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Abstract
The article focus is the improvement of machine learning models capable of predicting pro-

tein expression levels based on their codon encoding. Support vector regression (SVR) and

partial least squares (PLS) were used to create the models. SVR yields predictions that sur-

pass those of PLS. It is shown that it is possible to improve the models predictive ability by

using two more input features, codon identification number and codon count, besides the

already used codon bias and minimum free energy. In addition, applying ensemble averag-

ing to the SVR or PLS models also improves the results even further. The present work

motivates the test of different ensembles and features with the aim of improving the predic-

tion models whose correlation coefficients are still far from perfect. These results are rele-

vant for the optimization of codon usage and enhancement of protein expression levels in

synthetic biology problems.

Introduction
Metabolic engineering [1], defined as the “directed improvement of product formation or cel-
lular properties through the modification of specific biochemical reactions or the introduction
of new genes with the use of recombinant DNA technology” [2], has various industrial applica-
tions. It aims at creating microorganisms capable of producing economically relevant chemical
products in a cost effective way, which involves optimizing the functioning of metabolic path-
ways and reactions. These pathways and reactions are controlled by proteins that are frequently
heterologous, i.e. external to the organism where they are expressed. This happens, for exam-
ple, when plant proteins are used to produce chemicals such as vanillin or polyphenols in
microorganisms like Lactococcus lactis or Escherichia coli [3,4]. In order to increase the chemi-
cals production, it is possible to optimise heterologous protein production in the host or target
microorganisms [5]. This may be done by altering the codons in the RNA that encodes the pro-
tein. Each codon is a sequence of three nucleotides encoding one amino acid that is part of a
protein. However, each amino acid can be encoded by several synonymous codons; therefore, a
given protein can be expressed using a large number of different codon combinations in the
RNA.
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The present article proposes to build models, using machine learning algorithms, which are
capable of predicting protein expression levels depending on the codon encoding sequence.
This allows to test the expression efficiency of a certain protein in silico without having to mea-
sure it in vivo, which is a costly and time-consuming process. One possible reason why the
codon sequence determines the amount of protein produced is the influence on the difficulty
to unfold the RNA at the cell ribosome at the moment of protein production [6]. Another pos-
sible reason has to do with tRNA pools. Since amino acids are attached to tRNA that can only
bond to a certain RNA codon, and since the pool of tRNA depends on the microorganism and
is larger for certain codons than for others, there might be some difficulty to produce the pro-
tein if the RNA employs codons with a poor tRNA pool [7]. Due to this dependence on the
organism, the expression levels of the codon encodings employed in the training of the
machine learning models must be measured in the destination microorganism.

To the best of the authors knowledge, there are two main works whose focus is on protein
expression prediction from codon sequence using machine learning techniques and based on
experimental data. They are Welch et al. [8] and Supek et Smuk [9], both for Escherichia coli.
In these two articles the expression levels of various codon encodings were measured and were
afterwards used to create expression models. Welch et al. created prediction models for two
proteins with commercial value, DNA polymerase and a single chain antibody, using partial
least squares (PLS). Only codon bias, calculated from codon frequencies, was employed as an
input feature. Codon bias measures the tendency of using a certain codon instead of others that
encode the same amino acid. The reported validation results were a squared correlation coeffi-
cient (R2) between the measured and model predicted expression levels of 0.65. Welch et al.
also demonstrated the poor correlation, of less than 0.01, for Codon Adaptation Index (CAI), a
surprising result since CAI is generally thought to be well correlated with protein expression.
In the other paper, Supek and Smuc created expression prediction models for a green fluores-
cent protein (GFP). The models were determined using support vector regression (SVR) and
presented a R2 between the measured and predicted expression levels of 0.65. The model input
features were free energy and codon bias measured as codon frequencies. Free energy is a phys-
ical quantity that is minimised as a protein folds. The inclusion of free energy was due to a
work by Kudla et al. [6] that showed the good correlation of the GFP levels with free energy.
Curiously, in Welch et al. work there was a small correlation between free energy and protein
expression. The fact that there does not seem to be a unique answer on which features correlate
the best with protein expression has led the authors of the present article to create prediction
models that use more input features than solely codon bias and minimum free energy. This
will be shown to improve both the results of Welch et al. and Supek et Smuk. In addition, the
present article compares two machine learning algorithms PLS and SVR, showing that SVR is
better for both Welch et al. and Supek et Smuk data. The decision to use the same algorithms
as these authors was to show that they were still useful to improve the previously published
results when using extra features. Nevertheless, the article goes beyond the isolated use of PLS
or SVR models, as in Welch et al. and Supek et Smuk works, by improving results with the
application of ensemble averaging [10,11].

Materials and Methods

Datasets
Two datasets were employed in the present article, one fromWelch et al. [8] work and the
other from Kudla et al. [6]. These datasets contain protein expression levels in Escherichia coli
for different codon sequences. Welch et al. dataset contains the expression levels of two pro-
teins, a DNA polymerase and a single chain antibody, for 55 different codon encodings. Kudla
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et al. dataset contains the level of green fluorescent protein produced for 154 different codon
encodings. Supek and Smuk [9] uses Kudla et al. dataset to create prediction models of protein
expression. Both datasets were made available with the articles.

Features description
The models for protein expression prediction require input features. The ones used were
codon bias, codon identification number, codon count and minimum free energy of folding.
The first three features are illustrated in Fig 1. Even though the scope of the present article is
limited to the analysis of these four features, many others such as the presence of rare codons
[12] or the location of G-quadruplexes [13] could have also been used. Codon bias is the differ-
ence in the percentage of times (frequency) a certain codon appears in a protein RNA relatively
to the total number of codons encoding a certain amino acid. It is estimated by the codon fre-
quency or by the Codon Adaptation Index (CAI) which is a measure of codon bias toward
codons frequently used in highly expressed proteins in a certain genome [14]. The present arti-
cle uses the former. Throughout the article, when "selected codon bias" is mentioned it means
that the calculations were done employing the bias of only a subset of codons equal to that
fromWelch et al. article. "Codon bias" only, means that the bias of all codons was used. Codon
identification is a number from one to 64 that identifies a certain sequence of three nucleotides
that encode an amino acid. Using standard dummy variables for codon identification was not
considered to be a good option. In these variables, each codon would be encoded by a vector
with 64 entries, 63 of which would have the value zero, and only the position designated for a
certain codon would have the value one. Consequently, the vector encodings would be orthog-
onal [15]. The reason not to use dummy variables is that the instances dimensionality would be
unnecessarily large, which could be counterproductive to the effort of giving regression models
the ability to provide good results for new inputs, i.e. to generalize. In addition, codon identifi-
cation numbering (see Table 1) is done in such a way that AAA is closer to AAC than to ACC,

Fig 1. Illustration of the codon bias, codon identification number and codon count features.

doi:10.1371/journal.pone.0150369.g001
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because they are more similar, or AAA is closer to CCC than to GGG or TTT, following a rule
employed in the construction of a 4-ary tree that reveals hidden symmetries in the genetic code
[16]. The rule consists of constructing the tree starting with the sequence A, C, G, T [17]. In
fact, the sorting from Table 1 is strongly related to the codon table generated from the 4-ary
tree which might explain why this sorting provided better results than random identifications.

Codon count is the number of times that each codon appears in the RNA sequence. Free
energy, also known as Gibbs free energy or minimum free energy (MFE), is minimised as a
protein folds so that it reaches a configuration that is as stable as possible. MFE values for the
whole mRNA sequence were determined using the Vienna RNA package (http://rna.tbi.univie.
ac.at/cgi-bin/RNAfold.cgi) for both Welch et al. [8] and Supek and Smuk [9]. MFE values mea-
sured between nucleotides -4 and 37 or -4 and 38, for Welch et al. and Supek and Smuk,
respectively, were obtained together with the datasets from these two works. The nucleotides
are counted from the first nucleotide of the first open reading frame (ORF). The use in the
models of free energies from the whole protein or from some nucleotides depends on which
one provides the best validation results for each dataset.

The features described have dimensionality of one for the MFE and 64 for the codon bias or
count. InWelch et al., since three codons are missing, the codon bias dimensionality used is only
61. Finally, the codon identification feature has a dimensionality that depends on the protein
size, for Welch et al. it is 575 and for Supek and Smuk it is 288. Employing all the features simul-
taneously generates inputs of high dimensionality which poses a risk to good generalization. In
total, the features for Welch et al. and Supek and Smuk datasets have a dimensionality of 701 and
417, respectively. Good generalization is ensured by the use of the rigorous nested n-fold cross-
validation together with partial least squares regression or support vector machines that were
designed to handle large dimensionalities. This will be better explained in the next sections.

The rationale for choosing codon bias and minimum free energy as input features is their
good results presented in Welch et al. [8] and Supek and Smuk [9]. Codon identification num-
ber and codon count were selected because the former provides an exact description of the
sequence of codons and the latter adds the importance of each codon with respect to the
remaining ones in a simple way when compared to codon identification. The features codon
bias, codon identification and codon count can be calculated using scripts included in the pro-
vided software (please see section "Implementation"). The scripts are inside the directory
named “features” of S1 Software, which provides all the code used to generate the results here
presented. The MFE must be calculated using the Vienna RNA package.

Partial Least Squares (PLS) regression
PLS [18] regression is a generalization of multiple linear regression [19] with the advantage
that it can handle highly correlated input variables and a number of input variables

Table 1. Codon identification numbers.

aaa 1 aac 2 aag 3 aat 4 aca 5 acc 6 acg 7 act 8

aga 9 agc 10 agg 11 agt 12 ata 13 atc 14 atg 15 att 16

caa 17 cac 18 cag 19 cat 20 cca 21 ccc 22 ccg 23 cct 24

cga 25 cgc 26 cgg 27 cgt 28 cta 29 ctc 30 ctg 31 ctt 32

gaa 33 gac 34 gag 35 gat 36 gca 37 gcc 38 gcg 39 gct 40

gga 41 ggc 42 ggg 43 ggt 44 gta 45 gtc 46 gtg 47 gtt 48

taa 49 tac 50 tag 51 tat 52 tca 53 tcc 54 tcg 55 tct 56

tga 57 tgc 58 tgg 59 tgt 60 tta 61 ttc 62 ttg 63 ttt 64

doi:10.1371/journal.pone.0150369.t001
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significantly larger than the number of measurements. PLS combines dimensionality reduction
and the creation of the model that transforms the independent into the dependent variables. It
works, like principal component analysis (PCA) [20], by creating new variables that corre-
spond to the projection of the independent and dependent variables into new directions. How-
ever, these new directions are calculated to maximize the covariance between dependent and
independent variables, which is not the case in PCA. The new variables are sorted by the per-
centage of data variance explained and, typically, the first few are enough to explain most of
the data variance. PLS requires adjusting the best number of the new variables called compo-
nents. This is done by choosing the number of components that yield the smallest validation
error.

Support Vector Regression (SVR)
SVR [21] consists of calculating an approximating function that deviates at most ε from the
training points and is as flat as possible. This is also called ε-SVR [22]. This approximating
function is defined by a set of weights for the input features. Flatness of the function is enforced
by maintaining these weights small, which is a form of regularization that helps generalization
even with input features of large dimensionality. Since not all points will be inside the ε toler-
ance band, it is necessary to consider slack variables that correspond to the distance from each
point to the ε band around the approximating function. This function is obtained by solving
an optimization problem that consists of minimizing an objective function equal to the qua-
dratic weights size plus the slack variables multiplied by a constant C. This constant defines the
cost of a point being outside the ε band. A constraint that sets the difference between desired
values and approximating function to being smaller or equal than ε plus the slack variable is
added to the minimization problem. The training points inside the ε band are not relevant to
generate the approximating function, consequently, the training points that generate this func-
tion, called support vectors, are sparse. The introduction of kernels further allows to create
non-linear functions. These kernels operate by transforming the input points into a feature
space where it is easier to create the approximating functions. The ε-SVR used in the present
article requires selecting a kernel function and its parameters, as well as the ε and C values. The
kernel used was a radial basis function while the remaining parameters were those providing
the smallest validation error.

Validation method
It was necessary to use a validation method to determine which was the best set of parameters
and the generalization ability of the created models. The generalization ability is the capacity of
the created models to provide correct answers for input patterns not used in the model train-
ing. The validation method implemented was nested n-fold cross-validation [23,24] in which
there is a n-fold cross-validation inside a m-fold cross-validation, see Fig 2. In n-fold cross-vali-
dation the dataset is split into "n" folds of equal size and "n-1" folds are used for training and
one fold for validation. The process is repeated "n" times and the overall validation results are
the average of the results on each of the "n" folds. In nested cross-validation the internal n-fold
cross-validation is run for each fold of an outer m-fold cross-validation. The folds of the outer
m-fold cross-validation create a test set. In nested cross-validation, the inner n-fold cross-vali-
dation provides results that allow to choose a best set of parameters. Once this set is deter-
mined, a temporary model is built with all inner folds and used to determine values for data
contained in one fold of the outer cross-validation. By repeating the inner cross-validation for
all the outer folds and gathering the results for the outer folds it is possible to obtain test results
that measure the expected generalization ability of the n-fold cross-validation procedure. The
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various inner cross-validation may have different sets of parameters. The final model is calcu-
lated using all available patterns with the training parameters being obtained by applying n-
fold cross-validation to all available patterns without using any patterns for the outer m-fold
cross-validation. Nested n-fold cross-validation is thought to provide better estimates for
model generalization than simple n-fold cross-validation because the parameter selection is
independent from the generalization evaluation [23,24]. However, it also brings additional
computational cost.

In the current article, for Welch et al. [8] dataset 5- and 11-fold for inner and outer cross-
validation were used, respectively. In the case of Supek and Smuk [9] dataset the inner and
outer cross-validation was 6- and 7-fold, respectively. The results presented ahead are for the
test set and correspond to the average of 100 repetitions of the nested n-fold cross-validation
where the pattern grouping in folds is varied.

Ensemble averaging
Typically, building machine learning models involves creating many versions of the models to
determine the best parameters and selecting the model showing the best results. In order not to
waste the resources used to create the remaining models it is possible to use ensemble averaging
[10,11]. Ensemble averaging consists of making an average of all model results, with the

Fig 2. – Schematics of the nested n-fold cross-validation, with repetition and ensemble averaging.

doi:10.1371/journal.pone.0150369.g002
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advantage that the ensemble performance is better than that of the best single model. This is so
because, as shown theoretically, the bias of a single model and of the ensemble are the same,
but, the variance of the ensemble is smaller [10,11]. The model bias measures the difference
between the average, over all training sets, of the approximating model and the "real" model.
The variance measures the average sensitivity of the approximating model to the training set
choice. In the present work, the repetitions in the validation method are necessary because dif-
ferent pattern groupings in the inner n-fold cross-validation lead to different validation results.
Therefore, it is possible to do ensemble averaging of the results of various models whose opti-
mal parameters were determined with different pattern groupings. In other words, the ensem-
ble averaging was done using all the 100 repetitions of the nested n-fold cross-validation where
the pattern grouping in folds was varied, see Fig 2. The generalization ability for such an
ensemble is measured by averaging the test set values from different models for each pattern
and afterwards calculating the root mean squared errors (RMSE) and the squared correlation
coefficient (R2) of the model. It is noteworthy that this is different from averaging the RMSE
and the R2 of the models from various repetitions as it is done in section "Validation method".
The averaging used in the present work gives the same weight to the various models obtained
with different pattern groupings.

Implementation
The necessary software code was written in MATLAB. The PLS implementation used was from
MATLAB toolboxes and the SVR algorithm was from LIBSVM [25]. All the code and data is
freely available at "http://sels.tecnico.ulisboa.pt/software/" under “Protein expression predic-
tion” and in S1 Software. An example on how to use the created ensembles is given in folder
“FinalCodonModel”.

Results

Reference calculations
Two models for protein expression prediction were created, one for the dataset fromWelch
et al. [8] and the other for the dataset from Supek and Smuc [9]. The models presented in this
section were created with the same algorithms and input features employed in the works of
Welch et al. and Supek and Smuc. The models here presented are, therefore, an approximate
reproduction of the Welch et al. and Supek and Smuc works with the difference that the valida-
tion method employed in the present proposal, nested n-fold cross-validation, is more complex
and should provide more reliable results. The results shown in the present section were used as
reference for the improvements in model results that will be presented in the remaining sec-
tions. Please notice that the two datasets employed have different values for the expression lev-
els. In Welch et al. and Supek and Smuc the expression levels vary between [0.18, 3] and [43,
10606], respectively. Consequently, the RMSE obtained are different. Welch et al. employed
partial least squares combined with a selection of fifteen codon bias. For this case it was possi-
ble to obtain a root mean squared error (RMSE) of 0.570 and a squared correlation coefficient
(R2) of 0.439. This corresponds to model 1 in Table 2, and, the R2 obtained is smaller than the
0.65 reported in Welch et al. Supek and Smuc used a support vector machine whose inputs
were minimum free energy measured between nucleotides -4 to 37 and codon bias. This led to
a RMSE of 1.75e3 and R2 of 0.632. These results correspond to model 7 in Table 2, and com-
pare well to the R2 of 0.65 reported by Supek and Smuc. The reason why the results were differ-
ent for Welch et al. and similar for Supek and Smuc might be due to the significantly larger
number of patterns available for the latter work that makes the change from simple to nested
n-fold cross-validation less relevant.
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Model improvement using extra features
Welch et al. dataset. For Welch et al. dataset, model 2 in Table 2 employs PLS, as reference

model 1 does, but changes the input features from selected codon bias to an association of min-
imum free energy for the whole protein, codon bias, codon identification and codon count,
improving RMSE to 0.537 and R2 to 0.487. Model 3 uses the input features from model 1,
selected codon bias, and SVR instead of PLS, achieving a RMSE of only 0.566 and a R2 of 0.427.
Model 4 consists of SVR combined with minimum free energy between nucleotides -4 to 38,
codon bias, codon identification and codon count and obtains the best RMSE of 0.523 and best
R2 of 0.504.

Supek and Smuc dataset. For Supek and Smuc dataset, model 5 using PLS instead of the
SVR from reference model 7, but keeping minimum free energy and codon bias as input fea-
tures presents RMSE of 1.91e3 and R2 of 0.565, which is worse than reference model 7. For this
dataset the minimum free energy providing the best results for the four models in Table 2 is
that between nucleotides -4 and 37. Model 6 uses PLS, as model 5 does, and changes the input
features to minimum free energy, codon bias, codon identification and codon count, improving
the RMSE to 1.63e3 and the R2 to 0.680. Model 8 uses SVR combined with minimum free
energy, codon bias, codon identification, and codon count which improves even further the
RMSE to 1.57e3 and R2 to 0.698.

Model Comparison
Table 3 and Table 4 present the confidence intervals in the mean difference between two mod-
els of Table 2 for a statistical t-test at 5% significance level. If the p-value is smaller than 0.05
then the difference in the mean value of the two models is considered to be significant. The
models in bold and italic are the ones with best R2 and RMSE in the comparison, but the differ-
ences may not be statistically significant. The use of t-test has to do with the fact that each
mean value is from a distribution of 100 samples originating in the 100 repetitions of the vali-
dation method. For this large number of samples the central limit theorem states that the mean
will be approximately normally distributed, regardless of the underlying distribution of the
samples and, therefore, the t-test can be used. Nevertheless, the authors have conducted the
Mann-Whitney test (not shown) and, under this test, the statistically significant results in
Table 3 and Table 4 are the same (although with different p-values).

Welch et al. dataset. In comparison A (Table 3 and Table 4), we conclude that Model 2 is
better than the reference model 1, and the differences in R2 and RMSE are both significant.
Both models use PLS and different features, with model 2 using more features. In comparison
B, both models use SVR with model 4 employing more features, significantly improving model

Table 2. Test R2 and RMSE for various models created usingWelch et al. and Supec and Smuc datasets. The feature abbreviations are: SelBias—
selected codon bias; MFE—minimum free energy; Bias—codon bias; ID—codon identification; Count—codon count.

Dataset Model Algorithm Features R2 RMSE Observations

Welch et al. 1 PLS SelBias 0.439 0.570 Reference

Welch et al. 2 PLS MFE Bias ID Count 0.487 0.537 -

Welch et al. 3 SVR SelBias 0.427 0.566 -

Welch et al. 4 SVR MFE Bias ID Count 0.504 0.523 -

Supec and Smuc 5 PLS MFE Bias 0.565 1.91e3 -

Supec and Smuc 6 PLS MFE Bias ID Count 0.680 1.63e3 -

Supec and Smuc 7 SVR MFE Bias 0.632 1.75e3 Reference

Supec and Smuc 8 SVR MFE Bias ID Count 0.698 1.57e3 -

doi:10.1371/journal.pone.0150369.t002
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3. Comparisons A and B suggest that adding input features improves the results, when the algo-
rithm that creates the model is maintained.

In comparison C, the differences between model 3, with SVR, and model 1 that was created
with PLS and the same input features are not statistically significant. Nevertheless, comparison D
shows that for models 2 and 4 that employ equivalent input features but use PLS and SVR,
respectively, the difference in results is statistically significant. Consequently, comparisons C and
D indicate, that with Welch et al. dataset and equivalent input features, SVR and PLS provide
equal results for small number of features but SVR overcomes PLS for larger number of features.

Comparison E shows that model 4 provides the best improvement in the state-of-the-art rel-
atively to reference model 1. The confidence interval for this improvement for Welch et al.
dataset in R2 is [5.22e-2; 7.70e-2].

Supek and Smuc dataset
In comparisons F and G, the models use the same machine learning algorithm, and the model
with more input features wins, suggesting that adding features while maintaining the algorithm
allows to improve the results. This is similar to comparisons A and B for Welch et al. dataset.

Table 3. Minimum andmaximum values of the confidence intervals for differences in R2 at 5% significance level. The situations in bold and italic
have the best R2. The feature abbreviations are: SelBias—selected codon bias; MFE—minimum free energy; Bias—codon bias; ID—codon identification;
Count—codon count. Comp is abbreviation for comparison, M for model and Alg for algorithm.

Dataset Comp M Alg Features M Method Features R2 difference

Min (x10-2) Max (x10-2) p-value

Welch et al. A 2 PLS MFE Bias ID Count vs 1 PLS SelBias 3.66 5.92 2.10e-14

Welch et al. B 4 SVR MFE Bias ID Count vs 3 SVR SelBias 6.37 8.93 1.60e-24

Welch et al. C 3 SVR SelBias vs 1 PLS SelBias -2.55 0.184 0.0895

Welch et al. D 4 SVR MFE Bias ID Count vs 2 PLS MFE Bias ID Count 0.654 2.69 1.41e-3

Welch et al. E 4 SVR MFE Bias ID Count vs 1 PLS SelBias 5.22 7.70 4.03e-20

Supec and Smuc F 6 PLS MFE Bias ID Count vs 5 PLS MFE Bias 10.9 12.1 3.08e-94

Supec and Smuc G 8 SVR MFE Bias ID Count vs 7 SVR MFE Bias 5.93 7.22 1.97e-49

Supec and Smuc H 7 SVR MFE Bias vs 5 PLS MFE Bias 6.05 7.28 1.58e-53

Supec and Smuc I 8 SVR MFE Bias ID Count vs 6 PLS MFE Bias ID Count 1.14 2.37 7.72e-08

Supec and Smuc J 7 SVR MFE Bias vs 6 PLS MFE Bias ID Count -5.41 -4.23 1.67e-37

doi:10.1371/journal.pone.0150369.t003

Table 4. Minimum andmaximum values of the confidence intervals for differences in RMSE at 5% significance level. The situations in bold and italic
have the best RMSE. The feature abbreviations are: SelBias—selected codon bias; MFE—minimum free energy; Bias—codon bias; ID—codon identification;
Count—codon count. Comp is abbreviation for comparison, M for model and Alg for algorithm.

Dataset Comp M Alg Features M Method Features RMSE difference

Min Max p-value

Welch et al. A 2 PLS MFE Bias ID Count vs 1 PLS SelBias 2.52e-2 3.98e-2 1.45e-15

Welch et al. B 4 SVR MFE Bias ID Count vs 3 SVR SelBias 3.55e-2 5.04e-2 3.38e-23

Welch et al. C 3 SVR SelBias vs 1 PLS SelBias -4.33e-3 1.25e-2 0.339

Welch et al. D 4 SVR MFE Bias ID Count vs 2 PLS MFE Bias ID Count 8.44e-3 2.06e-2 4.88e-6

Welch et al. E 4 SVR MFE Bias ID Count vs 1 PLS SelBias 3.95e-2 5.46e-2 1.23e-25

Supec and Smuc F 6 PLS MFE Bias ID Count vs 5 PLS MFE Bias 266 297 4.46e-90

Supec and Smuc G 8 SVR MFE Bias ID Count vs 7 SVR MFE Bias 155 189 6.37e-49

Supec and Smuc H 7 SVR MFE Bias vs 5 PLS MFE Bias 147 178 4.33e-51

Supec and Smuc I 8 SVR MFE Bias ID Count vs 6 PLS MFE Bias ID Count 36.4 69.9 2.56e-09

Supec and Smuc J 7 SVR MFE Bias vs 6 PLS MFE Bias ID Count -135 -104 2.76e-34

doi:10.1371/journal.pone.0150369.t004
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In comparisons H and I where the two model features are the same and the algorithm differ-
ent, SVR provides better results than PLS, which is similar to comparison D for Welch et al.
dataset.

In comparison J, PLS which exhibits worse results than SVR when the input features are
equal (comparisons H and I), is able to overcome SVR results due to the use of more input fea-
tures. This indicates that the best models are a combination of the best machine learning algo-
rithms and the best input features, as expected. Comparison G shows an improvement of the
state-of-the art of R2 for Supek and Smuc dataset, relatively to the reference model, between
[0.0593; 0.0722].

Model improvement using ensemble averaging
Even though the state-of-the-art was already improved on the previous sections it can still be
enhanced by using ensemble averaging. Fig 3 shows the results of performing ensemble averag-
ing to the 100 repetitions of the validation method. In the case of Welch et al. dataset the aver-
aging was done for repetitions of model 4 from Table 2. This way it was possible to improve
the RMSE from 0.523 to 0.500 and R2 from 0.504 to 0.537. For Supek and Smuc dataset the
ensemble averaging was done with model 8. It allowed to improve the RMSE from 1.57e3 to
1.49e3 and R2 from 0.698 to 0.728.

Fig 4 depicts the absolute percentage error (APE) histograms for the ensembles shown in
Fig 3, which allows to quantitatively characterize the distribution of errors from Fig 3. The
APE is the absolute value of the difference between the experimental and the predicted protein
levels divided by the experimental protein level and multiplied by 100. APE is calculated for
each different codon encoding of a protein. In Welch et al. dataset, 49.1 and 74.5% of the 55
different codon encoding have an APE smaller than 30 and 60%, respectively. For Supek and
Smuc dataset, 57.1 and 79.8% of the 154 different codon encodings have APE smaller than 30
and 60%, respectively. In the distributions in Fig 4 it is possible to see tails of protein encodings
with large APE that reduce the R2 and increase the RMSE of the models.

Discussion and Conclusions
The state-of-the-art for the prediction of expression levels of three proteins in Escherichia coli
has been improved. For the DNA polymerase and the single chain antibody, fromWelch et al.
[8] work, the partial least squares model whose input features were minimum free energy,
codon bias, codon identification and codon count followed by ensemble averaging allowed to
obtain a R2 of 0.537, which improves the 0.439 from partial least squares with selected codon
bias fromWelch et al. work and, the 0.504 from SVR with minimum free energy, codon bias,
codon identification and codon count, but no ensemble averaging of model 4 from Table 2. For
the green fluorescent protein, from Supek and Smuc [9] work, a support vector regression
model whose input was minimum free energy, codon bias, codon identification and codon
count and followed by ensemble averaging presented a R2 of 0.728. This improved the 0.632
from Supek and Smuc support vector regression with minimum free energy and codon bias
and the 0.698 from support vector regression model with minimum free energy, codon bias,
codon identification and codon count but no ensemble averaging of model 8 from Table 2. The
difference in R2 values between Welch et al. and Supek and Smuc datasets might originate
from the fact that the latter dataset contained almost three times more different codon encod-
ings than the former allowing for more accurate models to be obtained. Another possible rea-
son might be the fact that the former dataset contained two proteins which is a harder problem
to handle than the single protein from the latter dataset.
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Fig 3. Results for ensemble averaging of validation repetitions.

doi:10.1371/journal.pone.0150369.g003
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Fig 4. Absolute percentage error for the ensembles from Fig 3.

doi:10.1371/journal.pone.0150369.g004
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Adding more input features than those employed in the articles of Welch et al. and Supek
and Smuc clearly improves the predictive ability of the models for protein level estimation. The
reason for this is that more input features provide more information which allows for better
models to be created. So, even though it is appealing trying to create a simple model based on a
single feature, such as pairwise mRNA similarities [26], that is capable of providing good
expression level predictions, the results from the present article advise for the combination of
any such feature with other in order to improve predictive ability. In fact, the codon identifica-
tion number feature allows for the machine learning models to have access to the pairwise sim-
ilarities. The results obtained also suggest that SVR yields better results than PLS for the same
input features with Supek and Smuc dataset. A possible explanation for this fact is that PLS cre-
ates linear models while SVR models are non-linear having, consequently, a larger processing
power. For Welch et al. dataset, SVR has also better results than PLS for equivalent input fea-
tures, but only for the situation with more features, suggesting that for a small number of fea-
tures SVR nonlinearity might be less relevant. It is important to stress that even when PLS loses
to SVR for the same input features, PLS models with more input features can be better than
SVR models, showing that a good model is a combination of a good algorithm and a good
selection of input features. Ensemble averaging improved the results obtained with extra input
features and proper algorithm selection for both the datasets studied.

The models for protein expression prediction developed in the present work are helpful for
protein codon optimization. This optimization can be done for a given target protein by sub-
mitting to the models several RNA sequences composed of randomly selected synonymous
codons and, afterwards, choosing the sequence for which the model indicates the largest pro-
tein expression. In a more advanced way, the models can be used to assess the value of the
objective function of a genetic algorithm [27] that optimizes the codon sequence. This latter
option is employed in Welch et al. article [8].

The models created are protein specific and, consequently, the model for Welch et al. pro-
teins cannot be used for Supek and Smuc proteins and vice-versa. One reason is that protein
expression levels were measured with different scales and there is no way to convert from one
scale to the other. In addition, in both datasets, the proteins have different sizes, which changes
the codon identification feature and, finally, the minimum free energy was measured for differ-
ent nucleotides.

Nowadays, there is a market for codon optimization services. Consequently, in spite of the
fact that the models for expression level prediction are protein specific, which is not very
practical, there are companies willing to develop and improve these models. Partly motivated
by possible commercial applications, there is a rich and recent literature in translational
kinetics ([12,28–33]). This reveals that a large research effort is currently being made to
understand the relation between RNA features and protein expression levels. Even though
this problem remains largely unsolved, as the research continues it will be possible to under-
stand better why some features seem to be more relevant for some proteins than for others
and it might also be possible to find new features with a large impact on protein expression.
This knowledge will lead to a better selection of the input features employed in machine
learning models, which are still rarely used for regression problems in protein expression
level prediction and, will allow enhancing the proteins codon coding and increasing the het-
erologous production levels.

Supporting Information
S1 Software. Code and models used to obtain the article results.
(ZIP)
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