that long-term prediction becomes impossible in 
such  a system, because small uncertainties are quickly 
amplified. This is relevant when it comes to calculating 
the window of episode prediction: a positive LE indicates 
the futility of trying to predict the detailed long-term 
behavior of a chaotic system. However, short-term pre-
diction may be feasible in BD, as: (i) mood can be consid-
ered as a short-term memory process (Ortiz et al. 2015); 
(ii) our previous studies using machine-learning mod-
els for episode prediction have shown the last 4 days as 
preferred over other windows of prediction (Ortiz et al. 
2018).

For DFA, our results show that all three groups have 
H values close to 0.5, which is indicative of a positive 
autocorrelation in their time series; i.e., a high value 
in the series will probably be followed by another high 
value. This result is consistent with our prior finding of 
an ARIMA (1,1,0) model, that conceptualizes mood as a 
short-term memory process (Ortiz et al. 2015) and with 
prior studies that also described a lag of 1 day in mood 
fluctuations (Gottschalk et  al. 1995; Werf et  al. 2006). 
This process could explain the daily fluctuations (per-
turbations or “micro-recoveries”) in mood seen in all 
groups. This behavior will likely be different in untreated 
patients, patients with mood symptoms but not a primary 
mood disorder (e.g., borderline personality disorder) or 
in patients with BD experiencing an acute episode.

Lastly, in the fractal dimension analysis, all three 
groups have D values close to 1.5, which is in keeping 
with the values in time-series associated with natural 
phenomena. As a highly sensitive measure for detect-
ing hidden information contained in physiological time 
series, our results show, as expected, an underlying com-
plexity in mood variability in the three groups.

Overall, these findings suggest that a more chaotic 
pattern is present in  healthy systems; whereas compro-
mised systems show a more rigid pattern, not as flexible 
or resilient to adjust to the demands of a changing envi-
ronment. Resilience is defined as the capacity to tolerate 

disturbance without collapsing (Clements and Ozgul 
2018). Efforts to understand resilience in humans are rel-
atively advanced in Geriatrics (Olde Rikkert et  al. 2016; 
Lagro et al. 2012) and Cardiology (Quail et al. 2015). The 
breakdown of resilience proposed only recently as a char-
acteristic of mood disorders (Ortiz and Alda 2018; Golier 
et al. 2001; Cochran et al. 2018; Scheffer et al. 2018; Kos-
sakowski et al. 2019; Leemput et al. 2014). As resilience 
approaches zero, a critical transition can be triggered 
even by a minor event (Scheffer et al. 2001, 2009; Nelson 
et al. 2017; Nes et al. 2016; O’Regan and Burton 2018). In 
other words, slower recovery from small perturbations is 
an indicator that the system is in a fragile state and that a 
tipping point might be near (Nelson et al. 2017).

Our findings have several clinical implications. First, 
it is important to recognize that mood variability is an 
important characteristic of healthy systems, and we can 
inform clinicians and patients about the importance of 
these ‘low amplitude’ mood fluctuations. Patients do not 
need to feel ‘flat’ to be stable. Second, we should recog-
nize the role of other physiological factors, such as sleep, 
in increasing the ability of the system to recover from 
small perturbations. Cognitive strategies could also be 
important tools to help decrease co-morbid anxiety or 
substance use disorders, which can easily be “the tipping 
point” for a system that is already fragile. By increasing 
the system’s resilience, it would be more prone to small, 
but not critical transitions (e.g., minor life events would 
lead to adjustment disorder symptoms, rather than a 
depressive episode).

Other future clinical applications  from our findings 
include the use of time-series analysis to assess mood 
variability in difficult diagnostic cases (e.g.,  borderline 
personality disorder versus bipolar disorder). Finally, 
nonlinear techniques  can be used to model clinical tra-
jectories and forecast the onset of depressive, manic, or 
mixed episodes, keeping in mind that these will be neces-
sarily short-term forecasts.

Conclusions
Mood fluctuations are generated by deterministic cha-
otic process(es) in healthy controls, patients with BD 
and their unaffected first-degree relatives. Mood regula-
tion is a short-term memory process, which implies that 
it is autocorrelated in the short term (e.g., mood today 
will be correlated with mood tomorrow, but not farther 
than that). This has clinical implications when predict-
ing mood episodes in BD: due to the underlying nature 
of mood fluctuations, only short-term forecasts are 
possible.

With the uptake in passive sensing and smartphone 
data to improve clinical care in BD (Ortiz et  al. 2021), 
including predicting episodes of illness, we need to be 
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aware that mood is regulated by  a system sensitive to 
initial conditions. This means that two trajectories start-
ing very close together will rapidly diverge from each 
other, and thereafter have completely different futures. 
The practical implication is that long-term prediction 
becomes impossible in a system like this, in which small 
uncertainties are quickly amplified. In other words, it is 
futile trying to predict the detailed long-term behavior 
of a chaotic system. Instead, we should focus on demon-
strating  the feasibility and clinical impact of short-term 
prediction in BD.

In closing, living systems are complex and operate far 
from equilibrium. Mood disorders, like any other clinical 
disorder, should be conceptualized as the result of a loss 
of complexity, rather than the loss of regularity.
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