
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14495  | https://doi.org/10.1038/s41598-021-93238-0

www.nature.com/scientificreports

Inference of malaria reproduction 
numbers in three elimination 
settings by combining temporal 
data and distance metrics
Isobel Routledge1*, H. Juliette T. Unwin2 & Samir Bhatt2

Individual-level geographic information about malaria cases, such as the GPS coordinates of residence 
or health facility, is often collected as part of surveillance in near-elimination settings, but could be 
more effectively utilised to infer transmission dynamics, in conjunction with additional information 
such as symptom onset time and genetic distance. However, in the absence of data about the flow 
of parasites between populations, the spatial scale of malaria transmission is often not clear. As a 
result, it is important to understand the impact of varying assumptions about the spatial scale of 
transmission on key metrics of malaria transmission, such as reproduction numbers. We developed a 
method which allows the flexible integration of distance metrics (such as Euclidian distance, genetic 
distance or accessibility matrices) with temporal information into a single inference framework to infer 
malaria reproduction numbers. Twelve scenarios were defined, representing different assumptions 
about the likelihood of transmission occurring over different geographic distances and likelihood of 
missing infections (as well as high and low amounts of uncertainty in this estimate). These scenarios 
were applied to four individual level datasets from malaria eliminating contexts to estimate individual 
reproduction numbers and how they varied over space and time. Model comparison suggested that 
including spatial information improved models as measured by second order AIC (ΔAICc), compared 
to time only results. Across scenarios and across datasets, including spatial information tended to 
increase the seasonality of temporal patterns in reproduction numbers and reduced noise in the 
temporal distribution of reproduction numbers. The best performing parameterisations assumed 
long-range transmission (> 200 km) was possible. Our approach is flexible and provides the potential to 
incorporate other sources of information which can be converted into distance or adjacency matrices 
such as travel times or molecular markers.

Individual-level disease surveillance data, collected routinely and as part of outbreak response, capture a wealth 
of information which could improve measurements of transmission and its spatiotemporal variation, in turn 
informing the design of epidemiological  interventions1. Geo-located health facility or residence data are increas-
ingly collected as part of surveillance for diseases such as  malaria2, but could be more effectively utilised to infer 
transmission dynamics, in conjunction with additional information such as symptom onset time and genetic 
 distance3. However, challenges exist in making use of these diverse data sources and leveraging the information 
they contain within a single inference framework. This is particularly true of endemic diseases such as malaria, 
where individual level data are increasingly collected in moderate-low transmission or elimination settings, but 
unlike many epidemic viral  diseases4–8, the development of approaches to analyse such data has been relatively 
 recent3,9–11.

Malaria transmission is shaped by processes occurring on a wide range of spatial scales. In the absence of 
human mobility, transmission is limited to the range of the mosquito vector, however human movement, rang-
ing from regular commutes to seasonal or one-off migration events across longer distances can import parasites 
into new areas provided competent vectors are  present12–15. As a result, the spatial location of individual cases 
can provide useful information in inferring transmission dynamics when combined with additional forms of 
information, such as temporal and molecular data. Furthermore, in elimination settings malaria transmission is 
thought to take on epidemic  dynamics16, meaning the importance of space and highly dynamic factors such as 
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human movement patterns becomes more relevant. However, in the absence of data about the flow of parasites 
between populations, the spatial scale of malaria transmission (here meaning the distance between locations 
where one person was infected or detected and the locations where another person received an infective bite) 
is often not clear. As a result, it is important to understand the impact of varying assumptions about the spatial 
scale of transmission on key metrics of malaria transmission, such as reproduction numbers. In many contexts, 
not all cases may be observed within a surveillance system. Missing cases further complicate inference, as without 
information about how likely cases are to be missing, ambiguity can exist as to whether long-range transmission 
occurred or whether cases were infected by a closer, unobserved source of infection.

To explore the impact of including distance measures and assumptions about their relationship to transmis-
sion likelihood, we developed a flexible framework to incorporate pairwise distances (for example Euclidian 
distances, travel times, or any quantifiable distance matrix) into our previously published inference  framework11 
to estimate individual reproduction numbers (Rc or case reproduction numbers) and explore the impact of vary-
ing assumptions about the likelihood of a case having a source of infection not observed in the dataset and the 
spatial kernel (the function describing the relationship between distance metric and likelihood of transmission 
occurring) on results, as well as determining the feasibility of inferring the distance kernel and amount of miss-
ing cases from surveillance data. Briefly, the model builds upon previous diffusion network  approaches10,11,17–20 
which estimate the likelihood of transmission networks using known or inferred times of infection, by also 
allowing additional distance information to inform inference. They provide a flexible framework to integrate 
multiple data types, and have been evaluated using real and simulated transmission processes at multiple scales 
and under varying network  structures21.

We defined twelve scenarios representing different assumptions about the likelihood of transmission occur-
ring over different geographic distances and likelihood of missing infections (as well as high and low amounts 
of uncertainty in this estimate). These scenarios were applied to four individual level datasets from malaria 
eliminating contexts to estimate individual reproduction numbers and how they varied over space and time. We 
used two simple spatial kernels describing the relationship between Euclidian distance between residences and 
likelihood of transmission occurring, to explore various assumptions about the relationship between locations of 
cases and likelihood of transmission occurring between them, as well as the impact of unobserved cases. We find 
the best performing models by second order AIC (ΔAICc)22 have weakly informative priors on the likelihood of 
unobserved sources of infection and assume that cases can be linked by transmission across larger spatial scales 
(over 200 km). However, we find there can be issues of parameter identifiability, which become increasingly 
relevant when there are not enough data available about key parameters in the model.

Results
We developed a framework to integrate distance information into a previously published inference  framework10,11 
which uses the time of symptom onset to infer reproduction numbers and their spatiotemporal variation. We 
then tested the impact of varying assumptions about the relationship between location of cases and the likelihood 
of transmission as well as the impact of unobserved infection as modelled by competing edges, ε, considering 
twelve scenarios (Table 1), and applying them to four line-list datasets from China (P. vivax and P. falciparum, 
analysed separately), El Salvador (P. vivax) and Eswatini (P. falciparum) using Exponential and Gaussian spatial 
kernels, described in the methods section of this paper.

Results of model comparison by ΔAICc across different scenarios. When ΔAICc scores were used 
to compare model results, all models which included distance had lower (and therefore better) ΔAICc scores 
than models which included only time (Table 2 and Supplementary Table 1). In addition, exponential kernels 
consistently outperformed equivalent scenarios using Gaussian kernels (Supplementary Table 1). Two scenarios 
consistently performed best as measured by ΔAICc, namely Scenario 9 (El Salvador and Eswatini) and Scenario 
11 (China, P. vivax and P. falciparum). Both scenarios assume longer range human movement is likely and 
impose a smaller penalty on cases occurring larger distances. These scenarios also allow variation in epsilon edge 
values and use a very weakly informative prior on epsilon edges, but with a different mean (0.1 for Scenario 9, 
0.001 for Scenario 11). These results also return smaller mean Rc results than time-only versions of the model 
(Figs. 1, 2, 3, 4).

Rc estimates under different scenarios. Across all datasets, large differences in Rc estimates were found 
depending on boths ε and β parameters. When β is higher, the assumption is that there is little movement of 
parasites within the country and therefore cases with residential addresses which are far away are unlikely to 
have infected each other. When this is the case and we assume there are unobserved sources of infection (either 
through a strongly informative prior on ε with mean 0.1, or an uninformative prior with a lower mean), then Rc 
values are very low. However if we assume there are little or no unobserved sources of infection, but continue to 
make restrictive assumptions about space, then most Rc values are very low, but in the localities where there are 
cases, we estimate much higher Rc values as there are no other possible infectors within a reasonable time and/
or spatial area. This is illustrated in Figs. 1, 2, 3 and 4.

When looking at the spatial patterns of Rc estimates under different scenarios several trends are seen across 
all datasets (Figs. 5, 6, 7, 8). Scenario 4 is particularly interesting to note because this scenario considers the most 
restrictive assumptions, both about space and unobserved sources of infection. Across datasets, Scenario 4 results 
in increased focality and higher Rcs within these foci, but in comparison lower Rcs in other areas. All of the best 
scenarios as measured by ΔAICc resulted in small Rc estimates, but where comparably larger Rc estimates were 
estimated, they were in localities identified as foci.
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For the line-list dataset from El Salvador, within the range of values explored in the sensitivity analysis 
(Table 3), regardless of how informative the prior was for either β, the distance shaping function, or for ε, the 
epsilon edge, β, was always estimated as whatever the mean of the prior was set as between the prior mean values 
of 1e−4 and 1e−2 (Fig. 9). However, when the mean value was set at 0.1, the estimated parameter converged at 
a slightly lower value of 0.075, with the exception of when the prior for ε was very low (all priors with mean ε of 
1e−10 and also the more informative priors with mean 1e−5, when standard deviation was 1e−4). Rc is strongly 
shaped by the value of ε, with higher values of ε returning lower values of Rc, however Rc also declined with 
increasing values of β.

Very similar patterns to El Salvador were observed in the sensitivity analysis of the Eswatini dataset. Again, 
regardless of how informative the prior was for either ε or β, β was always estimated as whatever the mean of the 
prior was set as between the prior mean values of 1e−4 and 1e−2 (Fig. 10). However, when the mean value was 
set at 0.1, the estimated parameter converged at a slightly lower value of 0.075, with the exception of when the 
prior for ε was very low (all priors with mean ε of 1e−10 and also the more informative priors with mean 1e−5, 
when standard deviation was 1e−4). Unlike El Salvador, for Eswatini, at higher values of ε (0.5 and 0.1) there are 
stark declines in Rc with increasing β.

For both P. vivax and P. falciparum datasets from China, within the parameter range explored in the sensi-
tivity analysis, regardless of how informative the prior was for either β, the distance shaping function, or ε, the 
epsilon edge, β was always estimated as whatever the mean of the prior was set as (Figs. 11, 12), suggesting a 
lack of identifiability or information within the data. When estimating Rc, and interesting interacting effect of ε 
(missing or unobserved infections) and β (distance) was seen. When β is low, although lower values of ε produce 
slightly higher mean Rc values, the difference in Rc estimates with varying prior values for ε is much smaller 

Table 1.  Illustrating the different scenarios and corresponding parameter values tested in scenario analysis.

Scenario description Scenario Beta (fixed) Epsilon (prior)

Human movement unlikely, most movement under 10 km
1

Gaussian = 0.005 Mean = 0.1

Missing cases more likely (but very uncertain) Exponential = 0.1 SD = 1

Human movement unlikely, most movement under 10 km
2

Gaussian = 0.005 Mean = 0.1

Missing cases more likely (confident) Exponential = 0.1 SD = 0.001

Human movement unlikely, most movement under 10 km
3

Gaussian = 0.005 Mean = 0.001

Missing cases less likely (but very uncertain) Exponential = 0.1 SD = 1

Human movement unlikely, most movement under 10 km
4

Gaussian = 0.005 Mean = 0.001

Missing cases less likely (confident) Exponential = 0.1 SD = 0.001

Moderate human movement, most movement under 50 km
5

Gaussian = 0.001 Mean = 0.1

Missing cases more likely (but very uncertain) Exponential = 0.02 SD = 1

Moderate human movement, most movement under 50 km
6

Gaussian = 0.001 Mean = 0.1

Missing cases more likely (confident) Exponential = 0.02 SD = 0.001

Moderate human movement, most movement under 50 km
7

Gaussian = 0.001 Mean = 0.001

Missing cases less likely (but very uncertain) Exponential = 0.02 SD = 1

Moderate human movement, most movement under 50 km
8

Gaussian = 0.001 Mean = 0.001

Missing cases less likely (confident) Exponential = 0.02 SD = 0.001

Longer range human movement likely
9

Gaussian = 0.0001 Mean = 0.1

Missing cases more likely (but very uncertain) Exponential = 0.01 SD = 1

Longer range human movement likely
10

Gaussian = 0.0001 Mean = 0.1

Missing cases more likely (confident) Exponential = 0.01 SD = 0.001

Longer range human movement likely
11

Gaussian = 0.0001 Mean = 0.001

Missing cases less likely (but very uncertain) Exponential = 0.01 SD = 1

Longer range human movement likely
12

Gaussian = 0.0001 Mean = 0.001

Missing cases less likely (certain) Exponential = 0.01 SD = 0.001

Table 2.  Summary of ΔAICc results.

Dataset Best model(s), by ΔAICc Akaike weight

Swaziland (Eswatini) Scenario 9, Exponential 1

El Salvador
Scenario 9, Exponential 0.621540909785805

Scenario 11, Exponential 0.37845909

China P. vivax Scenario 11, Exponential 1

China P. falciparum Scenario 11, Exponential 1
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than when β is a higher value. In other words, when the prior for ε is low, 1e−10, Rc estimates do not vary as β 
changes, however when the prior for ε is much higher, then increasing β from 1e−4 to 0.1 reduces Rc estimates 
(from 0.21 to 0.01 for P. vivax).

Discussion
We developed an approach to estimate malaria transmission network properties, which allows the flexible integra-
tion of distance metrics, such as Euclidian distances or travel times, with temporal information within a single 
inference framework. Twelve scenarios and corresponding parameter values were defined which represented (a) 
varying likelihoods of transmission over different distances and (b) varying likelihoods of missing infections (as 
well as high and low confidence in this estimate). These scenarios were applied to four individual level datasets 
from malaria eliminating contexts and using two different spatial kernels. The estimated Rc values, their spatial 
and temporal distribution and the ΔAICc/Akaike weights for each model were compared alongside a time only 
model. These results suggest that including spatial information improved models as measured by AIC, compared 
to time only results. The prior values for both the distance function and epsilon value have very strong impacts 
on the estimated Rc, although relative temporal trends tend to stay consistent.

Approaches such as the one presented here can be useful tools for making the most of available surveillance 
data in near elimination and elimination settings. As more countries collect detailed individual level data, and 
reach lower case counts which make measures such as parasite prevalence less informative, there is more poten-
tial for approaches which leverage the detailed information contained in individual level data. Reproduction 
numbers can be used to measure the impact of elimination interventions, seasonality and identify areas of higher 
receptivity to transmission, if importation were to occur there, and when incorporated into geostatistical models 
with spatially resolved covariates can be used to create maps of  receptivity9–11.

For all datasets considered, all model versions which used geographic information had lower ΔAICc values 
than the time only model. Based on the Akaike Weights and ΔAICc values for each model, large differences in 
ΔAICc were seen between different scenarios. Scenarios 9 and 11 produced the lowest ΔAICc values. These were 
parameterisations which penalised long range transmission the least where and the prior on epsilon edges was 
only weakly informative. These parameterisations also return much lower reproduction numbers than using 
time alone.

Exponential Kernels consistently outperformed Gaussian kernels as measured by ΔAICc. Although classic 
models of dispersion are as a diffusion process with Gaussian displacement, more leptokurtic or “fatter-tailed” 

Figure 1.  Rc estimates from El Salvador line list based on using the time-only scenario and Scenarios 1–12 with 
an exponential kernel.
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probability distributions, where more of the probability density is concentrated in the tails of the function, are 
often found to better represent empirical dispersal patterns than traditional Gaussian  kernels23. This “fatter-tail” 
in the exponential can be seen in Figs. 13, 14 and 15.

However, there are many limitations to using ΔAICc in model comparison, particularly when estimation of 
some of the parameters are being carried out within a Bayesian context. We do not fix αij nor do we fix epsilon, 
but we do define priors and maximise the posterior rather than the log likelihood. Therefore, we are comparing 
negative log likelihoods from a maximised posterior, meaning we are not considering the information included 
in the prior. In addition, many αij values shrink to zero, however are still counted as parameters in the AIC esti-
mation. Therefore, there is no recognition of which versions of the model produce fewer non-zero parameters. 
Whilst this difference in AIC is interesting to note, we would argue the broader trends in how Rc varies over 
time and space with different assumptions about both the spatial kernel and the number of unobserved sources 
of infection are more important to consider.

An interesting pattern which was noted across scenarios and across datasets was how including spatial 
information in the likelihood tended to increase the seasonality of temporal patterns in reproduction numbers 
and reduced noise in the temporal distribution of reproduction numbers. This could be suggestive of importa-
tion events leading to localised infections. Scenario 4 is also an interesting set of assumptions to consider as it 
assumes cases generally only infect cases near them and that unobserved cases of infection are unlikely. Under 
this assumption foci of infection are very clear and clear “sources” of infection.

The results of the sensitivity analysis reveal interesting differences between the different datasets and contexts 
contained in this dataset. For both El Salvador and Eswatini, which are both small countries (El Salvador has 
an area of 21,041  km2 and Eswatini 17,364  km2), at higher mean priors for β, the model converged on an esti-
mate for β which was informed by the data. This was not the case for the dataset from China, which represents 
a much larger area geographically and where dynamics are likely to be strongly driven by importation. Given 
that for the kernels we used in this analysis, increasing values of β lead to more restrictive assumptions about 
the scale of transmission, perhaps this difference is due to the different spatial scales at which the analysis was 
being carried out.

There are several limitations to this approach and analysis. Firstly, there is a potential lack of identifiability 
between ε, the epsilon edge, and β, the shaping parameter of the spatial kernel. To give an intuitive example, say 
two cases occurred 50 km from each other in space within a reasonable timeframe of symptom onset times for 
transmission to have occurred. Without strong prior information about what the spatial kernel may be, and/

Figure 2.  Rc estimates from Eswatini line list based on using the time-only scenario and Scenarios 1–12 with an 
exponential kernel.
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or how likely cases are to have an external source of infection, it is not clear whether these cases are linked by 
transmission (and there is some human travel/parasite movement, modelled by a less restrictive spatial kernel) 
or whether there are unobserved source(s) of infection leading to both cases. This is also exemplified in the 
results of the sensitivity analysis, where the mean of the prior for beta strongly shapes the final estimate of beta, 
and the epsilon value also shapes beta.

In the absence of reliable information about either of these values, strong assumptions must be made about 
either/both the likelihood of cases being infected by unobserved sources of infection and the relationship between 
distance and. Similar approaches analysing the diffusion of twitter hashtags, it was recommended to fix the 
parameter beta, and the authors acknowledged potential challenges in estimating this  parameter17, and indeed 
approaches from others have also noted problems with unconstrained distance kernels in space–time diffusion 
modelling (Swapnil Mishra, personal correspondence). One potential way to address this is to divide the epsilon 
edge by the distance parameter ε

β
 , thereby linking the two parameters and thereby penalising increases in β.

Whilst the temporal aspect is not fixed, we view the utility in this method in excluding or penalising improb-
able transmission links between far away cases, rather than as a way of trying to determine what the spatial rela-
tionship between cases is for malaria transmission, or determining the relative contribution of space to malaria 
transmission. Recent  simulations24 using temporal, spatial, and travel history to infer malaria reproduction 
numbers also found that travel history must be highly accurate or infections must be focal in time to be able to 
accurately estimate reproduction numbers.

An additional approach which could alleviate this problem is to collect internal travel history as part of 
surveillance in future data collection efforts. This may help tease apart the relationship between space and 
transmission. There also may be regions where there is more information to parameterise both the spatial scales 
of transmission and the likelihood of cases being unobserved (for example through looking at reporting rates, 
rates of relapse in the case of P. vivax, and prevalence of asymptomatic infection).

Secondly, our approach was designed for application to near elimination and elimination settings, where 
surveillance and case management is very strong, numbers of cases are small, and therefore there is less overlap 
in potential infector/infectees, and changes in transmission are more apparent. If applying these approaches to 
contexts which are less far along the journey to elimination, the issue of identifiability may be even more of an 
issue as one cannot reasonably assume/fix epsilon edges to be a very small number. Asymptomatic infection will 
likely be more important to consider, more sophisticated methods to deal with missing cases will be required. 
There also will likely be a weaker signal in space and time, which may require the integration of additional 

Figure 3.  Rc estimates from China P. falciparum line list based on using the time-only scenario and Scenarios 
1–12 with an exponential kernel.
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information such as genetic distance. There also will be a transmission level above which these methods will no 
longer be useful, although we do not know what this exact level is. The spatial granularity at which it is possible 
to estimate Rc at different transmission intensities also remains unknown.

Finally, due to there being no “ground truth” it is challenging to rigorously compare model performance. 
ΔAICc and Akaike Weights are standard measures for model comparison, however as mentioned previously, 
there are important limitations in using these metrics for model comparison. We did test the model inferred 
Rc values on a series of simulated line lists (Supplementary Text 1, Supplementary Fig. 1) which were spatially 
explicit, where the “true” expected Rc was known. However, a useful future step would be to carry out more 
in-depth analysis to investigate the impact of varying parameter values and the interaction between the shap-
ing parameter of the spatial kernel and epsilon. Further simulations may also aid in exploring how tolerant the 
method is to missingness.

Currently, missing cases are dealt with in a relatively simple way, under the assumption that in the elimination 
settings used here, surveillance and control have been strong for an extended period of time as to ensure small 
case numbers and low prevalence of asymptomatic parasitaemia, and that the contribution of missing cases is 
small enough to be represented as a competing hazard. However, if missingness was biased, it is not clear how 
strongly this would affect results. Further simulations which model different forms of missing data/sampling 
schemes would be useful to reveal the potential impact of non-random missing data. These simulations could 
also model different sources of unobserved infection – for example missing cases caused by relapse of dormant 
P. vivax, unreported cases or asymptomatic infection.

Many methods used to model and represent space and mobility have not been tested here due to the issues of 
identifiability seen even in simple models of space. Gravity,  radiation25, and friction  surfaces26 are all potentially 
useful models of how space may affect the likelihood of transmission. As mosquitoes have a limited range and 
lifespan, developing better data and models of human movement, and how it varies in different cultural contexts 
and between different demographic groups, will provide useful information to appropriately parameterise and 
design the spatial component of the  model13,27–29.

Although the prior for the shaping parameter of the serial interval was selected under the assumption that the 
majority of cases are treated in a timely manner, In this analysis we have not explicitly utilised information about 
the time and location of treatment, although this is available in some contexts. This may be useful information to 
constrain the potential time window of infection occurring, as detailed information about infectivity and game-
tocyte carriage following treatment with anti-malarials is  available30, although sub-optimal dosage, compliance 

Figure 4.  Rc estimates from China P. vivax line list based on using the time-only scenario and Scenarios 1–12 
with an exponential kernel.
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and resistance have been associated with differing outcomes and therefore having additional information about 
treatment and prevalence of resistance would also be useful.

Another avenue for future work would be to adapt the approach to incorporate further sources of information, 
such as genetic markers of similarity between parasites. For our approach to be useful in contexts which are not 
at or within a few years of elimination, incorporation of additional information into the inference framework 
will be required. This could be carried out either directly by incorporating an additional term or function in the 
likelihood or indirectly through informing the value of parameters and allowing them to vary between individu-
als. Previous work within the machine learning and network analysis community has successfully integrated 
diverse sources of information about texts such as language and similarity of context into very similar algorithms 
to the one presented  here17.

Conclusion
Increasingly, line-list data contain spatial and other forms of information. Developing rigorous approaches to 
leverage the information contained within these diverse datasets will increasingly be useful in malaria surveil-
lance and  epidemiology2,3,13 and developing a framework which flexibly takes on different forms of data within 
an integrated inference framework is a key aspect of this. There may be more useful information contained in 
genetic, and or travel, mobility data. However, as we have seen there can be issues of identifiability, which becomes 
increasingly relevant when there is not enough data available about key parameters in the model. Finding ways 
for leveraging multiple datasets, understanding their relationships, how they can enhance info contained in 
others, or used to build consensus is important.

We developed and tested an algorithm which flexibly allows the incorporation of distance or adjacency 
matrices describing the distance or connectivity between cases. This was applied to individual malaria case data 
from four eliminating and very low transmission contexts and a detailed sensitivity analysis was carried out. 
The results of these analyses suggest that including space improves model performance as measured by ΔAICc, 
and that, for the contexts considered here, the best performing models produce lower reproduction estimates 
than using temporal information only, likely in part due to estimating more unobserved sources of infection. 
However, this conclusion would be strengthened by more in-depth simulation studies. The approach presented 
here could be adapted to many different datasets and contexts, however issues of identifiability must be consid-
ered. The utility of this approach would be strengthened with further development of the methods of modelling 
unobserved sources of infection. Our results also make it clear that in many contexts that additional information 
sources may be required such as genetic or serological data.

Methods
Data. The Kingdom of Eswatini. This dataset, previously analysed by Reiner et al.31 captures malaria cases 
recorded by the National Malaria Elimination Programme in the Kingdom of Eswatini (formally known as 
Swaziland) between January 2010 and June 2014. For each case detected during this time (N = 1373), case in-
vestigation was carried out. For each case the following were collected: GPS coordinates of household location, 

Figure 5.  Map of Rc estimates for El Salvador Map of (A) time-only (B) best scenario by AIC (Scenario 9) and 
(C) Scenario 4, representing an assumption of little long-distance transmission and few unobserved cases. Note 
the increasing focality in (C), with higher Rc values estimated on the Pacific Coastal area of the Ahuacapan and 
Sonsonote municipalities, where the NMCP have long identified as the remaining foci of risk.
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demographic information (age, occupation and sex), use of malaria prevention interventions such as long-last-
ing insecticide treated bednets (LLINs), and date of symptom onset, diagnosis and treatment, as well as travel 
history. Based on travel history cases were defined as locally acquired, imported. For a small number of cases 
(N = 58) the local/imported status was determined “unknown”. For the purposes of this analysis, these cases were 

Figure 6.  Map of Rc estimates for Eswatini Map of (A) time-only (B) best scenario by AIC (Scenario 9) and 
(C) Scenario 4, representing an assumption of little long-distance transmission and few unobserved cases. Note 
the increasing focality in (C), with higher Rc values estimated around the northern corner of the country which 
borders Mozambique.

Figure 7.  Map of Rc estimates for P. falciparum in China Map of (A) time-only (B) best scenario by AIC 
(Scenario 11) and (C) Scenario 4, representing an assumption of little long-distance transmission and few 
unobserved cases.
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treated the same as local cases, i.e. they were assumed to have potentially been infected by other cases in the 
dataset and/or been infectors themselves.

China. This dataset consists of individual-level case data for all confirmed and probable cases reported in 
China between 2011 and  201611,32 (Tables 4, 5). The data consist of an individual identifier, date of symptom 
onset, date of diagnosis and date of treatment, as well as the geolocated address of residence and health facility. 
If the suspected location of infection was in China and not in the same district, then the presumed location of 
infection was also included in the dataset. Demographic information such as age and sex were also collected. For 
the analysis, data were separated into P. falciparum and P. vivax cases. P. malariae (N = 252) and P. ovale (N = 822) 
were reported but excluded from the analysis due to the lower public health concern of these species.

El Salvador. This dataset consists of all confirmed cases of malaria recorded by the Ministry of Health in El 
Salvador between 2010 and the first two months of  201610 (N = 91 cases, of which 30 imported, 6 P. falciparum, 
85 P. vivax). For each case, the date of symptom onset was recorded. Residential address was available for all but 
two cases. For these cases, the location was available at the municipio, or municipality level, and the coordinates 
of the centroid of the municipality (which for both were cities) were used as the geo-location. Two cases had 
addresses listed outside of El Salvador, both of which were located in Guatemala. All cases within El Salvador 
with full addresses (N = 85) were georeferenced by latitude and longitude to caserío/lotificación level, which is 
approximately neighbourhood or hamlet level.

Figure 8.  Map of Rc estimates for P. vivax in China Map of (A) time-only (B) best scenario by AIC (Scenario 
11) and (C) Scenario 4, representing an assumption of little long-distance transmission and few unobserved 
cases.

Table 3.  Different parameters considered in sensitivity analysis. Note all combinations of each parameter were 
considered.

∈ mean ∈ SD β mean (Gaussian) β mean (exponential) β SD

1e−10 0.0001 0.00001 0.0001 0.0001

1e−5 0.001 0.0001 0.001 0.001

1e−3 0.01 0.001 0.01 0.01

1e−2 0.05 0.01 0.1 0.05

1e−1 0.1 0.1

0.5
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Transmission model specifics. In order to incorporate pairwise distance metrics, we extended our pre-
viously published algorithm applied to Yunnan Province,  China11 by introducing a second function, f2, which 
describes the relationship between space (or distance of any kind) and likelihood of transmission. An appropri-
ate function such as a Gaussian kernel is defined and the parameter(s) shaping that distribution, β, are either 
fixed, or given a prior distribution and estimated from the data. Multiplied, together, this returns a single func-
tion:

Figure 9.  El Salvador sensitivity analysis. Sensitivity analysis showing the impact of varying the prior mean 
for the distance kernel shaping parameter, β. The different colours and shapes represent different means and 
standard deviations respectively of the normally-distributed prior of epsilon, ε, which represents shapes 
represent different hazards of infection by an external, unobserved source. For A-D, the x-axis represents the 
prior mean used for β. (A) the y-axis shows the maximum a posteriori parameter estimate for the parameter β. 
(B) shows the same results, stratified by the prior mean of ε for clarity. (C) Shows the impact of priors for β and ε 
on the mean Rc estimate, and again (D) shows the same result, stratified by the prior mean of ε.
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Determined by times t, spatial locations x, transmission rates α, spatial parameter(s) β.
As before, the hazard is defined as the pairwise likelihood divided by the survival term:

(1)f
(

xi , ti|xj , tj;αi,j ,β
)

= f1(ti|tj; αi,j)× f2
(

xi|xj;β
)

Figure 10.  Eswatini sensitivity analysis. Sensitivity analysis showing the impact of varying the prior means 
for Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping 
parameter, β. The different colours and shapes represent different means and standard deviations respectively 
of the normally-distributed prior of epsilon, ε, which represents shapes represent different hazards of infection 
by an external, unobserved source. For (A)–(D), the x-axis represents the prior mean used for β. (A) the y-axis 
shows the maximum a posteriori parameter estimate for the parameter β. (B) shows the same results, stratified 
by the prior mean of ε for clarity. (C) Shows the impact of priors for β and ε on the mean Rc estimate, and again 
(D) shows the same result, stratified by the prior mean of ε.
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To derive the survival function, one integrates across all distances and times as follows:

(2)H =
f
(

xi , ti|xj , tj; αi,j ,β
)

S
(

xi , ti|xj , tj; αi,j ,β
)

Figure 11.  China (P. falciparum) Sensitivity Analysis. Sensitivity analysis showing the impact of varying the 
prior means for P. falciparum in China. Sensitivity analysis showing the impact of varying the prior means for 
Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping 
parameter, β. The different colours and shapes represent different means and standard deviations respectively 
of the normally-distributed prior of epsilon, ε, which represents shapes represent different hazards of infection 
by an external, unobserved source. For (A)–(D), the x-axis represents the prior mean used for β. (A) the y-axis 
shows the maximum a posteriori parameter estimate for the parameter β. (B) shows the same results, stratified 
by the prior mean of ε for clarity. (C) Shows the impact of priors for β and ε on the mean Rc estimate, and again 
(D) shows the same result, stratified by the prior mean of ε.
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(3)S
�

xi , ti|xj , tj;αi,j ,β
�

=







∞
�

0

ti−tj
�

0

f1
�

ti|tj;αj,i
�






f2
�

xi|xj;β
�

dt dx

Figure 12.  China (P. vivax) Sensitivity Analysis. Sensitivity analysis showing the impact of varying the prior 
means for P. vivax in China. Sensitivity analysis showing the impact of varying the prior means for Eswatini. 
Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, β. 
The different colours and shapes represent different means and standard deviations respectively of the normally-
distributed prior of epsilon, ε, swhich represents shapes represent different hazards of infection by an external, 
unobserved source. For (A)–(D), the x-axis represents the prior mean used for β. (A) the y-axis shows the 
maximum a posteriori parameter estimate for the parameter β. (B) shows the same results, stratified by the prior 
mean of ε for clarity. (C) Shows the impact of priors for β and ε on the mean Rc estimate, and again (D) shows 
the same result, stratified by the prior mean of ε.
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Figure 13.  Illustration of likelihoods, hazards and survivals for less restrictive kernels (longer range human 
movement likely). Plots showing how the pairwise likelihoods, survivals and hazards vary with time and 
distance under different model structures. The first row of plots shows the pairwise likelihoods, the second row 
shows the pairwise survival and the third row shows the pairwise hazard values for different combinations of 
distance (in kilometres) and time between symptom onset (days). The first column shows the results for a time-
only version of the algorithm. The second column shows results for an exponential kernel and the third column 
shows results for a Gaussian kernel. In this example less restrictive values for beta, the shaping parameter for 
the distance kernels have been chosen, representing a context where there is more long-range movement of 
parasites.
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Figure 14.  Illustration of likelihoods, hazards and survivals for moderately restrictive kernels (moderate 
human movement, most movement under 50 km). Plots showing how the pairwise likelihoods, survivals and 
hazards vary with time and distance under different model structures. The first row of plots shows the pairwise 
likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values for 
different combinations of distance (in kilometres) and time between symptom onset (days). The first column 
shows the results for a time-only version of the algorithm. The second column shows results for an exponential 
kernel and the third column shows results for a Gaussian kernel. In this example values for beta, the shaping 
parameter for the distance kernels have been chosen to represent a context where there is more some movement 
of parasites, but where little movement is expected beyond 50–75 km. The likelihood for the Gaussian Kernel is 
more concentrated, which could represent shorter range movement e.g. commutes, whereas the Exponential has 
a longer tail so could represent a mixture of short and longer range parasite movement.
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Figure 15.  Illustration of likelihoods, hazards and survivals for highly restrictive kernels (Human movement 
unlikely, most movement under 10 km). Plots showing how the pairwise likelihoods, survivals and hazards vary 
with time and distance under different model structures. The first row of plots shows the pairwise likelihoods, 
the second row shows the pairwise survival and the third row shows the pairwise hazard values for different 
combinations of distance (in kilometres) and time between symptom onset (days). The first column shows the 
results for a time-only version of the algorithm. The second column shows results for an exponential kernel 
and the third column shows results for a Gaussian kernel. In this example more restrictive values for beta, the 
shaping parameter for the distance kernels have been chosen, representing a context where there is very little 
movement of parasites, with very little movement beyond 10–20 km expected.
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The specific functions used in f1(ti|tj;αi,j) and f2(xi|xj;β) will have large impacts on the outcomes of results 
and therefore the assumptions inherent in these choices must be made explicit and linked to the mechanisms 
of transmission.

To illustrate this approach by applying to several malaria line-lists, we used a shifted Rayleigh distribution to 
model serial interval distributions, f1

(

ti|tj;αi,j
)

 . For the second part of the likelihood which model the relation-
ship between space and the likelihood of transmission f2(xi|xj;β) , Gaussian and Exponential diffusion kernels 
were used (Table 6).

Using a shifted Rayleigh distribution and an exponential kernel the pairwise likelihood of a case showing 
symptoms at ti and at residence location xi being infected by a case showing symptoms at time tj and at residence 
location xj, becomes

The survival term simplifies to:

And the hazard simplifies to:

For the Gaussian function, the pairwise likelihood of a case showing symptoms at ti and at residence location xi 
being infected by a case showing symptoms at time tj and at residence location xj is

The survival term is again determined by integrating the likelihood over all potential infection times and all 
distances

Integrating over time returns

Integrating over all distances gives

(4)f
(

xi , ti|xj , tj; αi,j ,β
)

= α
(

ti − tj − γ
)

e−
1
2 α(ti−tj−γ )e−β(xi−xj)

(5)S
(

xi , ti|xj , tj;αi,j ,β
)

= e−
1
2 α(ti−tj−γ ) 1

β

(6)H
(

xi , ti|xj , tj;αi,j ,β
)

= βα
(

ti − tj − γ
)

e−β(xi−xj)

(7)f
(

xi , ti|xj , tj;αi,j ,β
)

= α
(

ti − tj − γ
)

e−
1
2 α(ti−tj−γ )e−β(xi−xj)
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e−

1
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(9)S
(

xi , ti|xj , tj;αi,j ,β
)

= e−
1
2 α(ti−tj−γ )

∞
∫

0

e−β(xi−xj)
2

dx

Table 4.  Cases by diagnosis type (probable and confirmed) and species across China.

Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped

Confirmed 260 11,830 252 822 6631 87

Probable 0 176 0 0 693 311

Table 5.  Cases by imported/local status and species across China.

Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped

Local 5 92 4 1 1711 95

Imported 255 11,914 248 821 5613 303

Table 6.  Equations for f1, f2, hazard and survival for time-only, Gaussian and Exponential spatial kernels.

f 1(ti|tj; αi,j) f 2(xi|xj;β) Hazard Survival

Exponential α
(

ti − tj − γ
)

e−
1

2
α(ti−tj−γ ) e−β(xi−xj) βα

(

ti − tj − γ
)

e−β(xi−xj) e−
1

2
α(ti−tj−γ ) 1

β

Gaussian α
(

ti − tj − γ
)

e−
1

2
α(ti−tj−γ ) e−β(xi−xj)

2 2
√
βα(ti−tj−γ )e

−β(xi−xj)
2

√
π

e−
1

2
α(ti−tj−γ )

√
π

2
√
β

Time only α
(

ti − tj − γ
)

e−
1

2
α(ti−tj−γ ) n/a α

(

ti − tj − γ
)

e−
1

2
α(ti−tj−γ )
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Following Eq. (10), the hazard is equivalent to

Which simplifies to

Modelling missing cases using ε edges. The vast majority of disease surveillance and outbreak response 
datasets will not be able to capture all cases due to asymptomatic infection, underreporting and movement of 
people in/out of the surveillance area. Therefore, it is important to consider the impact of missing information 
on results and identify potential missing sources of infection. We use Epsilon edges, ∈i , to identify potential 
sources of infection. Here, each hazard is estimated as a further competing edge of transmission from an unob-
served source, H0(∈i) . Depending on assumptions for the likelihood and extent of unobserved infection sources, 
the epsilon edge value can be set to a high or low value. When high, we assume high amounts of unobserved 
infection and unless two cases have a very high likelihood of being linked, we assume the case was from an 
unobserved source. When low, we assume little missing data and so cases are only linked to an outside source if 
they are very unlikely to be linked to an observed candidate infector.

Adding epsilon, ε, as a competing hazard and survival returns:

The objective function is then:

Because this was carried out within a Bayesian framework the log posterior was maximised to obtain the max-
imum-a-posteriori estimates.

The algorithm was written in TensorFlow, implemented in R via the rTensorflow  package33. A prior probability 
was defined for the parameter shaping the serial interval of malaria, informed by previous characterisations of 
the serial interval of  malaria34. Because data about how likely the cases were to have moved long distances or 
the likelihood of a case has been infected by an unobserved source of infection were not available for the con-
texts explored here, several different parameterisations of the model were used to represent different scenarios 
(Table 1) and a detailed sensitivity analysis was carried out (Table 3). The versions of the model which are 
described in Table 1 and Figs. 13, 14 and 15 represent different patterns of human/parasite movement, ranging 
from a context where there may be small amounts of movement (almost all under 10 km) to moderate amounts 
of movement/travel (almost all under 50 km) to a less restrictive parameterisation, where near cases were more 
likely but far away cases were not completely excluded. We applied different versions of the algorithm, as well 
as temporal-only algorithm to these datasets to explore the impact of different assumptions about the impact of 
space on estimated Rc values and their variation over time and space. We also evaluated the performance of each 
approach by comparing differences in the second order AIC (ΔAICc), and the corresponding Akaike Weights.

Twelve scenarios (Table 1) were considered when defining parameters for each dataset. These scenarios 
consider three different levels of likelihood of transmission in relationship to Euclidian distance (due to the 
limited range of mosquito travel, this is considered in the context of human mobility), which was defined for 
both exponential and Gaussian kernels. These are illustrated in Figs. 13, 14 and 15. Then the values for epsilon 
were set at 0.001 and 0.1, representing different levels of missing cases likely. This can be interpreted as the chance 
of a case having an unobserved source of infection. For example, 0.1 would represent P(unobserved source of 
infection) = 0.1.

The timeseries of Rc and its spatial patterns were illustrated for each dataset and parameter combination and 
compared to the results of the time-only version of the algorithm. The results were also mapped to compare how 
spatial patterns in Rc were affected by assumptions about space and unobserved infections. The maps shown in 
Figs. 5, 6, 7 and 8 were created in Tableau version 2019.1 using base maps from OpenStreetMap and OpenStreet-
Map Foundation (www. opens treet map. org).

In order to compare models quantifiably, the second order Akaike Information Criterion  (AICc) was calcu-
lated using the equation AICc = −2 log f (x)+ 2K

(

n
n−k−1

)

 , where f(x) is the model likelihood, K is the number 
of parameters estimated and n is the sample size of the data used to fit the parameters. The  AIC35 is used in model 
comparison, by creating a comparison of negative log likelihood that penalises increases in model parameters, 
to prevent overfitting. AICc is recommended for use with smaller datasets with larger numbers of parameters, 
and as the sample size n increases AICc converges to  AIC22. The differences in AICc for each model, known as 
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ΔAICc, were calculated to compare models. Typically, a ΔAICc of greater than 10 is considered strong evidence 
that that model performs worse than the model it is being compared to.

In addition, Akaike Weights were calculated, which are a measure of the relative likelihood of a model com-
pared to the others considered. Akaike weights are determined by taking the normalised relative likelihood of 
a model which is exp(−0.5 ∗�AICc score) , and then dividing by the sum of these values across all models to 
obtain a normalised result.

Sensitivity analysis and comparison of prior choice on estimated results. In the scenario analysis 
above the distance shaping parameter is fixed. However due to the uncertainties in the relationship between dis-
tance and likelihood of transmission, in many contexts it may be useful to estimate β. To explore the relationship 
between the estimated epsilon edges, ∈ , and estimated shaping parameter, β, for the distance function. a detailed 
sensitivity analysis was carried out to explore the impact of (a) prior choice for ∈ (d) prior choice for β on both 
the maxmum-a-posteriori estimates for β and the estimated mean Rc.

To consider the effect of varying parameter values and explore their interactions, a range of distance and 
epsilon edge priors were considered. A truncated normal prior was used for both parameters, and the mean 
and standard deviation were varied. For ∈ the mean was varied between 1e−10 and 0.5, and the standard devia-
tion was varied between 0.0001 and 0.1. For β, the mean for a Gaussian Kernel was varied between 0.00001 and 
0.01 and for an exponential kernel the means considered ranged between 0.0001 and 0.1. For both the standard 
deviations varied between 0.0001 and 0.1 (table). Every possible combination of the parameters were run for 
each dataset and both Gaussian and exponential spatial kernels, giving a total of 2400 parameter combinations 
tested per kernel, per dataset.

Code availability
Code for algorithm to generate reproduction numbers, estimate unobserved cases and calculate metrics of model 
performance are available at https:// github. com/ IzzyR ou/ spati al_ rcs.
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