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Abstract

Background: In order to identify novel chemical classes of b-secretase (BACE-1) inhibitors, an alternative scoring protocol,
Principal Component Analysis (PCA), was proposed to summarize most of the information from the original scoring
functions and re-rank the results from the virtual screening against BACE-1.

Method: Given a training set (50 BACE-1 inhibitors and 9950 inactive diverse compounds), three rank-based virtual
screening methods, individual scoring, conventional consensus scoring and PCA, were judged by the hit number in the top
1% of the ranked list. The docking poses were generated by Surflex, five scoring functions (Surflex_Score, D_Score, G_Score,
ChemScore, and PMF_Score) were used for pose extraction. For each pose group, twelve scoring functions (Surflex_Score,
D_Score, G_Score, ChemScore, PMF_Score, LigScore1, LigScore2, PLP1, PLP2, jain, Ludi_1, and Ludi_2) were used for the
pose rank. For a test set, 113,228 chemical compounds (Sigma-AldrichH corporate chemical directory) were docked by
Surflex, then ranked by the same three ranking methods motioned above to select the potential active compounds for
experimental test.

Results: For the training set, the PCA approach yielded consistently superior rankings compared to conventional consensus
scoring and single scoring. For the test set, the top 20 compounds according to conventional consensus scoring were
experimentally tested, no inhibitor was found. Then, we relied on PCA scoring protocol to test another different top 20
compounds and two low micromolar inhibitors (S450588 and 276065) were emerged through the BACE-1 fluorescence
resonance energy transfer (FRET) assay.

Conclusion: The PCA method extends the conventional consensus scoring in a quantitative statistical manner and would
appear to have considerable potential for chemical screening applications.
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Introduction

Molecular docking-based virtual screening is widely used to

discover novel ligands in the early stages of drug development

[1,2,3,4]. Various docking programs, such as DOCK [5],

AutoDock [6], Surflex [7], FlexX [8], GOLD [9], and Glide

[10,11], have been developed. As an essential component of these

programs, the scoring function is able to evaluate the fitness

between the ligand and receptor guiding the conformational and

orientational search of ligand-binding poses. Since the 1990s,

several dozens of scoring functions have been reported in the

literature [12,13]. Current scoring functions can be roughly

classified as force-field-based methods [5,14,15], empirical scoring

functions [16,17], and knowledge-based statistical potentials [18].

The existing limitations in current docking and scoring include a

lack of protein flexibility, inadequate treatment of solvation, and

the simplistic nature of the energy function employed

[19,20,21,22]. In particular, the major weakness of docking

programs lies in the scoring functions [12,13]. Considering the

computational cost and time required for virtual screening, all of

the current scoring functions use various approximations resulting

in inaccuracy in the score and rank of the ligand-binding poses

[19] as well as in false positives mixed in with the top scorers in the

ranking list when virtual screening was performed with only a

single scoring function. Some studies focus on calculating protein-

ligand free binding energy, free energy perturbation (FEP),

thermodynamic integration (TI) [23,24,25], MM-PB/SA, MM-

GB/SA [26,27,28] and linear interaction energy (LIE) [29,30,31],

which were used to perform post-docking processing. Although

these methods are reported to be significantly more robust and

more accurate than scoring functions, the accuracy is less than that

usually required in typical lead optimization applications to

differentiate highly similar compounds.
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Attempts have been made to reduce the weakness of a single

scoring function. In 1999, Charifson et al. introduced a consensus

scoring method [20]. Many studies have suggested that employing

consensus-scoring approaches can improve the performance by

compensating for the deficiencies of the scoring functions with

each other [19,20,21,22]. Although the rationale for consensus

scoring is still a subject of study, it has become a popular practice.

Compared with the calculation of free binding energy mentioned

above, the combination of three or four individual functions to

perform consensus scoring is a relatively cheap computational

method. Wang et al. carried out an idealized computer experiment

with three different ranking strategies (‘‘rank-by-number’’, ‘‘rank-

by-rank’’, and ‘‘rank-by-vote’’) to explore why the consensus

scoring method performs better than the single scoring function

[32]. However, the application of consensus scoring approaches is

not always practical under ideal conditions because many

obstacles prevent us from obtaining satisfied enrichment rates.

These obstacles are as follows: (1) the binding scores calculated by

the different scoring functions are typically given in different units

and signs; (2) the scoring functions employed in consensus scoring

often come from different categories; and (3) the linear relationship

between many scoring functions (i.e., one scoring function can be

expressed linearly by one or some other scoring functions).

In addition to the three ranking strategies introduced by Wang

et al., several groups employed another consensus scoring method

involving the linear combination of several scoring functions. In

the study by Guo et al., five commercially available scoring

function were weighted and summed to build a consensus score

[33] by training with a 53-molecule set. Verdonk et al. also

employed a linear combination of three scoring functions to re-

rank the compounds [34]. Although an improvement was found

for this consensus scoring method, the correlation between the

scoring function and the experimental binding affinity is relatively

poor. For a quantitative linear combination of the original scoring

functions, the method for determining the appropriate weighting

factors (correlation coefficients) for each scoring function is a

complex problem.

In this study, we present an alternative method, principal

component analysis (PCA) [35,36,37], for performing a linear

combination of multiple scoring functions, formulating a modified

ranking score and PCscore, and re-scoring and re-ranking the

compounds after virtual screening. PCA is a powerful tool for

pattern recognition, classification, modeling, and other aspects of

data evaluation [36]. In addition, PCA is a linear transformation

technique used to simplify a data set by reducing the dimension-

ality of multivariate data while preserving as much of the relevant

information as possible. The principal components (PCs) are linear

combinations of the original variables. The linear coefficients of

the inverse relationships of linear combinations are called the

component loadings. It represents the correlation coefficients

between the original variables and the PC. In the present study,

the first principal component (PC1) accounts for the maximum

variance (eigenvalue) in the original dataset. The second principal

component (PC2) is orthogonal (uncorrelated) to the first one, and

it accounts for most of the remaining variance. This procedure is

continued until the total variance is accounted for. The method of

PCA makes use of intercorrelations that originate from the

covariance matrix of the variables.

This work was performed as part of a project aimed at

identifying strong, selective inhibitors of b-secretase (BACE-1) to

overcome the shortcomings of the existing drugs to treat

Alzheimer’s disease (AD) [38,39,40]. It is generally accepted that

Alzheimer’s disease is caused by extracellular senile plaque

deposition and that the intracellular formation of neurofibrillary

tangles in the brain. b-amyloid peptides, which form the senile

plaques, are formed by the action of the b-secretase and c-

secretase enzyme on the amyloid precursor protein (APP)

[41,42,43]. The design of a lead compound that can inhibit APP

binding to the active site of BACE-1 will prevent the cleavage of

APP from the b-amyloid peptide and thus eventually prevent

senile plaque formation [44,45]. In the present study, the training

set is composed of 50 confirmed BACE-1 inhibitors and 9950

inactive compounds [46,47,48]. Three rank-based virtual screen-

ing methods, individual scoring, conventional consensus scoring

and PCA scoring were examined to identify BACE-1 inhibitors.

To validate the efficacy of PCA ranking method, after virtual

screening of 113,228 compounds (Sigma-AldrichH corporate

chemical directory) [49] and the BACE-1 fluorescence resonance

energy transfer (FRET) assay, we found two drug-like and low-

micromolar inhibitors.

Methods

1. Preparation of the Screening Library
For the training set, in order to reduce artificial enrichment

[34], a subset of WDI (World Drug Index) was specifically

designated as inactive molecules. Firstly, WDI was filtered to

eliminate compounds whose molecular weight was either less than

200 or greater than 800. In addition, the compounds whose log P

is larger than 7 and the number of rotatable bonds is more than 15

should be abandoned. Secondly, the remaining 37,843 WDI

compounds were subjected to diverse selection based on 2D

UNITY fingerprints. The dissimilarity selection was performed by

the Selector module in SYBYL, which resulted in 9950

compounds with a maximum Tanimoto index of 0.69. The active

set was compiled from a diverse selection of 50 BACE-1 inhibitors

from the total compounds available in the Prous Integrity Drugs &

Biologics database [50]. This library of 10,000 compounds as a

training set has an active content of 0.5%, which mimics real-life

screening situations.

In order to extend the application of the present study, a total of

113,228 compounds (Sigma-AldrichH corporate chemical directo-

ry, Z272000, 1997) [49] were used as the test set. Both the training

set and test set compounds were stored as a SYBYL SLN list and

converted to SYBYL mol2 format using Concord [51].

2. Preparation of the Protein Structure
The ligand-bound (1W51) structure of BACE-1 was used [52].

The procedure used to prepare the structure was as follows:

hydrogen was added, the protonation states were assigned, and a

highly limited optimization was performed to reduce bad contacts

and the overall strain energy in the protein structure. The

aspartate located on the active site was adjusted to an ideal

protonation state, the Asp32 was protonated, the Asp228 was

ionized [46].

3. Docking and Scoring
Virtual screening experiments were performed using the Surflex

docking program [7,53,54] with an empirical scoring function

(based on the Hammerhead docking system). The empirical

scoring function has been updated and re-parameterized with

additional negative training data along with a search engine that

relies on a surface-based molecular similarity method. Standard

parameters were used as implemented in the SYBYL software

(version 8.1) [51]. The search strategy of Surflex employs an

idealized ligand (called protomol), which utilizes various molecular

fragments. Molecular fragments were tessellated in the active site

and optimized based on the scoring function. The search
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algorithm utilized the morphological similarity function, which is

evaluated between the protomol and the putative ligands. For the

docking algorithms, a post-dock minimization procedure was

applied using the BFGS quasi-Newton method and an internal

Dreiding force field. For each compound, the top 30 ranked poses

were saved.

Five scoring functions in SYBYL, including D_Score [55],

G_Score [9], ChemScore [56], Surflex_Score [7,53], and

PMF_Score [57,58], were applied to extract the stored poses.

Next, five pose groups were produced, with each pose group

containing 10,000 compounds.

For pose ranking, we use 12 scoring functions including the five

scoring functions (D_Score, G_Score, ChemScore, Surflex_Score,

and PMF_Score) from the SYBYL software and the seven scoring

functions (LigScore1 [17], LigScore2 [17], PLP1 [59], PLP2 [59],

jain [60], Ludi_1, and Ludi_2 [61,62]) from the Discovery Studio

software (version 2.1) [63]. Although the five pose groups

generated by Surflex have been post-minimized using the internal

Dreiding force field, these five pose groups were further minimized

in the protein environment using the CFF force field [64] when the

seven scoring functions were used for scoring by the Discovery

Studio software.

All high-throughput docking calculations were performed on a

Linux cluster using the CentOS 5.4 operating system.

4. Consensus Ranking
In this study, we adopted the ‘‘rank-by-number’’ strategy in the

consensus scoring to combine the results of multiple scoring

functions. The ‘‘rank-by-number’’ strategy was previously found to

outperform the ‘‘rank-by-rank’’ and ‘‘rank-by-vote’’ strategy

because it can summarize most of the information [32]. For the

‘‘rank-by-number’’ strategy, the consensus score of each binding

pose is an average of the values determined by each of the

individual scoring functions in a given consensus scoring scheme.

With this strategy, a moderate number of scoring functions (i.e.,

three or four) have been proposed to be sufficient for significantly

improving the results. Therefore, we chose 4 of the 12 scoring

functions (D_score, jain, and Ludi_1, Surflex_Score) to perform

consensus scoring in the present study.

Because the binding scores calculated by the different scoring

functions are typically given in different units, it is almost

impossible to compute consensus scores simply by summing up

the binding scores determined by each of the individual scoring

functions. Therefore, we scaled the binding scores of each scoring

function to unit variance and centered (i.e., the mean value is zero,

the standard deviation is one). The Z-scaled scoring function

values (ZScore) are computed by

ZScore~
fi{m

s

where fi is the scoring value of a certain scoring function, m is the

mean value and s is the standard deviation of this scoring function

observed for the entire test set. The consensus score in a certain

pose group is the average of ZScore by 4 individual scoring

functions mentioned above in the given consensus-scoring scheme.

5. Principal Component Analysis of the Scoring Results
We describe PCA mathematically as described below.

Consider p random variables X1, X2, …, Xp, the original

system can be rotated to form a new coordinate. Let S be the

covariance matrix associated with the random vector X9 = [X1,

X2, …, Xp]. The corresponding eigenvalue-eigenvector pairs are

(l1, e1), (l2, e2), …, (lp, ep), and the ith principal component is

given by:

PCi~e0iX~ei1X1zei2X2z:::zeipXp,

i~1,2,:::,p
ð1Þ

Then

Var(PCi)~e0iSei~li

i~1,2,:::,p
ð2Þ

Thus, the principal components are uncorrelated, and their

variances are equal to the eigenvalues of S.

Another property of the principal components is:

Var(X1)z:::zVar(Xp)~l1zl2z:::zlp~Var(PC1)

z:::zVar(PCp)
ð3Þ

Then the proportion of the total population variance due to the kth

PC is:

~lk=(l1zl2z:::zlp)

k~1,2,:::,p:
ð4Þ

Consequently, if most of the total population variance for large p

can be attributed to the first two or three components, then these

first two or three components could serve as a substitute for the

original variables with a minimal loss of information. Moreover, if

the weight of the last PCs occupied a highly trivial part of the total

population variance, then the last PCs can be neglected (i.e., set to

zero).

In the present study, there were five extracted pose groups, and

we used only eight scoring functions, which included LigScore1,

PLP1, jain, Ludi_1, D_Score, G_Score, ChemScore, and Sur-

flex_Score, to perform the PCA for each group (The details are

mentioned in the results section). Thus, for the training set, the

eight scoring functions were used as the variables (i.e., columns of

the matrix) and 10000 compounds were arranged in the rows of

the matrix. Then the 1000068 correlation matrix was established.

Because the scoring functions in our test produce binding scores

with different units and signs, the signs of the binding scores

produced by LigScore1, PLP1, jain, Ludi_1, D_Score, G_Score,

and ChemScore were reversed to ensure that positive binding

scores always indicated higher binding affinities. All of the binding

scores were scaled to unit variance and centered. Thus, each

column of data had an average of zero and a standard deviation of

one.

For each of the five scoring function extracted poses, we have

calculated the eigenvalues and cumulative contribution rate. The

first three principal components were extracted. Each principal

component is a linear combination of eight Z-scaled scoring

functions, which formulate a modified ranking score function,

PCscore. PCscore is set to re-score and re-rank the extracted poses

from each of the five scoring functions. PCscore can be written as

follows:

Principal Component Analysis for Virtual Screening
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PCiScore~
Xn

i~1

Wip�ZScorep

i~1,2,:::,p

ð5Þ

Where the n terms, ZScorep, are the Z-scaled scoring function,

and the coefficients, wip, are the loading values (i.e., the elements

of p principal component eigenvector ep). For example, for

PC1score

PC1score~W11 � Z(Surflex Score)zW12 � Z(G Score)

zW13 � Z(D Score)zW14 � Z(ChemScore)

zW15 � Z(LigScore1)zW16 � Z(PLP1)

zW17 � Z(Jain)zW18 � Z(Ludi 1)

ð6Þ

The linear coefficient values (loading values) for w11, w12 … w18

were the elements of the first principal component eigenvector, e1.

In the present study, an SPSS version 16.0 statistical analysis

package (SPSS Inc.) was used to normalize and calculate the

principal components for all of the scoring data.

6. BACE-1 Enzymatic Assay
After virtual screening of the test set, 40 chemical compounds

(Sigma-Aldrich Co. LLC) were purchased for experimental test

through fluorescence resonance energy transfer (FRET) assay

based on the results of conventional consensus scoring and PCA

scoring. According to the previously described method [65],

during the assay, compounds were diluted to 8 different

concentrations and incubated 60 minutes at room temperature.

Additional measurements were performed in the presence of

detergent or with an incubation time of only 3 min to check for

nonspecific effects (e.g., compound aggregation [66,67]). Briefly,

fluorescence progress curves of 30 mL reaction volumes were

measured on a Gen5TM ELISA reader (BioTekH Instruments,

Inc.) upon excitation at 545 nm and emission at 580 nm in 384-

well microtiter plates (Corning, 3654). Linear regression analysis

was calculated with the SPSS 16.0 software.

Results

1. Individual Performance of Scoring Functions
Upon docking 10,000 compounds of the training set with

Surflex, every compound yields 30 poses in the active pocket of the

target (1W51), and no solution was found on the outside of the

active pocket. After docking, we used five scoring functions to

extract the pose and twelve scoring functions to rank the extracted

poses resulting in 60 different scoring combinations. The top 1%

of the ranked database was set as the threshold value, that is, the

evaluation of the effectiveness of the scoring protocols involved

numbering the actives for the top 100 candidates. The enrichment

rates of the scoring protocols are presented in Table 1.

The best-scored pose was always used to represent the plausible

binding mode of a particular compound. In many cases, the pose

varied from one to another as dictated by the separate scoring

functions. Inspection of each scoring function in Table 1 indicated

that the quality of the extracted poses is similar. No single scoring

function outperforms the others with respect to the extraction. The

Surflex_Score provided reliable poses that were ranked best by

D_Score and jain. The D_Score and ChemScore provided

reliable poses that were ranked best by Ludi_1.

For the pose ranking, it appears that the ranking by Ludi_1

retrieved more actives than the other scoring functions. Ludi_1

retrieved 20 inhibitors with D_Score and ChemScore pose

extraction and 18 inhibitors with Surflex_Score and G_Score

pose extraction. Ludi_1 was derived by empirically fitting a set of

protein-ligand complexes with experimentally measured binding

affinities. It is a sum of the five contributions including hydrogen

bonds, perturbed ionic interactions, lipophilic interactions, the

freezing of internal degrees of freedom of the ligand, and the loss

of translational and rotational entropy of the ligand.

At the same time, D_Score also performs well for ranking the

docking poses. It retrieved 20 inhibitors with Surflex_Score and 19

inhibitors with PMF_Score pose extraction. This good perfor-

mance can be attributed to D_Score providing the most accurate

approximation of the binding energy where both the electrostatic

and hydrophobic contributions to the binding energy are counted.

In addition, a distance-dependent dielectric attenuates the charge-

charge, and other polar interactions were considered.

PMF_Score also provided reliable poses that were ranked best

by D_Score. It yields 19 actives in the top 1% of the ranked list.

However, it failed to rank any sensible docking poses regardless of

what poses were extracted by itself or by the other scoring

functions. Thus, for the BACE-1 target, PMF_Score appears to be

more capable of accurately docking and correctly identifying the

true binding mode, but the disadvantage of PMF_Score is the

enrichment of active compounds.

Inspection of Table 1 demonstrates that two paired scoring with

LigScore1 & LigScore2 and PLP1 & PLP2 retrieved an equal

number of active compounds. It is not surprising that both

Ligscore1 & Ligscore and PLP1 & PLP2 use the same scoring

functions with only slightly different algorithms and parameters

sets [68].

There are three different versions of Ludi (i.e., Ludi_1, Ludi_2,

Ludi_3) [61,62,69]. According to the Discovery Studio user

manual, only the weight factors employed by Ludi_2 for each term

are derived by fitting to experimentally determined binding

affinities. In fact, all three versions were tested for enrichment rates

of virtual screening against BACE-1 in our study, and we found

that Ludi_1 outperforms the other two versions.

2. Correlation Matrix
Prior to re-ranking the results from the virtual screening using

consensus scoring and PCA, the intercorrelations between the

scoring functions mentioned above were investigated. The original

data of each scoring function were scaled to unit variance and

centered. The correlations between the binding scores computed

by the 12 scoring functions are summarized in Table 2.

For the four scoring functions (i.e., Ligscore1, Ligscore2, PLP1

and PLP2), Table 2 exhibited a high correlation between any two

of them. The correlation was higher for LigScore and PLP

(R = 0.97,0.98) because they belong to the empirical scoring

function category and the sum of the pairwise linear potentials

between the ligand and the protein heavy atoms with parameters is

dependent on the interaction type.

In addition, Ludi_1 and Ludi_2 also exhibited a very high

correlation (R = 0.911). However, the correlation coefficients

between Ludi and the other functions, such as PLP and LigScore,

were smaller because the master equations that describe the

binding free energy used in Ludi are different from those used in

the PLP and LigScore functions. In addition, the algorithms vary

for the same term in the master equation, such as hydrogen

bonding and hydrophobic effect.

Furthermore, there was a higher correlation between G_Score

and D_Score (R = 0.771). We were not surprised by this result

Principal Component Analysis for Virtual Screening
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because both functions are in the same category, both of their

algorithms adopted force-field-based methods that estimate the

enthalpic contribution upon binding, and both of them use a very

similar treatment of the energy terms.

As depicted in Table 2, moderate correlation was exhibited by

Surflex_Score and either the D_Score or the G_Score function;

between D_Score and the ChemScore, LigScore1, LigScore2,

PLP1, or PLP2 function; and between Jain and the LigScore1,

LigScore2, or PLP2 function. This is consistent with virtually all of

the scoring functions being designed to reflect the basic features in

protein-ligand interactions including hydrogen bonds and hydro-

phobic contacts. Moreover, the binding scores computed by these

scoring functions are all correlated, to some extent, to the known

binding constants. Therefore, some intercorrelation between them

is natural.

PMF shared the least with all of the other scoring functions. Its

unique knowledge-based algorithm parameterized using crystal

complexes is different from the rest of the scoring functions being

considered [57,58].

3. Consensus Scoring
The hit-rates observed among the top 1% of the screening set

using the ‘‘rank-by-number’’ strategy are shown in Table 3. By

comparing the performance of all of the consensus ranking

schemes tested, it appears that the consensus ranking does

statistically outperform the best of the individual scoring function.

The Surflex_Score pose extracted group produced 24 hits in the

top 1% of the screening set when the quadruple-scoring scheme

was applied. The improvements are not trivial. The best individual

scoring function, jainScore, produces only 20 hits in the top 1% of

the screening set.

Our results are in agreement with the previous study, which

suggested that, in theory, combining multiple scoring functions

should always provide improved performance over individual

scoring functions in simulated virtual screening experiments [32].

According to the present results, we cannot definitively conclude

that more scoring functions result in a better performance. For

example, application of double-scoring schemes (e.g., Surflex_S-

core&D_Score) could also obtain 24 hits in the top 1% of the

screening set, which is the same result obtained using the

quadruple-scoring scheme. However, it is important to note that

double-scoring schemes do not outperform the best individual

scoring function in all cases. For example, Surflex_Score&jain

could obtain only 19 hits, which is slightly less than the 20 hits

obtained from the single scoring function, jain. Therefore, it is

largely unpredictable which combinations of scoring functions

would produce the optimal results. In practice, it is better to test all

possible combinations of scoring functions on the appropriate

samples.

Some studies have shown that consensus ranking does not

outperform the best individual scoring function [70,71]. They

argued that if one knew in advance which scoring functions

worked best for a given target, the better performance could be

achieved using this scoring function alone and by concentrating on

only the highest ranking compounds. Given the contradiction

between their arguments and our results, we explained as followed:

Firstly, the three scoring functions (D_Score, jain, Ludi_1) that

we chose performed the best in single scoring. It is important to

consider which scoring functions should be chosen to perform

consensus scoring. We used an additional four scoring functions to

perform consensus scoring, but the performance was not as good

as the four functions that we chose. Due to the variation in the

performance of the different scoring functions, blindly choosing

scoring functions to perform consensus scoring will decrease the

enrichment rates. Secondly, the four scoring functions that we

chose were independent of each other. It is reasonable to expect

that an effective consensus scoring scheme would combine

complementary scoring functions rather than highly correlated

ones. As indicated in Table 2, if the consensus scoring schemes

contained Ligscore1 and Ligscore2 as well as PLP1 and PLP2, it

would perform poorly compared to the other schemes. Thirdly,

Verdonk et al. performed a computational experiment on the

simulated effect of consensus ranking with an increasing number of

scoring functions using the rank-by-number protocol [34]. They

noted that if the first scoring function performs well (standard

deviation = 1.0), then adding additional scoring functions (stan-

dard deviation = 3.0) to perform consensus ranking can reduce the

enrichment rates compared to the most accurate single scoring

function. The main reason for this phenomenon was that noise

was added to the protocol. However, if all of the scoring functions

have a standard deviation of 2.0, then adding extra scoring

functions to the consensus ranking protocol always improves the

enrichment rates. In our study, all of the binding scores were

scaled to unit variance and centered, which was consistent with the

results reported by Verdonk et al [34].

In summary, our present results suggest that application of

triple-scoring and quadruple-scoring schemes are more robust and

accurate than any single scoring procedure.

4. Principal Component Analysis
Principal component analysis (PCA) can extract information

from large-scale scoring data and decompose multiple scoring

functions into one or two scoring functions, which can be used to

re-score and re-rank the compound binding poses. As mentioned

above, the PLP1&PLP2, ligscore1&ligscore2 and Ludi_1&Ludi_2

have high relative between each other. In addition, PMF_Score

failed to rank any sensible docking poses. Thus, we do not use

these four scoring functions in the following study. We constructed

Table 1. Numbers of BACE-1 Inhibitors Retrieved in the Top 1% of the Ranked Database.

Pose extracted Pose ranked

Surflex_Score G_Score D_Score ChemScore PMF_Score LigScore1 LigScore2 PLP1 PLP2 jain Ludi_1 Ludi_2

Surflex_Score 16 19 20 13 2 16 16 15 15 20 18 12

G_Score 17 17 15 11 2 12 12 9 9 17 18 13

D_Score 16 15 14 10 4 11 11 10 9 15 20 17

ChemScore 19 13 14 14 2 15 15 14 14 15 20 13

PMF_Score 14 16 19 8 6 16 16 15 15 14 15 10

doi:10.1371/journal.pone.0038086.t001
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five 1000068 matrices using the remaining eight scoring functions

as the matrix column and the 10000 compounds as the raws. Then

the matrix was transformed such that each column of data had an

average of zero and a standard deviation of one.

As observed from Table 4, we can derive eight uncorrelated

descriptors (the principal components) from each scoring matrix.

The weight of each principal component was determined based on

their contribution rate to the variance (eigenvalues, l). We found

that the first three principal components (PC1, PC2, PC3) account

for .80% of the total variance for each pose group. The PC4,

PC5, PC6, PC7, and PC8 could be omitted in further studies due

to their trivial contribution to the total variance. This result is in

agreement with the aim of introducing PCA to significantly

minimize the number of variables and to omit the principle

components with low variance that will not affect the total

variance.

These principal components may lack physical meaning by

themselves because they may act as statistical descriptors.

Nevertheless, we could still assess the physical meaning of each

PC according to the energy terms of each scoring function. To the

best of our knowledge, the physical meaning of PC1 could be

attributed to van der Waals interactions, the physical meaning of

PC2 could be attributed to electrostatic interactions, and the

physical meaning of PC3 could be attributed to the hydrophobic

interactions between the protein and ligands.

The loadings express how well the new abstract principal

components correlate with the old variables. Loading values (i.e.,

correlation coefficients) .0.7 are marked in boldface type in

Table 5. For the first new abstract principal component, PC1

accounts for approximately 56% of the total variance. All of the

original scoring functions have a positive correlation with PC1.

The loading values of the eight original variables in PC1 were

small and approximately equal to each other, which means none

of them plays a dominant role in the explanation of PC1, i.e., for

van der Waals interactions.

PC2 accounts for approximately 15% of the total variance. It

negatively correlates with Ludi_1, ChemScore, LigScore_1, and

PLP1. Among the eight loads in PC2, Ludi_1 exhibits the

maximum value (0.64, 0.74, 0.72, 0.73, 0.78) for each of the five

pose group. It indicates that Ludi_1 plays a dominant role in the

explanation of PC2, i.e., electrostatic interactions. Therefore, this

result demonstrated that the greatest contribution to the electro-

static interactions in the receptor-ligand originates from the ludi_1

function.

PC3 accounts for approximately 11% of the total variance. It is

interesting to note that PC3 negatively correlates with Surflex_-

Score, D_Score, G_Score, and ChemScore (SYBYL software) but

positively correlates with PLP1, LigScore1, jain, and Ludi_1

(Discovery Studio software).

The first two PC loadings against each other are shown in

Figure 1. Because the PCA is invariant to the mirroring through

the origin, the data shown here indicate that there is a significant

correlation between LigScore1 and PLP1. Likewise, the correla-

tion between G_Score and D_Score in relation to the data is

unambiguous and significant. There is no need to measure and

evaluate all of the variables to achieve the same characterization in

further studies. It is sufficient to measure one variable per group.

The present results show that Jain contains nearly the same

information as D_Score and has low loading on PC2. Because

PC2 could be attributed to electrostatic interactions between the

protein and the ligands, Jain has no significant influence on the

electrostatic interactions between the protein and the ligands.

Among the eight loads in PC2, Ludi_1 exhibits the maximum
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value (Figure 1), which means Ludi_1 plays a significant role in the

description of PC2.

According to Eq 5, the PC is a linear combination of multiple

original variables. Therefore, we can formulate the first three

PCscore scoring functions for each pose group from the data in

Table 5. For example, for the poses extracted by Surflex_Score,

the first PC scoring function was:

PC1score~0:356 � Z Surflex Scoreð Þz0:38 � Z G Scoreð Þ

z0:416 � Z D Scoreð Þz0:325 � Z ChemScoreð Þ

z0:39 � Z(LigScore1)z0:384 � Z(PLP1)

z0:334 � Z(Jain)z0:193 � Z Ludi 1ð Þ

ð7Þ

While the second PC scoring function was:

PC2score~0:322 � Z Surflex Scoreð Þz0:14 � Z G Scoreð Þ

z0:05 � Z D Scoreð Þ{0:178 � Z ChemScoreð Þ

{0:337 � Z(LigScore1){0:352 � Z(PLP1)

z0:034 � Z(Jain)z0:635 � Z Ludi 1ð Þ

ð8Þ

Then the third PC scoring function was:

PC3score~{0:182 � Z Surflex Scoreð Þ{0:314 � Z G Scoreð Þ

{0:208 � Z D Scoreð Þ{0:549 � Z ChemScoreð Þ

z0:274 � Z(LigScore1)z0:282 � Z(PLP1)

z0:53 � Z(Jain)z0:299 � Z Ludi 1ð Þ

ð9Þ

Next, the docked compounds are re-scored and re-ranked using

the PCscore scoring functions as mentioned above. The

enrichment rates are also determined by noting the numbers

of active compounds retrieved in the top 1% of the ranked

database (Table 5). When comparing the enrichment rates from

PC1score to the results obtained from a single scoring function

or conventional consensus scoring functions, PC1score exhib-

ited better performance for the enrichment rates regardless of

the scoring function employed to extract the compound pose.

For example, PC1score yields 26 active compounds in the

Surflex_Score and PMF_Score pose group, which outperforms

both the single scoring function with 20 or less active

compounds and the consensus scoring method with 24 active

compounds.

As indicated in Table 5, application of PC1score results in more

active compounds than the application of PC2score and PC3score

for each of the five pose group due to the descriptiveness of the first

Table 4. The eigenvalues and cumulative contribution rate of each five scoring function extracted poses.

Component Pose extracted

Surflex_Score G_Score D_Score ChemScore PMF_Score

l % of Variance l % of Variance l % of Variance l % of Variance l % of Variance

PC1 4.551 56.885 4.425 55.316 4.402 55.029 4.466 55.824 4.506 56.322

PC2 1.25 15.623 1.218 15.221 1.163 14.533 1.187 14.839 1.229 15.361

PC3 0.924 11.556 0.931 11.631 0.923 11.542 0.888 11.095 0.876 10.95

PC4 0.405 5.059 0.538 6.721 0.56 6.995 0.571 7.135 0.487 6.084

PC5 0.334 4.17 0.411 5.139 0.41 5.119 0.395 4.943 0.38 4.756

PC6 0.315 3.938 0.308 3.846 0.312 3.896 0.287 3.585 0.301 3.764

PC7 0.197 2.457 0.15 1.871 0.205 2.557 0.184 2.295 0.201 2.511

PC8 0.025 0.313 0.02 0.254 0.026 0.329 0.023 0.286 0.02 0.252

doi:10.1371/journal.pone.0038086.t004

Table 3. Enrichment Rates of Consensus Scoring Schemes in the ‘‘Rank-by-Number’’ Experiments (in the Top 1% of the Ranked list,
Surflex_Score pose extracted group).

Scoring function
Enrichment
rate Double scoring

Enrichment
rate Triple scoring

Enrichment
rate Quadruple scoring

Enrichment
rate

A 16 A+B 24 A+B+C 23 A+B+C+D 24

B 20 A+C 19 A+B+D 23

C 20 A+D 18 A+C+D 22

D 18 B+C 23 B+C+D 23

B+D 22

C+D 22

aA = Surflex_Score; B = D_Score; C = jain; D = Ludi_1.
doi:10.1371/journal.pone.0038086.t003
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principal component, which shares the maximum amount of the

whole variance followed by the decreasing descriptiveness of the

other PCs. We did not obtain any active compounds in the top 1%

of the ranked database using PC3score because the values of the

eigenvalue of PC3 were ,1.

The PCA can illustrate the relationship between the different

compounds and the different scoring functions. The compounds

can be plotted in the space defined by two PCs (score plot,

Figure 2), which identifies active compounds as a function of

inactive compounds. The values of the scores can be understood as

the values of the compound in the new variable space, i.e., the

principal component space. In Figure 2, active compounds are

depicted as red circles, and inactive compounds are depicted as

black squares. The results showed that most of the data were

scattered along the PC1 axis. The scattering variation along the

PC1 axis is larger than that along the PC2 axis, which corresponds

to the values of eigenvalue and reflects the descriptive power of

first two PCs scores.

Because the new variable space is normalized with zero mean,

the most active compounds, which are farther from the origin,

have values significantly different from the mean and can be

considered outliers. Moreover, we found that the scattering

positions of the true BACE-1 inhibitors are located on the right

side of the PC1 axis indicating that PC1 plays a significant

discriminating role among active and inactive compounds. As for

the PC2 axis, all of the data were scattered in a narrow area

from -3 to 3, and the discriminating power among active and

inactive compounds was weaker.

Figure 1. Principal component loadings. Loading 1 versus loading 2.
doi:10.1371/journal.pone.0038086.g001

Table 5. Loading values (i.e., correlation coefficients).

Pose extracted Pose ranked

Surflex_Score G_Score D_Score CHEM_Score PMF_Score

Loading value PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Surflex_Score 0.356 0.322 20.182 0.276 0.484 20.224 0.278 0.457 0.239 0.272 0.46 20.197 0.311 0.379 20.233

G_Score 0.38 0.14 20.314 0.42 0.001 20.217 0.413 20.01 0.197 0.418 20.018 20.238 0.419 20.007 20.176

D_Score 0.416 0.05 20.208 0.41 0.102 20.295 0.391 0.064 0.351 0.387 0.084 20.378 0.38 0.123 20.359

ChemScore 0.325 20.178 20.549 0.318 20.228 20.575 0.322 20.27 0.54 0.349 20.225 20.481 0.335 20.208 20.512

LigScore1 0.39 20.337 0.274 0.407 20.331 0.289 0.412 20.296 20.296 0.41 20.296 0.296 0.41 20.295 0.28

PLP1 0.384 20.352 0.282 0.4 20.348 0.299 0.405 20.315 20.304 0.402 20.319 0.302 0.403 20.318 0.292

Jain 0.334 0.034 0.53 0.4 0.073 0.508 0.338 0.093 20.53 0.334 0.089 0.556 0.337 0.099 0.57

Ludi_1 0.193 0.635 0.299 0.198 0.74 0.229 0.219 0.72 20.164 0.198 0.73 0.2 0.159 0.775 0.185

hit-rates* 26 9 0 21 8 0 21 5 0 24 9 0 26 10 0

*Numbers of BACE-1 inhibitors retrieved in the top 1% of the ranked database.
doi:10.1371/journal.pone.0038086.t005
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Figure 2. Two-dimensional score plot of the principal component analysis of the screening library set (50 known inhibitors and
9950 non-inhibitors) formed by the two most important principal component scores (PC1score versus PC2score) derived from the
scoring data. Known inhibitors are depicted as red circles, non-inhibitors as black squares. A: Surflex_score extracted poses. B: D_Score extracted
poses. C: G_Score extracted poses. D: ChemScore extracted poses. E: PMF_Score extracted poses.
doi:10.1371/journal.pone.0038086.g002
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5. BACE-1 Enzymatic Assay
To further investigate the validity of docking based virtual

screening, after virtual screening of 113,228 compounds against

BACE-1 by Surflex, we employed conventional consensus scoring

and PCA scoring protocol to select compounds for experiment test

against BACE-1. Standing the view of economic point, the

number of compounds to be tested in computational docking

studies should be restricted in a smaller and reasonable range,

therefore, we used several filters to the select the final compounds

in Surflex_score extracted pose for experiment.

In an initial attempt, we employed conventional consensus

scoring protocol to select the potential inhibitors. Firstly, we

selected the top 300 compounds according to the ranking results of

the conventional consensus scoring protocol, e.g., quadruple-

scoring scheme (Surflex_Score&D_Score&jain&Ludi_1); Second-

ly, visual inspection has been given to all individual complexes for

the top 300 compounds, Surflex provides interaction information

between the protein and ligand for each docking experiment, only

those compounds with interactions to the catalytic residues (Asp32

and Asp228) and other relevant residues are extracted; Thirdly, to

remove unsuitable compounds that would not reach and pass the

clinical trials due to undesired and toxic properties, the so-called

Lipinski ‘‘Rule-of-five’’ [72], a very popular method was used to

evaluate the drug likeness of a candidate structure. Finally, 20

drug-like compounds were selected to purchase from Sigma-

Aldrich Co. LLC. By the BACE-1 fluorescence resonance energy

transfer (FRET) assay, disappointingly, no inhibitor was found

among the compounds selected by the conventional consensus

scoring protocol.

Based on the theory that PCA can summarize most of the

information from the original scoring functions, we employed

PC1score to re-rank the 113,228 Surflex_score extracted poses, as

mentioned above, PC1score is a linear combination of eight

scoring functions (Surflex_Score, G_Score, D_Score, ChemScore,

LigScore1, PLP1, Jain and Ludi_1). By the same filter protocol as

the conventional consensus scoring, another 20 drug-like com-

pounds were select for purchase among the top 300 compounds.

Excitingly, this time two compounds (S450588 and 276065), with

a remarkable 10% hit rate, emerged as the BACE-1 inhibitors in

the low-micromolar range, showing IC50 values of 51.6 and

85.3 mM, respectively (Table 6). The chemical structures of these

two compounds were showed in Table S1.

As depicted in Figure 3A, after compound 1 docking into 1W51

structure, the protonated 2-NH3 group of the lysine moiety form

hydrogen bond with Asp228, Gly230 and Thr231, respectively,

the 6-NH group form hydrogen bond with Tyr198. The benzyl

ring (P1) fills the S1 pocket shaped by the Tyr71, Phe108, and

Trp115 residues, while carbobenzyloxy moiety (P29) fills the S29

pocket shaped by the Tyr71, R128, and Y198 residues, so as to

allow the carbonyl group to form hydrogen bond with the Thr72

residue, the benzyl group to establish a cation-p interaction with

the guanidine group of Arg128.

As depicted in Figure 3B, in the catalytic site, for the small size

and symmetric overall shape of compound 2, one of the hydroxyl

group of the tartaric diamide core are involved in hydrogen bonds

with the side chain of the catalytic Asp32 and Asp228,

respectively, whereas the other hydroxyl group form hydrogen

bond with Thr72, and one of the amide group form hydrogen

bond with Gly230. Both sides of compound 2 are benzyl groups,

one of the benzyl group occupy the S2 pocket shaped by the

Asn233, Arg235 and Ser325 residues, the other benzyl group

occupy the S29 pocket, establish a cation-p interaction with the

guanidine group of Arg128.

Discussion

BACE-1 is one of the major Alzheimer’s disease target

[38,39,40]. To find novel BACE-1 inhibitors, a lot of academic

research centres and pharmaceutical industries are quite active in

this field. Merck research group performed in vitro high-

throughput screening (HTS) and found a single molecule (a

1,3,5 trisubstituted benzene) as a hit from a multi-million

compound library [73]. Johnson and Johnson also reported a

novel cyclic guanidine screening lead, the initial screening lead

had an IC50 value of 900 nM [45]. Astex Therapeutics has taken a

fragment-based lead generation approach [74]. After the virtual

screening of a fragment library, a small number of potential

structures were soaked with BACE-1 crystals in anticipation of

obtaining a co-crystal with the enzyme. Huang et al. performed in

silico Screening of 180,000 small chemicals, they found 10

diacylurea inhibitors showed an IC50 value lower than 100 mM

in a enzymatic assay and four of them were cell penetrant

(EC50,20 mM) [75].

Despite the availability of many reliable in silico approaches and

robust in vitro commercially available assays, discovering BACE-1

inhibitors still remains a challenging task. In the present study,

based on the virtual screening of 10,000 compounds of training

set, the PCA approach yielded consistently superior rankings

compared to conventional consensus scoring and single scoring. By

virtual screening of 113,228 compounds, and application of PCA

approach to re-rank the score list, two drug like BACE-1 inhibitors

were emerged as an effective low-micromolar inhibitors. It

suggested that the application of PCA provides a more robust

strategy for ranking compounds. The advantages of PCA are as

follows.

First, PCA is efficient. For each five pose group, the application

of PCA can result in superior enrichment of known inhibitors

compared to either the conventional consensus scoring or the best

individual scoring. In addition, the application of PCA for post-

processing of the scoring data from virtual screening was not time-

consuming. Second, PCA is reliable. PCA is mainly useful when

there is limited knowledge about the target and its inhibitors. If we

have no idea which scoring function would return the best

enrichment rates (i.e., several known active compounds are

required to determine the best scoring functions), then adopting

PCA to formulate a new scoring function can provide better

performance than blindly using a scoring function or some

combination scoring functions when performing virtual screening

Table 6. Structures of Compounds Showing Inhibitory Activity against BACE-1.

Molecule ID Name MW (g mol-1) IC50 (mM)

1 S450588 N-6-Carbobenzyloxy-L-Lysine Benzyl Ester Hydrochloride 406.9 51.6

2 276065 (2)-N,N9-Dibenzyl-D-tartaric diamide 328.4 85.3

doi:10.1371/journal.pone.0038086.t006
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of an uncertain protein. Third, PCA is economical. The

objectivity of PCA is due to the fact that it relies entirely on the

input data itself instead of developing new scoring functions. In

this study, we have employed only an alternative method to exploit

the utility of present scoring functions. Bioactive information on

active compounds, such as Ki and IC50, and training with a data

set were not necessary.

When a training set was available, there are several other groups

that perform a different type of post-docking processing using

statistical methods and data mining. Wilton et al. discussed the use

of several rank-based virtual screening methods, such as binary

kernel discrimination, similarity searching, sub-structural analysis,

support vector machine (SVM), and trend vector analysis, for

prioritizing compounds in lead-discovery programs [76,77].

Jacobsson et al. employed three different multivariate statistical

methods including PLS discriminant analysis, rule-based methods,

and Bayesian classification to analyze multidimensional scoring

data from four different target proteins (i.e., the estrogen receptor

R (ERR), matrix metalloprotease 3 (MMP3), factor Xa (fXa), and

acetylcholine esterase (AChE)). The classifiers that they built

showed that the precision is approximately 90% for three of the

targets and approximately 25% for acetylcholine esterase for

correctly predicting an active compound [78]. The difference

between our work and their’s is that we do not need a training set

because PCA is a form of unsupervised learning and relies entirely

on the input data itself. In addition, PCA is simpler than the

methods mentioned above (SVM, trend vector analysis, PLS

discriminant analysis, rule-based methods, and Bayesian classifi-

cation).

With eight different scoring functions, Terp et al. docked a set of

known inhibitors to three different matrix metalloproteases. They

obtained scores analyzed using PCA and partial least-squares

methods (PLS) [79]. The regression model they built has a good q2

for predicting the activity of active compounds. The major

difference between the present work and the work performed by

Terp et al. is that we performed structure-based virtual screening

on both active and inactive compounds. Terp et al. included only

known inhibitors to quantitatively predict the binding affinity.

They did not discuss whether the docking scores have been

calculated from a docking mode of an inactive compound that

does not actually bind. In the virtual screening process, more

attention is focused on how to identify promiscuous active

compounds in a database of mainly inactive compounds rather

than on how to rank a set of known binders (i.e., predicting the

binding affinity of the different active compounds).

It should be emphasized the necessity of experimental

validation for potential researchers, because no ranking method

may help if not associated with verification in the experiment. In

an initial attempt, we applied the conventional consensus scoring

method to re-rank the score list and experimental test through

BACE-1 FRET assay, no inhibitor was found. However, when

we applied the PCA scoring method and experimental test

through BACE-1 FRET assay, a remarkable 10% hit rate was

achieved. On this basis, we summed up some experience as

followed: when virtual screening of a new chemical database, the

potential researchers usually do not know which kind of

individual scoring function work best for the target protein,

furthermore, for consensus scoring protocol, they are uncertain

which kind of scoring functions should be used to combine for

getting the best enrichment rates. Once trapped in this dilemma,

the researchers could use PCA scoring protocol to re-rank the

results from the virtual screening, a prominent advantage of

application of PCA scoring protocol can summarize most of the

information from the original scoring functions and improve the

enrichment rate, which has been proved to be robust and reliable

in the present study.

In conclusion, although the PCA approach is not intended to

improve all aspects of virtual screening, such as generating more

accurate binding poses, it extends conventional consensus scoring

in a quantitative statistical manner, therefore, it has great potential

for use in the virtual screening process. Future experiments are

needed to further analyze the performance of PCA for other

receptor binding sites. We believe that the two low-micromolar

inhibitors described here may represent a starting point for finding

potent and selective molecules capable of preventing BACE-1

activity for the treatment of Alzheimer’s disease.

Figure 3. Binding modes of compounds in the BACE-1 catalytic site (PDB entry: 1W51). A: compound 1. B: compound 2. The compounds
are rendered in green stick models, and the residues are rendered in orange sticks. Hydrogen bonds between compounds and residues are
highlighted by yellow dashed lines. Pictures were generated with PyMOL (http://www.pymol.org).
doi:10.1371/journal.pone.0038086.g003
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