CFAR University of Miami

Session: P-45. HIV: Epidemiology and Screening

Background. HIV is a risk factor for Cardiovascular Disease (CVD), and CVD is the leading cause of mortality among Hispanics (H). Hispanics in the US are disproportionately affected by HIV with higher rates of HIV related morbidity and mortality, as well as adverse CVD outcomes. This study sought to identify early markers of CVD risk among Hispanics living with HIV.

Methods. Interim analysis of 38 H and non-Hispanics (NH) people living with HIV (PLWH), stable on antiretroviral regimen, 30-50 years of age, without previously detected CVD. Demographics, CD4 T cells, HIV RNA viral load, traditional early markers of CVD risk were collected. CVD risk markers were obtained with non-invasive tools: epicardial adipose tissue (EAT) thickness was assessed by echocardiogram; arterial stiffness was assessed by applanation tonometry sequentially at the carotid, femoral and radial arteries (including central augmentation index - AI, peripheral AI, radial pulse wave velocity - PWV, and femoral PWV). The Framingham Coronary Event Risk Score (FCER) was calculated for each subject. Descriptive and linear regression analysis for predictors of FCER measures were age adjusted.

Results. Among the 38 participants enrolled the mean age was 42 years, 80% male, H 76%, NH 24%, Black 16%, with mean BMI of 26.7. 45% met clinical criteria for metabolic syndrome: high waist girth 24%, high blood pressure 18%, high Fasting Glucose 16%, high total cholesterol 21%, high triglycerides 26%, low HDL 45%, high LDL 18%, high TC/HDL ratio 68%. The mean EAT was 3.8 mm, mean central AI 20.2 %, mean peripheral AI 73%, mean femoral PWV 28.8 m/s, mean radial PWV 8.7 m/s. Older age was associated with greater central AI (r = 0.37, p = .01) and peripheral AI (r = 0.38, p = .01) but not with increased EAT. Regression analysis predicting FCER relationships showed radial PWV as an independent predictor of increased FCER (r = 0.36, p < .05).

Conclusion. Risk factors leading to CVD are common among this group of PLWH and radial PWV is a moderate predictor of increased FCER. Although measures of arterial stiffness are available, they are not routinely used to assess CVD risk. Further studies should evaluate the use of noninvasive methods for diverse PLWH, to prevent the development of CVD.

Disclosures. All Authors: No reported disclosures

964. Opt-Out HIV- Hepatitis C (HCV) Testing at a Primary Care Resident Clinic in Columbia, SC: Who Gets Tested and Who Opts Out of Testing?

Jodian Pinkney, MD¹; Divya Ahuja, MD²; Caroline Derrick, PharmD²;

Martin Durkin, MD³; ¹Palmetto Health- USC Internal Medicine, Columbia, SC; ²University of South Carolina, Columbia, SC; ³USC Internal Medicine, Columbia, SC

Session: P-45. HIV: Epidemiology and Screening

Background. South Carolina (SC) remains one of the most heavily affected states for both HIV and HCV infections. Males account for the majority of cases. Implementation of universal opt-out testing has improved screening rates but not much has been published describing the characteristics of those who opt out of testing. This becomes important as 10-50% of patients have opted out in previous studies.

Methods. Between February and August 2019, we conducted a quality improvement (QI) project which implemented opt- out HIV-HCV testing at a single primary care resident clinic in SC with the primary aim of increasing screening rates for HIV-HCV by 50%. Secondary aims included describing the demographic characteristics of the opt-out population. Persons were considered eligible for testing if they were between the ages of 18-65 years for HIV and 18-74 years for HCV. This was prior to the USPSTF 2020 guidelines which recommend HCV screening for adults aged 18-79 years. A retrospective chart review was used to obtain screening rates, opt status and demographic data. Logistic regression and the firth model were used to determine linkages between categorical variables. We present 3-month data.

Results. 1253 patients were seen between May 1, 2019- July 31, 2019 (See Table 1). 985 (78%) were eligible for HIV testing. 482 (49%) were tested for HIV as a result of our QI project and all tests were negative. 212 (22%) of eligible patients opted out of HIV testing. Males were 1.59 times more likely to opt out (p=0.008). (see Table 2,3)

Regarding HCV, 1136 (90.7%) were deemed eligible for testing. 503 (44%) were tested for HCV as a result of our QI project. 12 (2.4%) were HCV antibody positive with viremia. 11 (90%) of antibody positive with viremia cases were in the 1945-1965 birth cohort (see Table 4). 244 (21%) opted out of HCV testing. Males and persons without a genitourinary chief complaint were more likely to opt out (p=0.02).

Table 1: Demographic characteristics of the population seen at the internal medicine resident clinic between May- July 2019

		Number of patients seen (n=1253)	Percentage (%)		
Characteristic					
Age group	18-29	87	6.9		
	30-39	141	11.3		
	40-49	179	14.3		
	50-59	351	28.0		
	60-69	338	27.0		
	>70	157	12.5		
	Mean age =54 (14.32)				
Sex	Male	425	33.9		
	Female	828	66.1		
Race	White	231	18.4		
	Black	958	76.5		
	Hispanic	39	3.1		
	Asian	6	0.5		
	Other	19	1.5		
Insurance Status	Insured	429	81		
	Uninsured	103	19		

Table 2: Relationship between demographic variables and the odds of being tested for HIV or HCV within the last 12 months. Logistic Model.

			Test	ed for HIV	Tested for HCV				
		OR	LCL	UCL	P.Value	OR	LCL	UCL	P.Value
Age Group	30-39	1.417	0.815	2.469	0.217	1.631	0.943	2.837	0.081
	40-49	0.814	0.477	1.386	0.45	1.054	0.62	1.798	0.845
	50-59	1.039	0.632	1.705	0.879	1.259	0.769	2.07	0.36
	50-59	0.775	0.477	1.273	0.315	1.239	0.755	2.039	0.397
	>70	0.168	0.088	0.312	<0.001	0.443	0.248	0.786	0.005
Sex	Male	0.805	0.628	1.032	0.087	0.908	0.712	1.156	0.433
Race	Black	4.383	0.663	85.871	0.186	0.91	0.162	5.087	0.911
	White	3.923	0.584	77.415	0.224	0.727	0.127	4.12	0.706
	Hispanic	3.482	0.469	71.724	0.284	0.872	0.139	5.402	0.878
	Other	1.568	0.179	34.564	0.714	0.218	0.027	1.626	0.134
Insurance	Uninsured	1.175	0.881	1.569	0.273	0.969	0.729	1.289	0.831
Visit Type	New Visit	0.913	0.665	1.252	0.573	0.929	0.681	1.267	0.643
Chief complaint	*Non-GU	0.545	0.389	0.757	< 0.001	0.646	0.467	0.89	0.008

OR- Odds Ratio, LCL- lower confidence limit, UCL- upper confidence limit, *Non genitourinary chief complaint at that visit

Table 3: Relationship between demographic variables and the odds of opting out of testing for HIV or HCV. Firth Model.

		Opt out of testing for HIV				Opt out of testing for HCV				
		OR	LCL	UCL	P.Value	OR	LCL	UCL	P.Value	
Age Group	30-39	0.60	0.29	1.23	0.161	0.48	0.23	0.98	0.044	
	40-49	1.34	0.69	2.64	0.392	1.05	0.55	2.03	0.894	
	50-59	0.84	0.45	1.60	0.585	0.61	0.33	1.14	0.121	
	50-59	0.74	0.38	1.44	0.371	0.67	0.36	1.26	0.221	
	>70	0.81	0.00	16.09	0.897	0.68	0.31	1.48	0.331	
Sex	Male	1.59	1.13	2.24	0.008	1.47	1.07	2.00	0.017	
Race	Black	0.37	0.03	4.86	0.413	2.79	0.26	381.90	0.452	
	White	0.67	0.05	8.95	0.740	4.14	0.37	568.80	0.284	
	Hispanic	0.54	0.03	8.51	0.641	3.21	0.24	462.36	0.419	
	Other	0.56	0.03	9.32	0.669	5.97	0.40	894.83	0.216	
Insurance	Uninsured	1.02	0.69	1.50	0.923	1.13	0.77	1.64	0.529	
Visit Type	New Visit	1.01	0.66	1.54	0.967	0.87	0.57	1.31	0.517	
Chief complaint	*Non-GU	1.98	1.25	3.23	0.003	1.64	1.08	2.55	0.021	

OR- Odds Ratio, LCL- lower confidence limit, UCL- upper confidence limit, *Non genitourinary chief complaint at that visit

Conclusion. Although implementation of routine HIV-HCV opt-out testing led to increased screening rates for both HIV and HCV, roughly 1 in 5 eligible patients chose to opt out of testing. Males were more likely to opt out despite accounting for the majority of newly diagnosed HCV cases. Future studies investigating drivers for opting-out in the male population could improve testing and assist with early diagnosis.

Table 4: Characteristics of patients newly diagnosed with HCV positive with viremia.

Number	Age	Sex	New vs Follow up visit	GU complaint	Linked to care	Insured	Race	LFTs	HCV viral load
1	54	F	FU	Y	Y	Y	В	cirrhosis	705,254
2	63	м	FU	N	Y	Y	В	elevated	2653274
3	61	F	New	N	Y	Y	В	elevated	4173702
4	63	M	New	N	N	Y	В	elevated	688081
5	56	м	FU	N	Y	N	В	normal	1493593
6	65	F	FU	N	Y	Y	В	normal	42314
7	58	м	New	N	N	Y	В	normal	42613275
8	64	F	New	Y	N	Y	W	cirrhosis	9221403
9	62	м	New	N	N	N	В	normal	539974
10	40	м	New	N	Y	N	W	normal	1640128
11	57	м	FU	N	N	N	W	normal	156633
12	70	F	FU	N	Y	Y	В	normal	1222834

F- Female, M- Male, FU- Follow Up, GU- genitourinary, Y- Yes, N- No, B -Black, W-White

Disclosures. All Authors: No reported disclosures

965. Partnering with State Health Departments: A Road Map for Collaboration Using Public Health Enhanced HIV/AIDS Reporting System (eHARS)

John R. Bassler, n/a¹; Emily B. Levitan, ScD¹; Lauren Östrenga, MPH²; Danita C. Crear, DrPH³; Kendra L. Johnson, MPH⁴; Gabrielle Cooper, DrPH⁴; Emma Sophia Kay, PhD¹; Mariel Parman, MPH¹; Ariann F. Nassel, M.A.⁵; Michael J. Mugavero, MD, MHSc⁶; D. Scott Batey, PhD¹; Aadia Rana, MD⁷; ¹University of Alabama at Birmingham, Birmingham, Alabama; ²Louisiana Department of Health, New Orleans, Louisiana; ³Alabama Department of Public Health, Montgomery, Alabama; ⁴Mississippi State Department of Health, Jackson, Mississippi; ⁵University of Alabama in Birmingham SOPH, Hoover, Alabama; ⁶UAB, Birmingham, Alabama; ⁷University of Alabama-Birmingham School of Medicine, Birmingham, Alabama

Session: P-45. HIV: Epidemiology and Screening

Background. Academic and public health partnerships are a critical component of the Ending the HIV Epidemic: A Plan for America (EHE). The Enhanced HIV/AIDS Reporting System (eHARS) is a standardized document-based surveillance database used by state health departments to collect and manage case reports, lab reports, and other documentation on persons living with HIV. Innovative analysis of this data can inform targeted, evidence-based interventions to achieve EHE objectives. We describe the development of a distributed data network strategy at an academic institution in partnership with public health departments to identify geographic differences in time to HIV viral suppression after HIV diagnosis using eHARS data.