
molecules

Communication

Aqueous Solutions of Peptides and Trialkylamines Lead to
Unexpected Peptide Modification

Yiran Ma, Puja J. Gandhi and James P. Reilly *

����������
�������

Citation: Ma, Y.; Gandhi, P.J.; Reilly,

J.P. Aqueous Solutions of Peptides

and Trialkylamines Lead to

Unexpected Peptide Modification.

Molecules 2021, 26, 6481. https://

doi.org/10.3390/molecules26216481

Academic Editor: Richard Wilson

Received: 30 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; yirma@iu.edu (Y.M.);
gandhi.pj@gmail.com (P.J.G.)
* Correspondence: reilly@indiana.edu

Abstract: When trialkylamines are added to buffered solutions of peptides, unexpected adducts
can be formed. These adducts correspond to Schiff base products. The source of the reaction is the
unexpected presence of aldehydes in amines. The aldehydes can be detected in a few ways. Most
importantly, they can lead to unanticipated results in proteomics experiments. Their undesirable
effects can be minimized through the addition of other amines.
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1. Introduction

Trialkylamines are strong organic bases that have found numerous applications in
bioanalytical chemistry. Triethylamine has been a traditional solvent or additive employed
in chromatography systems during biomolecule analysis, as it enables better separations
for ionic samples in both normal and reverse-phase liquid chromatography [1–5]. Triethy-
lamine is also used in charge stripping processes in both the gas and liquid phases [6–8].
Gaseous triethylamine has been added to deprotonate cytochrome c dimers so that dimer
peaks no longer overlap with monomer peaks [6]. Similarly, triethylamine was added to
polyethylene glycol or PEGylated proteins in order to simplify their mass spectra [7].

In addition to its popularity in liquid chromatography systems, triethylamine has also
been utilized to improve fluorescence sensors. Wang used triethylamine to deprotonate 2D
covalent organic framework (COF) TpPa-1 so that the COF sensor improved 70-fold [9].
With the help of the improved fluorescence sensor, 117.5 nM methylglyoxal, which is a
biomarker for diabetes mellitus diagnosis, could be detected [9]. Triethylamine has also
been used as a high pH buffer for eluting proteins [10]. Due to its high pKa, it is also added
to buffers to adjust pH [11].

Trialkylamines are traditionally prepared by reacting alcohols with ammonia, where
noble metals are used as catalysts [12]. For example, the two reactants may be preheated
under hydrogen before being passed through reduced copper and nickel catalysts at
high temperatures [13]. Ammonia is then alkylated and forms saturated and unsaturated
amines. The mixture is then separated by distillation [13]. The commonly known impurities
from commercially available trialkylamines are water, ammonia and the unsaturated
alkylamines [12].

When trialkylamines are added to biochemical samples, it is usually assumed that they
do not modify proteins or peptides. As illustrated in the present work, this assumption is
not necessarily true.

2. Results and Discussion
2.1. Analysis of Modified Hemoglobin Digest

During hemoglobin peptide digest labeling experiments using various reagents, the
pH of buffer solutions was raised using triethylamine and several peptide masses were
unexpectedly found to be shifted by +26 Da. It was quickly established that the 26 Da
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adducts could be observed simply by adding triethylamine to the aqueous peptide solution.
To verify the origin of this effect, hemoglobin was digested and then incubated with
triethylamine before being analyzed by MALDI. Mass spectrum of the control sample
was recorded and shown in Figure 1a. All the observed peaks corresponded to expected,
unmodified peptide masses. The MALDI spectrum for the modified hemoglobin digested
peptides appears in Figure 1b. This experiment was also repeated with trimethylamine
and tripropylamine, and these led to shifts of +12 Da and +40 Da, respectively. (Examples
of tripropylamine reaction with angiotensin appear later in Figure 8). To verify that
these adduct peaks were not any kind of MALDI artifacts, reaction products were also
analyzed by ESI-MS. In addition, since these results were rather surprising, experiments
were repeated with newly purchased trialkylamines and freshly distilled trialkylamines.
In all cases, similar MALDI and ESI mass spectra and mass shifts were observed. The
observed mass shifts were close to those expected for Schiff base reactions that occur
between amines and aldehydes. Formaldehyde, acetaldehyde and propionaldehyde are
known to yield mass shifts of 12, 26 and 40 Da [14], as illustrated in Figure 2. Nevertheless,
it was surprising to us that trialkylamines might contain aldehydes that would enable the
formation of these Schiff base products.
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Figure 1. MALDI-TOF spectra of hemoglobin digest before (a) and after (b) adding triethylamine.
Red arrows indicate 26 Da adducts.
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Figure 2. Schiff base reactions between peptides and three aldehydes leading to peptide mass shifts
of 12, 26 and 40 Da.
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To determine where on the peptides the adducts were located, we fragmented several
modified peptides when recording ESI-MS spectra using collision-induced dissociation
(CID) on a Thermo LTQ ion-trap instrument. One example is shown in Figure 3. The
digested peptide LLVVYPWTQR has the most intense peak in the MALDI spectrum, at
1274.8 Da. After being incubated with triethylamine, this peptide increased in mass by
26 Da, suggesting that one site had been modified. In the MS2 spectrum, the y5 to y8 ions
were not shifted in mass, while b2 to b5 ions were all shifted, indicating that the adduct
was within the first two residues of the N-terminus. Since these two residues were both
leucine, we concluded that the reaction must have occurred at the N-terminal amine.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 2. Schiff base reactions between peptides and three aldehydes leading to peptide mass shifts 
of 12, 26 and 40 Da. 

 
Figure 3. MSMS spectra of unlabeled LLVVYPWTQR (a) and its labeled counterpart (b). 

Another peptide, VNDEVGGEALGR, which has a precursor mass of 1314.6 Da, was 
fragmented by CID, and the resulting spectrum is displayed in Figure 4a. This is also one 
of the masses that can be found in the MALDI spectrum due to its basic arginine residue. 
Following exposure to triethylamine, the peptide mass shifted to 1340.7 Da, indicating 
that one site on the peptide was modified by 26 Da. The CID spectrum of this mass is 
shown in Figure 4b. It is evident from comparison of the two spectra that none of the 
observed y-type ions (y2–y11) were modified. Since the largest y ion observed was y11, the 
change must have occurred at the first two residues near the N terminus. This is consistent 
with all b ions that appear in the spectrum (b2–b12) being modified, again indicating that 
the modification involves the first two residues near the N-terminus. Since the side chains 
of both valine and asparagine are not reactive, we conclude that the modification took 
place at the N-terminus of this peptide. 

Peptide NH2

H

O

H

N

H H

Peptide

+

O

H

N

H

Peptide

+

O

H

N

H

Peptide

+

0 200 400 600 800 1000 1200 1400

0
20
40
60
80

100

0 200 400 600 800 1000 1200 1400

0
20
40
60
80

100

R
el

at
iv

e 
ab

un
da

nc
e

Mass (m/z)

b2
b3

b4 b2+
8

b5

y5 y6

y7

y8

y5

R
el

at
iv

e 
ab

un
da

nc
e

Mass (m/z)

b2+26
b3+26

b4+26

b5+26

y6

y7 y8

LLVVYPWTQRa

b

Figure 3. MSMS spectra of unlabeled LLVVYPWTQR (a) and its labeled counterpart (b).

Another peptide, VNDEVGGEALGR, which has a precursor mass of 1314.6 Da, was
fragmented by CID, and the resulting spectrum is displayed in Figure 4a. This is also one
of the masses that can be found in the MALDI spectrum due to its basic arginine residue.
Following exposure to triethylamine, the peptide mass shifted to 1340.7 Da, indicating that
one site on the peptide was modified by 26 Da. The CID spectrum of this mass is shown
in Figure 4b. It is evident from comparison of the two spectra that none of the observed
y-type ions (y2–y11) were modified. Since the largest y ion observed was y11, the change
must have occurred at the first two residues near the N terminus. This is consistent with
all b ions that appear in the spectrum (b2–b12) being modified, again indicating that the
modification involves the first two residues near the N-terminus. Since the side chains of
both valine and asparagine are not reactive, we conclude that the modification took place
at the N-terminus of this peptide.

The next peptide is FLASVSTVLTSK, as shown in Figure 5a. It has a mass of 1252.7 Da
that is shifted by 26 Da after incubation. Similar to the previous two peptides, a modified
b2 ion and unmodified y10 ions were found in the CID fragmentation spectrum as shown
in Figure 5b. This suggests that the modification happened on the first two residues near
the N terminus. Phenylalanine and leucine sidechains are not as reactive as the N terminus,
thus making the primary amine on N-terminus the most likely reaction site.
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Figure 5. MSMS spectra of unlabeled FLASVSTVLTSK (a) and labeled counterpart (b).

2.2. Confirmation of Chemical Composition of Modification

To accurately measure our observed mass shifts, human angiotensin II was reacted
with triethylamine for 2 h at 37 ◦C, and the product was analyzed with a Thermo orbitrap.
We observed a mass shift of 26.016 Da for modified angiotensin. The theoretical mass
shift for a Schiff base reaction between the peptide and acetaldehyde is 26.016 Da due to
addition of C2H2. No other combination of atoms provides as good of a mass match. The
next closest composition is CN, which has a mass of 26.0031 Da. Similarly, exposure of
angiotensin to tripropylamine yielded a mass shift of 40.028 Da. The Schiff base adduct,
C3H4, would lead to a mass shift of 40.031 Da. The next closest mass shift alternative of
40.019 Da would be for C2H2N.
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2.3. Verification of Presence of Aldehydes in Trialkylamines

An attempt was made to detect aldehydes in trialkylamines using NMR, but none were
observed. However, due to their different numbers of hydrogens, NMR is less sensitive to
propionaldehyde than to tripropylamine, so it is not optimal for detecting small aldehyde
impurities.

A more sensitive method, headspace GC-MS, was then employed to look for alde-
hydes in freshly purchased trialkylamines. Fractionational distillation of tripropylamine
was performed to eliminate propionaldehyde. The total ion chromatogram of the distilled
tripropylamine is illustrated in Figure 6. The total ion chromatogram indicated that the
amount of propionaldehyde in tripropylamine decreased after distillation, but it did not
completely disappear. This suggests that there is a trace amount of propionaldehyde
present in commercially available tripropylamine. Other than in trialkylamine produc-
tion, copper is also a useful catalyst in other reactions, such as alcohol oxidation and
dehydrogenation [15,16]. Therefore, it is possible that copper assists in the formation of
aldehydes during the trialkylamine production process. This could explain why propi-
onaldehyde was found in tripropylamine, despite that it is not a primary product from
tripropylamine synthesis. Propanol could have gone through dehydrogenation, leading to
propionaldehyde.
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Figure 6. Total ion chromatogram of distilled tripropylamine from headspace analysis by GC-MS.

To see whether the amount of aldehyde in tripropylamine increases after tripropy-
lamine is in contact with water, the following experiments were conducted. Tripropy-
lamine was incubated with water for 0 min, 2 h and 12 h at 37 ◦C before being analyzed
by headspace GC-MS to monitor the amount of propionaldehyde in a tripropylamine
water mixture without disturbing the vapor pressure of propionaldehyde. Since the boiling
point of tripropylamine is much higher than 70 ◦C, the amount of tripropylamine vapor
should stay constant in all three samples. Therefore, we can estimate the relative amount of
propionaldehyde based on the areas for both tripropylamine peaks and propionaldehyde
peaks in the total ion chromatogram. The total ion chromatograms for the three samples
are shown in Figure 7. When the sample did not incubate before injection, the area for
the propionaldehyde peak was 18.44% of the area for the tripropylamine peak. When the
mixture was incubated for 2h before injection, the area for propionaldehyde peak increased
to 28.16% of the tripropylamine peak. After 12 h of incubation, the propionaldehyde area
climbed to 37.97% of the tripropylamine peak. Although the exact amount of propionalde-
hyde cannot be determined, we can still conclude that propionaldehyde concentration
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doubled after 12 h of incubation time. It is unclear exactly how aldehydes are generated by
alkylamine contact with water. However, it is evidently a slow oxidation process involving
air or water.
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Figure 7. Total ion chromatograms of tripropylamine and water mixture after different incubation
periods. The areas of propionaldehyde peaks were normalized to the areas of tripropylamine peaks
in each chromatogram.

Another test that was applied to verify the existence of aldehydes was the Schiff test.
This is a common method that is used to qualitatively detect aldehydes in samples [17].
Adding Schiff’s reagent to a solution that contains aldehydes in an acidic environment leads
to a purple or pink color. Unfortunately, since the Schiff reagent contains water, we were
unable to examine whether there were any aldehydes in trialkylamines in non-aqueous
conditions.

When the triethylamine: HCl molar ratio was set to 1.24:1, the solution indeed turned
purple and then returned clear when the Schiff’s reagent was added, consistent with alde-
hydes being present in the solution [18,19]. However, the Schiff test yielded no quantitative
information. This is because it is difficult to match the pH of trialkylamine solutions
with the aldehyde standards. A small variance in pH considerably affects the maximum
absorbance due to the three protonation states of Schiff’s reagent. When the solution is too
acidic, Schiff’s reagent does not change color because a fully protonated Schiff’s reagent
is clear. When the solution is too basic, the solution does not respond to the aldehyde
concentration.

2.4. Critical Conditions for Trialkylamine Modifications

Several experiments were performed to understand the conditions that were important
for reaction of aldehydes with peptides. In one study, 1.70 mM propionaldehyde was mixed
with 50 µM angiotensin in water, and, as expected, a reaction occurred to form a 40 Da
adduct (Figure 8a). When anhydrous DMSO was used instead of water, propionaldehyde
reacted with angiotensin and yielded a more intense adduct signal (Figure 8b). This indi-
cates that an aqueous environment is not necessary for the reaction between aldehydes and
peptides to form Schiff bases. On the other hand, when 333 mM ammonium bicarbonate at
pH 8 was used as a buffer, the reaction between propionaldehyde and angiotensin yielded
substantially more adduct compared with aqueous solvents, implying that the reaction
between angiotensin and aldehydes was accelerated by more basic conditions (Figure 8c).
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This is consistent with previous studies [20,21]. It should be noted that propionaldehyde
concentrations were the same for all three experiments.
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Figure 8. Mass spectra recorded the following reactions between angiotensin with: propionaldehyde
in water (a); propionaldehyde in DMSO (b); propionaldehyde in pH 8 ammonium bicarbonate buffer
(c); tripropylamine in water (d); tripropylamine in DMSO (e); propionaldehyde and propylamine in
DMSO (f).

To test whether an aqueous environment is critical for tripropylamine and peptide
reactions, 3.20 M tripropylamine was mixed with 50 µM angiotensin either in water or
anhydrous DMSO. The solutions were mixed and left at 37 ◦C for 2 h. MALDI-TOF spectra
showed that significant amounts of adducts were formed in both solvents (Figure 8d,e).

In conclusion, water was not necessary for tripropylamine to react with peptides to
form Schiff base adducts. The amount of adduct obtained with 1.70 mM propionaldehyde
was similar to that with 3.20 M tripropylamine in DMSO. This suggests that the percentage
of propionaldehyde in our tripropylamine is about 0.05%. This is within the 2% overall
impurity limit claimed by the manufacturer. In contrast, 1.70 mM propionaldehyde did
not yield the same amount of adduct as 3.20 M tripropylamine with angiotensin in water,
as shown in Figure 7a,d; this is likely due to the different pHs of these solutions. It is also
possible that the water and tripropylamine generated additional propionaldehyde during
incubation.

2.5. Elimination of Undesirable Aldehyde-Induced Modifications with Propylamine

Our next experiments aimed to determine whether we could block the reaction of
aldehydes with peptides. Since n-propylamine has a primary amine, we expected that it
would be a good blocking candidate. A measure of 12 µmol n-propylamine was added to
70 nmol propionaldehyde in DMSO and incubated for 20 min before 2 nmol of angiotensin
was added. The solution was then vortexed and left at 37 ◦C for 2 h before being dried and
analyzed by MALDI. A mass spectrum showing the results of this reaction is displayed in
Figure 8f. The lack of an adduct demonstrates that the propylamine had indeed blocked
the reaction of angiotensin with propionaldehyde.

To prevent peptide modifications that were occurring in trialkylamine solutions,
propylamine was introduced. First, 12 µmol n-propylamine were mixed with 179 µmol
triethylamine or 131 µmol tripropylamine with water and left at room temperature for
20 min. Next, 2 nmol of angiotensin was added to the mixture. The final concentrations
of trialkylamines and angiotensin were the same as in all previous experiments. No
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trialkylamine-peptide reaction was observed in water or in anhydrous DMSO. Mass spectra
looked essentially identical to that displayed in Figure 8f.

3. Materials and Methods
3.1. Materials

Human hemoglobin, Angiotensin II, trimethylamine, tripropylamine, propylamine
and Schiff’s reagent were purchased from Sigma-Aldrich. MS-grade trypsin was obtained
from Thermo scientific (Rockford, IL, USA). Triethylamine and 3 Å Molecular sieves
(8–12 mesh beads) were procured from EMD Millipore (Darmstadt, Germany). Acetalde-
hyde and propionaldehyde were purchased from TCI America (Portland, OR, USA).

3.2. Methods

To begin, 25 µg of hemoglobin was digested with 1µg trypsin overnight at 37 ◦C in
an ammonium bicarbonate buffer at pH 8 and subsequently lyophilized in a SpeedVac
(Jouan, Winchester, VA, USA). For control experiments, digested peptides were directly
re-dissolved in water and spotted on a MALDI plate. A measure of 0.65 µL of 10 g/L
CHCA (50:50 water to ACN with 0.1% TFA) matrix was added on the same spot after
peptide had dried. MALDI spectra were taken with the 4800 MALDI TOF-TOF analyzer.
For experiments with trialkylamines, the digested hemoglobin peptides were suspended in
14 µL of water and 25 µL of triethylamine. The solution was vortexed for 30 min at 37 ◦C
before being lyophilized again. The dried product was re-dissolved in water and spotted
as above on a MALDI plate as described before.

For ESI-MS experiments, samples were prepared in a similar manner. Digested
hemoglobin peptides were injected into an Eksigent NanoLC-2D and eluted into a Thermo
LTQ ion trap mass spectrometer. A solution of 0.1% formic acid was used as solvent A,
and 0.1% formic acid in ACN was used as solvent B to produce the LC gradient. A 150 min
gradient at 300 nL/min separated the peptides. Solvent B increased from 5% to 35% during
1 h and then raised to 90% over 40 min. Solvent B was then held at 90% for 20 min before
dropping to 5% again in 25 min. Solvent B was kept at 5% for 5 min at the end of the
gradient. A home packed 200 Å C18 column was used for trapping, and a 120 Å C18
column was used for separation. The loose packing media were both purchased from
Bischoff. Both columns were 75 µm ID. The trapping and analytical columns were 2 and
10 cm, respectively. The CID energy employed in the fragmentation method was 35%.
Resulting raw files were converted to MGF files and analyzed by Protein Prospector.

For more accurate mass measurements, 50 µM angiotensin reacted with 4.37 M tri-
ethylamine or 3.2 M tripropylamine in water at 37 ◦C for 2 h. The modified peptides were
then dried in a speedvac and reconstituted in water for MS analysis. A Thermo Fusion
Lumos Tribrid mass spectrometer coupled with Thermo Scientific EASY nLC 1200 was
employed in these experiments. The sample went through a 15 min gradient at 300 nL/min,
where solvent A was 0.1% formic acid in water and solvent B was 0.1% formic acid in
80% ACN. The gradient started at 2% solvent B and increased to 8% solvent B over the
course of 1 min, then moved to 40% solvent B in the next 9 min. The composition of solvent
B was then sharply increased to 100% in 1 min and maintained for the last 4 min. The
gradient was short because the modified peptides did not require extensive separation. The
chromatography was conducted at room temperature. The trapping column was a Thermo
Acclaim PepMap 100 (75 µm × 2 cm), and the analytical column was a 25 cm version of
the same material.

1H NMR spectra were taken with a Varian 400 MHz Inova spectrometer.
Headspace experiments were performed with an Agilent 7890B/7250 GC-QTOF. In

this work, 0.5 mL of pure tripropylamine was placed in a 10 mL bottle and heated to 70 ◦C
for 7.5 min before 1 mL of the vapor above the liquid was injected into a GC-MS for mass
measurement. Tripropylamine and propionaldehyde have boiling points of 156 ◦C and
49 ◦C respectively. By heating the tripropylamine solution to 70 ◦C, injection of aldehyde
vapor into the GC-MS was favored, facilitating its detection.
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For Schiff’s test standards, the solubility of water in triethylamine is very limited.
During peptide experiments, the peptides were modified despite triethylamine not being
completely miscible with water. When using Schiff’s reagent, however, it is important
that the solution is aqueous. Fortunately, triethylamine is protonated by the addition of
acid, and this forms a homogenous solution with Schiff’s reagent. HCl was added to
achieve a neutral or acidic pH, which was tested with pH paper, before Schiff’s reagent
was added. A measure of 12 µL to 96 µL of acetaldehyde was diluted with water to
make a total volume of 1262 µL. An amount of 140 µL Schiff reagent was then added to
the diluted acetaldehyde solution to make a standard series ranging from 0.766 mM to
6.10 mM. The standards were added to a cuvette and the absorbance was recorded with a
Thermo Scientific Genesys 10S UV-Vis spectrophotometer. The wavelength at maximum
absorbance was found to be 558 nm and absorbance for all solutions were recorded at this
wavelength. For triethylamine samples, 6M HCl was used to acidify the solution. A range
of 600–705 µL of HCl was added to triethylamine to make a final volume of 1262 µL. The
molar ratio between triethylamine and HCl ranged from 1.05:1 to 1.32:1. A measure of
140 µL of Schiff’s reagent was then added to the mixture.

4. Conclusions

This study aimed to investigate peptide modifications caused by alkylamines. Peptide
mass shifts were found to be due to Schiff base reactions and were confirmed by accu-
rate mass measurements. The existence of aldehydes in trialkylamine was also verified
with headspace GC-MS and Schiff’s test. Various conditions were tested for Schiff base
reaction and tripropylamine-peptide reaction. A measure of 0.07% of propionaldehyde
was estimated to be present in tripropylamine, which is lower than the overall impurity
limit claimed by the manufacturer, but clearly enough to modify the proteins and peptides
and generate artifacts that could complicate proteomics experiments. It is unclear why
aldehydes are present in trialkylamines. They may be formed as a byproduct during the
initial synthesis of the trialkylamine. Alternatively, it is possible that they were produced
by air oxidation. Based on the results with trialkylamines and water, it is also possible that
water facilitates this transformation very slowly. Therefore, when using trimethylamine,
triethylamine or tripropylamine in biochemical studies, it should be considered that these
modifications can affect the sample. These effects can be eliminated, if necessary, by mixing
a primary amine with the trialkylamine.
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