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ABSTRACT Here, we present a 16S rRNA gene amplicon sequence data set and profiles
demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from
Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and
female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae
were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phy-
lum Firmicutes).

Members of Calliphoridae (blowflies) are economically important for medical and
veterinary management worldwide (1). Larvae of this fly invade their animal host,

feed on tissues and excretions, and progressively cause severe skin disease, commonly
referred to as flystrike (myiasis) (2, 3). Currently, control relies heavily on the prophylac-
tic application of long-acting chemicals to all sheep, but this approach is increasingly
under threat due to the development of resistance to current treatments. Lucilia seri-
cata NZ_LucSer_NP (4) was selected for microbiome assessment as a representative of
a New Zealand field strain of L. sericata. In this study, we investigated the bacterial
microbiomes of L. sericata larvae, adult males, and adult females to gain a better
understanding of the microbial communities and especially symbionts to blowflies
that could lead to entirely novel treatments against flystrike and blowfly control.

The L. sericata specimen larvae were collected from a farm site in the Ashhurst area in
New Zealand (40°189S, 175°459E). Species identification and rearing of the blowflies on beef
liver as a protein source and a 10% sugar solution were done according to Dear (5). Lab-reared
separate pools of larval, adult male, and adult female L. sericata blowflies were washed twice
in sterile phosphate-buffered saline (PBS; pH 7.4) to remove surface-adherent bacteria, snap-
frozen in liquid nitrogen, and transferred to –80°C storage prior to DNA extraction. High-mo-
lecular-weight genomic DNA was isolated from L. sericata pooled samples of 100 larvae as
well as 10 entire adult males and females per replicate (n = 5 for each). Genomic DNA was
prepared for metagenomic 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable
region using a modified phenol-chloroform protocol recently described for complex samples,
such as parasitic roundworms (6, 7), fastidious anaerobic rumen bacteria (8–10), and spore-
forming psychrotolerant Clostridium sp. isolated from spoiled meat (11, 12). A DNA library was
prepared using the 16S V3-V4 rRNA library preparation method (Illumina, Inc., San Diego, CA)
according to the manufacturer’s instructions (13) and sequenced on the Illumina MiSeq plat-
form with the 2� 250-bp paired-end (PE) reagent kit v2, producing a total of 5,208,027 PE
raw reads.

The processing of the amplicon reads followed a modified version of the pipeline
described in reference 14. The reads produced by the sequencing instrument were paired
using the program FLASH2 v2.2.00 (15). Paired reads were then quality trimmed using
Trimmomatic v0.38 (16). The trimmed reads were reformatted as fasta, and the read headers
were modified to include the sample name. All reads were compiled into a single file, and
Mothur v1.45.2 (17) was used to remove reads with homopolymers longer than
10nucleotides (nt) and to collapse the reads into unique representatives. The collapsed reads
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were clustered using Swarm v2 (18). The clustered reads were filtered based on their abun-
dance, keeping representatives that were (i) present in one sample with a relative abundance
of .0.1%, (ii) present in .2% of the samples with a relative abundance of .0.01%, or (iii)
present in 5% of the samples at any abundance level. The selected representatives were
annotated using QIIME 2 v2017.4 (19) with the SILVA database v138 (20). The annotated

TABLE 1 Details of all Lucilia sericata samples used in this study and information for
sequencing reads

Samplea
Life cycle
stage

No. of
raw reads

No. of quality-
filtered reads

SRA accession
no.

Adult_Male_1 Adult male 437,598 437,584 SRR13779722
Adult_Male_2 Adult male 391,709 391,686 SRR13779721
Adult_Male_3 Adult male 372,187 372,165 SRR13779720
Adult_Male_4 Adult male 342,606 342,588 SRR13779719
Adult_Male_5 Adult male 442,342 442,324 SRR13779718
Adult_Female_1 Adult female 389,860 389,841 SRR13779716
Adult_Female_2 Adult female 376,696 376,677 SRR13779715
Adult_Female_3 Adult female 422,959 422,938 SRR13779714
Adult_Female_4 Adult female 359,511 359,497 SRR13779713
Adult_Female_5 Adult female 298,290 298,284 SRR13779712
L3_Larvae_1 Larvae L3 326,910 326,904 SRR13779711
L3_Larvae_2 Larvae L3 270,953 270,946 SRR13779710
L3_Larvae_3 Larvae L3 290,495 290,492 SRR13779709
L3_Larvae_4 Larvae L3 276,269 276,265 SRR13779708
L3_Larvae_5 Larvae L3 209,642 209,638 SRR13779707
aAll samples were collected in March 2020 from the Ashhurst area in New Zealand (40°189S, 175°459E).

FIG 1 The taxonomic composition of the dominant bacteria of New Zealand L. sericata. Relative abundance of the dominant bacterial genera obtained
from 16S rRNA sequencing of L. sericata field strain NZ_LucSer_NP larval, adult male, and adult female samples. Genera with a relative abundance of less
than 1% and unassigned amplicon sequence variants were grouped together as others.
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tables were then used for downstream statistical analysis. Sample and sequence data are
summarized in Table 1.

In all samples, the predominant phylum was Proteobacteria (Fig. 1) and the predom-
inant genera were Serratia and Morganella, while the larvae were also dominated by
Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes). The metagenomic
16S rRNA gene amplicon sequencing of L. sericata field strain NZ_LucSer_NP reported
here is a valuable resource for future studies investigating the role of bacteria in fly-
strike. In order to improve the phylogenetic resolution of the microbial community
structures and improve our knowledge of flystrike caused by L. sericata, future efforts
should focus on the generation of amplicon sequencing data from numerous locations
around New Zealand and across a wider range of blowfly species (21).

Data availability. The 16S rRNA gene amplicon sequence data have been depos-
ited in the GenBank Sequence Read Archive (SRA) under the BioProject accession num-
ber PRJNA667961.
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