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Abstract

Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes
including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are
involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing
ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription
factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this
complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and
that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS
proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that
LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling.
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Introduction

Primary cilia are microtubule-based subcellular organelles

projecting from the surface of cells. Studies during the last decade

have shown that primary cilia play essential roles in regulating cell

cycle, embryonic development, and tissue homeostasis by acting as

a cellular antenna transducing extracellular signals into the cells

[1,2]. Loss of cilia or ciliary dysfunction has been linked to a series

of related genetic disorders in humans [3,4]. These disorders,

collectively termed ciliopathies, share common features such as

cystic kidney disease, retinal degeneration, and polydactyly.

Bardet-Biedl Syndrome (BBS) is one of the human genetic

disorders associated with ciliary dysfunction. Patients with BBS

display obesity, polydactyly, retinal degeneration, renal abnor-

malities, diabetes, hypertension, hypogenitalism, and cognitive

impairment. To date, as many as 16 genes have been reported to

be involved in BBS [5,6,7,8] (and references therein) and

molecular functions of BBS proteins have begun to emerge.

Among the known BBS proteins, seven proteins (BBS1, BBS2,

BBS4, BBS5, BBS7, BBS8, BBS9) and BBIP10 form a stable

complex, the BBSome, which mediates protein trafficking to the

ciliary membrane [9,10,11]. BBS3 is a member of the Ras

superfamily of small GTPases and controls BBSome recruitment

to the membrane and BBSome ciliary entry [11]. Of the

remaining, three BBS proteins (BBS6, BBS10, BBS12) form

another complex with the CCT/TRiC family of group II

chaperonins and mediate BBSome assembly [8].

Many receptor proteins and signaling molecules localize to cilia,

and the BBSome is involved in transporting at least some of these

proteins. For example, several G-protein coupled receptors such as

MCHR1, SSTR3, and Dopamine receptor 1 (D1) fail to localize

to or abnormally accumulate within the neuronal cilia in Bbs2 and

Bbs4 null brains [12,13]. In Chlamydomonas bbs4 mutants, several

proteins aberrantly accumulate within flagella [14]. However,

most of the BBSome cargos are currently unknown in mammalian

cells. Also unknown is how the trafficking activity of the BBSome is

regulated.

In an effort to understand how BBSome function is regulated,

we initiated studies to identify BBSome interacting proteins in vivo.

In this work, we show that LZTFL1 interacts with the BBSome

and negatively regulates its trafficking activity to the cilia. We also

provide evidence that the BBSome and LZTFL1 are part of the

transport mechanism of Sonic Hedgehog (SHH) signal transducer,

Smoothened (SMO), that localizes to cilia [15].

Results

Transgenic LAP-BBS4 is functionally equivalent to
endogenous Bbs4

To isolate BBSome interacting proteins in vivo, we generated a

transgenic mouse line expressing LAP-BBS4, which allows

localization studies and tandem affinity purification using GFP

and S tags, under the control of cytomegalovirus (CMV)

immediate early promoter. We used mouse testis, where BBS
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genes are the most abundantly expressed. Expression of LAP-BBS4

in the testis is approximately 2–3 fold higher than that of

endogenous Bbs4 (Figure S1A). We first tested whether the

recombinant LAP-BBS4 protein is functionally equivalent to

endogenous Bbs4. We tested this by three criteria: 1) whether

LAP-BBS4 physically associates with other BBSome subunits and

is incorporated into the BBSome, 2) whether LAP-BBS4 properly

localizes and reproduces the endogenous Bbs4 localization pattern,

and 3) whether LAP-BBS4 can functionally rescue the BBS

phenotype caused by loss of Bbs4. To confirm the incorporation of

LAP-BBS4 into the BBSome, extracts from wild-type, Bbs42/2,

and LAP-BBS4 transgenic mouse testes were subjected to co-

immunoprecipitation (co-IP) with anti-GFP antibody. As shown in

Figure S1B, pull-down of LAP-BBS4 efficiently co-precipitated all

BBSome subunits tested (BBS1, BBS2 and BBS7). In spermatozoa,

endogenous Bbs4 is found in the middle piece and the principle

piece of the flagella (Figure S1C). Within the principle piece, Bbs4

staining is more intense at the proximal end and gradually

decreases toward the distal end of the flagellum. LAP-BBS4

detected by GFP antibody shows a similar localization pattern.

Finally, introduction of the LAP-BBS4 transgene into Bbs42/2

mice restores sperm flagella, which are lost in Bbs42/2 mice

(Figure S1D), and fertility to Bbs42/2 mice; all four transgenic

Bbs42/2 males mated with wild-type females produced pups,

while Bbs42/2 males without the transgene did not produce any

pups. Based on these criteria, we concluded that LAP-BBS4 is

functionally equivalent to endogenous Bbs4.

Identification of Lztfl1 as a BBSome-interacting protein
Protein extracts from wild-type and LAP-BBS4 transgenic testes

were subjected to tandem affinity purification. In LAP-BBS4

transgenic testis, all BBSome subunits (Bbs1, Bbs2, Bbs5, Bbs7,

Bbs8, and Bbs9) were co-purified with LAP-BBS4, while no BBS

proteins were purified when wild-type testes were used (Figure 1A

and Table S1). In the LAP-BBS4 transgenic sample, one

prominent additional protein was co-purified with BBSome

subunits. Mass spectrometry analysis revealed that this protein is

Leucine zipper transcription factor-like 1 (Lztfl1). To confirm the

interaction and to identify other LZTFL1 interacting proteins, we

generated a stable cell line expressing LZTFL1 with FLAG and S

tags (FS-LZTFL1) and conducted tandem affinity purification. In

this experiment, at least three BBSome subunits (BBS2, BBS7, and

BBS9) were co-purified with FS-LZTFL1 (Figure 1B and Table

S2). In addition, we found endogenous LZTFL1 proteins were co-

purified, indicating that LZTFL1 forms homo-oligomers. Homo-

oligomerization of LZTFL1 was confirmed by co-IP and in vitro

crosslinking experiments (Figure S2D and S2E). We also found

two additional, smaller isoforms of LZTFL1. Although it is unclear

whether these smaller forms are bona fide LZTFL1 isoforms or

cleavage products derived from the over-expressed FS-LZTFL1,

EST database searches revealed the presence of smaller isoforms

of LZTFL1 (AK093705 and AK303416) with predicted molecular

weights approximately the same as the isoforms observed by us.

To determine the LZTFL1-interacting subunit of the BBSome,

each individual subunit of the BBSome was co-transfected with

LZTFL1 and analyzed for co-IP (Figure 1C). In this experiment,

we found that BBS9 is the LZTFL1-interacting subunit of the

BBSome. Based on interaction domain mapping studies, the C-

terminal half of LZTFL1 (amino acid (aa) 145–299) was found to

interact with BBS9 (Figure 1D). Within BBS9, the fragment

containing aa 685–765 interacted with LZTFL1 (Figure S2F),

which is a part of the a-helix domain at the C-terminus after the

a/b platform domain [11]. In size exclusion chromatography, the

peak of LZTFL1 was separated from that of the BBSome,

suggesting that LZTFL1 is not a constitutive component of the

BBSome and only a subset of LZTFL1 is associated with the

BBSome (Figure 1E).

LZTFL1 is a cytoplasmic protein without enrichment in
cilia or basal bodies

LZTFL1 maps to human chromosome 3p21.3, which is often

deleted in several types of cancer [16]. Recently, tumor suppressor

function of LZTFL1 has been proposed [17]. However, very little

is known about the molecular functions of LZTFL1. To gain

insight into the structure and functions of LZTFL1, we performed

homology searches. Reciprocal BLAST searches yielded LZTFL1

orthologs in all vertebrates and the flagellate Chlamydomonas

reinhardtii, but not in plants, amoebae, or fungi (Figure S2).

LZTFL1 homologs are also not found in Caenorhabditis elegans,

Drosophila melanogaster, and planaria (Schmidtea mediterranea). Se-

quence and secondary structure analyses indicated that LZTFL1 is

mostly alpha-helical and has a coiled-coil domain in its C-terminal

half (Figure S2). A leucine-zipper domain is present as part of the

coiled-coil domain. InterPro Domain Scan analysis indicates that

aa 212–295 of LZTFL1 has sequence homology to the t-SNARE

domain (IPR010989). The structure of this domain in rat

Syntaxin-1A (Stx1A) was previously determined (Figure S2C)

[18]. The t-SNARE domain of Stx1A forms a rod-like a-helix and

is involved in hetero-tetramer formation with other SNARE

proteins. Purified Stx1A t-SNARE domain also forms a homo-

tetramer [19], suggesting that LZTFL1 may form a similar

structure.

We examined expression and localization of LZTFL1. Anti-

bodies against LZTFL1 selectively recognized a protein band at

,36 kDa in SDS-PAGE (Figure 2A and Figure S3B). This protein

was diminished in cells transfected with siRNAs against LZTFL1,

verifying the specificity of the antibody. Lztfl1 expression was

detected in almost every tissue tested except for skeletal muscle and

white adipose tissue (Figure S3A). In immunolocalization studies

Author Summary

Primary cilia are considered to be a signaling hub
coordinating multiple signaling pathways. Impairment of
ciliary function results in developmental defects in
vertebrates and also underlies many human disorders
including obesity, polycystic kidney disease, and retinop-
athy. BBS is a prototypical human genetic disorder
associated with ciliary dysfunction. Among the known
BBS proteins, seven form a complex, the BBSome, which
was recently defined as a coat complex transporting
membrane proteins between plasma and ciliary mem-
branes. However, the molecular mechanisms controlling
BBSome trafficking and the cargos transported by the
BBSome are not well understood. In this work, we
performed tandem affinity purification using transgenic
mice expressing one of the BBSome subunits and
identified a novel protein, LZTFL1, as a BBSome interacting
protein. We determined that LZTLF1 negatively regulates
BBSome ciliary trafficking and that reduction of LZTFL1
activity can compensate for loss of certain BBS proteins
and restores BBSome ciliary trafficking. Furthermore, we
discovered that BBSome and LZTFL1 regulate ciliary
trafficking of Smoothened, a 7-transmembrane Hedgehog
signal transducer. Our findings identify an important
player in cilia biology and provide novel insights into the
regulation of Hedgehog signaling, a crucial signaling
pathway for organizing the body plan, organogenesis,
and tumorigenesis.

LZTFL1 Inhibits BBSome Ciliary Entry

PLoS Genetics | www.plosgenetics.org 2 November 2011 | Volume 7 | Issue 11 | e1002358



Figure 1. Identification of LZTFL1 as a BBSome interacting protein. (A) Co-purification of Lztfl1 as a BBSome-interacting protein from LAP-
BBS4 transgenic mouse testis. Lysates from WT and Tg testes were subjected to TAP and purified proteins were separated by SDS-PAGE and silver-
stained. Protein size markers (M) were loaded in the left lane. (B) FS-LZTFL1 (blue arrowhead) and its associated proteins were isolated by TAP from

LZTFL1 Inhibits BBSome Ciliary Entry
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using hTERT-RPE1 cells, LZTFL1 was detected throughout the

cytoplasm (Figure 2B). In contrast to BBS proteins, which show

ciliary and centriolar satellite localization (Figure 2D and Figure

S4), we did not find enrichment of LZTFL1 around the

centrosome or within cilia. GFP-tagged LZTFL1 also showed

cytoplasmic localization with no enrichment in the cilia or

centrosomes (data not shown). Similar results were obtained from

IMCD3 cells and HEK293T cells (Figure 2B and Figure S3C).

Consistent with this, we found most of the Lztfl1 immuno-

reactivity in the inner segment of the photoreceptor cells and

posterior side of the cell body of spermatozoa (Figure S3D, S3E).

Since the localization pattern of LZTFL1 is significantly different

from that of BBS proteins, we examined where the BBSome-

LZTFL1 interaction occurs. Using the in situ proximity-mediated

ligation assay [20], LZTFL1 bound BBSomes were found

scattered throughout the cytoplasm (Figure 2C). These data

indicate that LZTFL1 and BBSome interaction occurs within the

cytoplasm.

LZTFL1 is a specific regulator of BBSome ciliary trafficking
Next, we sought to determine the biological functions of

LZTFL1. Since the BBSome is involved in protein trafficking to

the ciliary membrane and LZTFL1 interacts with the BBSome, we

investigated whether LZTFL1 has any cilia related functions. To

this end, we examined whether LZTFL1 is involved in cilia

formation, cilia stability, or cilia length. We found no differences in

cilia formation after serum withdrawal, cilia stability upon serum

treatment, or the length of cilia in LZTFL1 depleted hTERT-

RPE1 cells (data not shown). We next examined whether LZTFL1

is involved in BBSome assembly, BBS protein stability, or BBSome

trafficking. We found no defects in BBSome assembly or BBS

protein stability in LZTFL1 depleted cells (Figure 3B and data not

shown). However, we noticed a dramatic alteration in BBSome

localization when we ablated LZTFL1. Normally, BBS proteins

localize either within cilia or around centrosomes (Figure 2D and

Figure S4). In our experimental conditions, some 42% of control

siRNA transfected cells show ciliary localization of BBS9

(Figure 2D, 2F). However, when LZTFL1 was depleted by RNA

interference (RNAi), we observed a consistent and striking increase

of BBS9 within the cilia with a concomitant decrease in the

centriolar satellite pool of BBS9. In contrast, over-expression of

wild-type LZTFL1 inhibited ciliary localization of BBS9

(Figure 2E, 2F). Interestingly, over-expression of an LZTFL1

deletion mutant, which lacks the N-terminal 70 amino acids,

behaved as a dominant negative form and increased ciliary

localization of BBS9. Substitution of two highly conserved basic

amino acids (KR) within that region (Figure S2A) was sufficient to

cause the same increase in BBS9 ciliary localization. Similar results

were observed for BBS4 and BBS8 (Figure S4), indicating that

LZTFL1 regulates ciliary localization of the entire BBSome rather

than merely BBS9. Combined with the LZTFL1 localization and

in situ PLA results, our data indicate that LZTFL1 binds to the

BBSome in the cytoplasm and inhibits BBSome ciliary entry.

Alternatively, LZTFL1 may promote ciliary exit of the BBSome.

Our data also suggest that LZTFL1 has bipartite functional

domains; the C-terminal half of LZTFL1 is responsible for

BBSome binding and the N-terminal half is for regulating

BBSome trafficking activity.

To test whether LZTFL1 regulates general intraflagellar

transport (IFT), we examined localization of IFT proteins in

LZTFL1 over-expressing and depleted cells. In contrast to BBS

proteins, IFT57 and IFT88 were found in almost every cilium

(Figures S4 and S5). Depletion of LZTFL1 did not further increase

the frequency of ciliary localization of IFT proteins or the

fluorescence intensity. More importantly, over-expression of wild-

type or mutant variants of LZTFL1 had no impact on ciliary

localization of IFT proteins. These data suggest that LZTFL1 is a

specific regulator of BBSome ciliary trafficking but not general

IFT.

Requirement of all BBSome subunits for BBSome ciliary
localization

Previously, several BBSome subunits have been shown to be

essential for BBSome ciliary localization in C. elegans and C.

reinhardtii [14,21]. However, it has not been systematically

investigated which BBSome subunits are essential for BBSome

ciliary localization and which are dispensable. To address this, we

transfected siRNAs against each BBSome subunit and BBS3,

which is involved in BBSome ciliary trafficking [11], into hTERT-

RPE1 cells and probed localization of BBS8 and BBS9.

Quantitative real-time PCR results confirmed efficient knock-

down of each BBS gene expression after siRNA transfection

(Figure S6). By using immunofluorescence microscopy, we found

that all BBSome subunits and BBS3 are required for BBSome

ciliary localization and loss of any single BBSome subunit

precluded ciliary entry of the BBSome (Figure 3A and Figure

S7). Interestingly, however, the localization pattern of BBS9 (and

BBS8) was distinct depending on which BBSome subunit was

depleted, suggesting differences in their roles within the BBSome.

For example, in BBS1 depleted cells, both BBS8 and BBS9

showed concentric enrichment around the centrosomes with a

great increase in the staining intensity (Figure 3A and Figure S7A).

This suggests that BBSome components may form aggregates near

the centrosomes in the absence of BBS1. Alternatively, BBS1 may

be required to return the BBSome back to the cytoplasm. Sucrose

gradient ultracentrifugation results are more consistent with the

second possibility (Figure 3B). In BBS2 depleted cells, overall

staining intensity of BBS9 was greatly decreased. When we

measured BBS9 protein level in BBS2 depleted cells, the amount

of BBS9 was significantly reduced compared to control siRNA or

other BBS gene siRNA transfected cells (Figure S6B). In addition,

we found BBS2 protein level was also significantly decreased in

BBS9 depleted cells, suggesting that BBS2 and BBS9 are

dependent on each other for stable expression. Together, these

data indicate that only the intact BBSome can enter the cilia.

To gain insight into the molecular basis of this requirement of

each BBSome subunit for BBSome ciliary entry, we investigated

the status of BBSome assembly after individual BBSome subunit

HEK293T cells and visualized by silver staining. Parental cells were used as a control. Red arrowhead indicates endogenous LZTFL1, and asterisk, two
smaller forms of LZTFL1. (C) LZTFL1 interacts with BBS9 within the BBSome. Each subunit of the BBSome (HA-tagged) was co-transfected with Myc-
tagged LZTFL1 into HEK293T cells and lysates were analyzed by co-immunoprecipitation (IP) using anti-HA antibodies. Bottom panel shows
immunoprecipitated BBS proteins and middle, Myc-LZTFL1 in the lysates. The top panel shows Myc-LZTFL1 precipitated by anti-HA antibodies. (D)
BBS9 binds to the C-terminal half of LZTFL1. Full-length and several deletion mutant variants of Myc-LZTFL1 were co-transfected with HA-BBS9 in
HEK293T cells. Myc-GFP was used as a negative control and anti-Myc antibody was used for IP. Numbers indicate expressed portions of LZTFL1 in
amino acid positions. (E) The vast majority of Lztfl1 is not associated with the BBSome. Lysates from WT mouse testis and eye were subjected to size
exclusion chromatography using Superose-6 10/300 GL column. Eluted fractions were analyzed by SDS-PAGE followed by immunoblotting against
indicated antibodies. Elution volume of protein standards is shown at the bottom.
doi:10.1371/journal.pgen.1002358.g001
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Figure 2. LZTFL1 regulates ciliary trafficking of the BBSome. (A) Verification of the specificity of anti-LZTFL1 antibody and siRNA-mediated
knock-down of LZTFL1 expression in hTERT-RPE1 cells. Arrowhead depicts the LZTFL1 protein band. b-actin was used as a loading control. (B) LZTFL1
localizes to the cytoplasm but not cilia or basal body. Localization of LZTFL1 (green) was probed with anti-LZTFL1 antibody in hTERT-RPE1 (top and
middle rows) and IMCD3 (bottom row) cells after 30 hrs of serum withdrawal. Antibodies against c-tubulin and Arl13b (red) were used to mark the
basal body and cilia, respectively. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, blue). (C) LZTFL1-bound BBSome localizes to the
cytoplasm. Left and middle panels are negative controls (background), where only either LZTFL1 or BBS9 antibodies was used. In the right panel,

LZTFL1 Inhibits BBSome Ciliary Entry
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depletion (Figure 3B). To this end, hTERT-PRE1 cells were

transfected with siRNAs against control and each BBS gene, and

cell lysates were analyzed by 10–40% sucrose gradient ultracen-

trifugation. Consistent with the previous result and formation of

the BBSome [9], BBS4 and BBS9 were found in the same fraction

in control siRNA transfected cells. However, in BBS1 depleted

cells, BBS4 and BBS9 were found in separate and lower molecular

weight fractions, indicating that BBS4 and BBS9 were not

associated in the absence of BBS1. Similarly, depletion of BBS2

and BBS9 also caused disintegration of the BBSome with a

significant reduction in BBS9 levels. In BBS4 and BBS8 depleted

cells, although there was some disassembly of the BBSome, a

significant proportion of the BBSome was still found to be intact.

In BBS7 depleted cells, BBS4 and BBS9 were found in the same

fractions but the peak was significantly shifted from that of control

cells, suggesting that at least one additional subunit is missing from

the BBSome in the absence of BBS7. Of note are BBS3 and BBS5

depleted cells. In these cells, the vast majority of the BBSome

remained intact, suggesting that BBS3 and BBS5 are not required

for BBSome assembly. LZTFL1 depletion or over-expression did

not cause any change in BBSome assembly, suggesting that

LZTFL1 does not function by modulating BBSome assembly.

IFT88, a component of the IFT-B subcomplex, was found in

separate fractions from the BBSome and none of the BBS or

LZTFL1 perturbations caused any change in IFT88 migration.

Together, these data suggest that BBS1, BBS2, BBS7, and BBS9,

all of which have b-propeller domains, are required for BBSome

assembly (e.g. forming a core scaffold and required for recruitment

of at least one additional BBSome subunit), while BBS4, BBS5,

and BBS8 have relatively minor or no impact on BBSome

assembly and are likely to be in the periphery of the BBSome.

Depletion of LZTFL1 restores BBSome ciliary localization
in BBS3 and BBS5 depleted cells

Since LZTFL1 is a negative regulator of BBSome ciliary entry,

we tested whether LZTFL1 depletion can rescue the BBSome

mislocalization phenotype caused by loss of BBSome subunits. We

ablated LZTFL1 expression together with each of the BBSome

subunits by RNAi and probed localization of BBS8 and BBS9.

Indeed, LZTFL1 knock-down significantly increased ciliary

localization of BBS8 in most cells, particularly in BBS3 and

BBS5 depleted cells (Figure S7). Ciliary localization of BBS9 was

also rescued by LZTFL1 knock-down in all cases except for BBS1

and BBS4 depleted cells (Figure 3C and Figure S7). It is unclear

whether the more efficient rescue of BBS9 ciliary localization

compared to BBS8 is due to the higher sensitivity of anti-BBS9

antibody or whether it represents features of partial BBSome

complexes lacking some BBSome subunits (such as BBS8).

Whichever is the case, it is clear that LZTFL1 knock-down can

restore ciliary localization of the BBSome at least in BBS3 and

BBS5 depleted cells. It is noteworthy that BBS3 and BBS5 are the

BBS proteins that have minimal impact on BBSome assembly.

Therefore, as long as the BBSome forms, reducing LZTFL1

activity can restore BBSome trafficking to cilia.

BBSome and LZTFL1 regulate SMO ciliary trafficking
Since polydactyly is one of the cardinal features of BBS and a

hallmark phenotype of Sonic Hedgehog (SHH) signaling defect,

we examined roles of BBSome and LZTFL1 in the SHH pathway.

We first examined the requirement of LZTFL1 for SMO ciliary

localization in hTERT-RPE1 cells, which express SMO endog-

enously. In control siRNA transfected cells, SMO localizes to the

cilia in response to SMO agonist (SAG) but not in SAG-untreated

cells (Figure 4). However, in LZTFL1 depleted cells, ciliary

localization of SMO was found in a significant number of cells

even without SAG treatment and further increased by SAG

treatment. For BBS genes, we tested BBS1, BBS3, and BBS5: two

genes (BBS3 and BSB5) that LZTFL1 depletion can restore ciliary

trafficking of the BBSome, and one gene (BBS1) that cannot be

restored with LZTFL1 depletion. In contrast to LZTFL1 depleted

cells, ciliary localization of SMO was significantly decreased in

BBS depleted, SAG-treated cells. Consistent with the restoration of

BBSome trafficking to cilia in LZTFL1 depleted cells, ablation of

LZTFL1 expression in BBS3 and BBS5, but not in BBS1, depleted

cells restored ciliary localization of SMO. These data indicate that

BBSome function facilitates ciliary localization of SMO and that

LZTFL1 suppresses SMO localization to cilia.

Although we were not able to detect physical interactions between

the endogenous BBSome and SMO in hTERT-RPE1 cells,

presumably due to the transient nature of the interaction and the

difficulty of extracting membrane proteins without disrupting protein-

protein interactions, we found that several BBS proteins can associate

with the C-terminal cytoplasmic tail domain of SMO (aa 542–793) in

transiently transfected cells (Figure 4C). Previously, two amino acids

(WR; aa 549–550) immediately downstream of the 7th transmem-

brane domain of SMO were shown to be essential for SMO ciliary

localization [15]. Deletion of this WR motif from the cytoplasmic tail

of SMO abolished interaction between BBS proteins and SMO

(Figure 4D). These data suggest that the BBSome may directly

interact with SMO and mediates SMO ciliary localization.

Finally, we investigated whether downstream HH target gene

expression is affected by loss of BBSome and LZTFL1 function. In

hTERT-RPE1 cells, HH target gene GLI1 expression was

relatively mildly induced by SAG treatment (Figure S8A).

Depletion of BBS1, BBS3, and BBS5 modestly but consistently

reduced GLI1 expression. We also used mouse embryonic

fibroblast (MEF) cells, which show robust responsiveness (Figure

S8B). Consistent with the results from hTERT-PRE1 cells, knock-

down of BBS gene expression significantly reduced Gli1 expression

in MEF cells. Although statistically not significant compared with

BBS3 and BBS5 single knockdowns, reduction of Lztfl1 activity

tends to restore Gli1 expression in Bbs3 and Bbs5 depleted cells.

Interestingly, while LZTFL1 depletion resulted in ciliary translo-

cation of SMO even in SAG-untreated cells, GLI1 expression did

not increase in LZTFL1 depleted cells, suggesting that SMO

accumulated within the cilia in LZTFL1 depleted cells is not

activated. This is consistent with the idea that Smo is constantly

transported in and out of the cilia even in the inactive state [22,23]

and the recent finding of the 2-step model of SMO activation [24].

both LZTFL1 and BBS9 antibodies were used. Red dots (‘‘blobs’’) represent the protein complexes containing both LZTFL1 and BBS9 detected by in
situ Proximity-mediated Ligation Assay (PLA) in hTERT-RPE1 cells. (D) BBS9 ciliary localization increases in LZTFL1 depleted cells. In ciliated RPE1 cells,
BBS9 (red) shows two distinct localization patterns: ciliary (red arrowhead) and peri-centriolar (white arrowhead). Open arrowhead depicts the lack of
BBS9 in BBS9 siRNA transfected cells. Cilia (green) were marked by antibodies against acetylated tubulin and c-tubulin. (E) Over-expression of LZTFL1
inhibits ciliary entry of BBS9. Myc-tagged LZTFL1 variants were transfected into RPE1 cells and BBS9 localization (red) was probed. Transfected cells
were determined by using anti-Myc antibody (green). Scale bars, 10 mm. (F) Quantitation of BBS9 ciliary localization. The number of ciliated cells with
ciliary BBS9 staining was counted. Results of knock-down (KD) experiments are average of four independent experiments with at least 100 cells
counted in each experiment. Over-expression results are the average of two independent experiments with at least 40 cells counted in each
experiment. Data are shown as means 6 SEM.
doi:10.1371/journal.pgen.1002358.g002
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Figure 3. Reduction of LZTFL1 activity restores BBSome ciliary trafficking in BBS3 and BBS5 depleted cells. (A) All BBSome subunits are
required for BBSome ciliary entry. RPE1 cells were transfected with siRNAs against each BBSome subunit and BBS3. Cilia and basal body are labeled
with acetylated tubulin and c-tubulin antibodies (green) and BBS9 is in red. The inlets are shifted overlay images of the boxed area. Scale bar, 5 mm.
(B) BBSome status in the absence of individual BBSome components. Proteins from hTERT-RPE1 cells transfected with siRNAs against each BBS gene
were separated by 10–40% sucrose gradient centrifugation and fractions were analyzed by immunoblotting using antibodies against BBS4, BBS9 and
IFT88. Impact of LZTFL1 depletion and over-expression on BBSome assembly was also examined. Migration of molecular weight standards is shown
at the bottom and red arrowhead indicates intact BBSome (14S). The BBSome assembly status was ranked by the amount of remaining intact BBSome
(except for the depleted subunit) and summarized in the right. +: Normal BBSome assembly (more than 70% remaining), +/2: moderate decrease
(30–70% remaining) severe decrease (less than 30% remaining). (C) Restoration of BBSome ciliary trafficking in BBS3 and BBS5 depleted cells by
LZTFL1 depletion. RPE1 cells were transfected as indicated, and BBS9 (red) localization was examined. Scale bar, 10 mm.
doi:10.1371/journal.pgen.1002358.g003
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Finally, we used MEF cells derived from our Bbs2 and Bbs4 null

embryos [25,26] and found similar reductions in Gli1 expression

upon SAG treatment (Figure S8C). Together, our data suggest

that the BBSome and LZTFL1 are a part of the Smo ciliary

trafficking mechanisms and contribute to the cellular responsive-

ness to the SHH signaling agonist.

Discussion

BBSome functions as a coat complex to transport membrane

proteins between plasma and ciliary membranes [11]. In this work,

we identify LZTFL1 as a negative regulator of BBSome trafficking to

the ciliary membrane. Our data indicate that LZTFL1 associates

Figure 4. BBSome and LZTFL1 regulate SMO ciliary trafficking. (A) BBSome is required for SMO ciliary localization, while LZTFL1 inhibits it.
hTERT-RPE1 cells were depleted with BBSome subunits and LZTFL1 (LZ) by RNAi. After 24 hrs of serum withdrawal, cells were incubated with or
without SMO agonist (SAG) for 4 hrs. Cells were labeled with antibodies to acetylated tubulin and c-tubulin (green) and SMO (red). Scale bar, 5 mm.
(B) Quantitation of SMO ciliary localization. Graphs are average percentages of SMO positive cilia from four independent experiments with minimum
90 cells counted in each experiment. Data are shown as means 6 SEM. (C) Physical interaction between BBSome and Smo C-terminal cytoplasmic tail
domain. Indicated BBSome subunits (HA-tagged) were co-transfected with Myc-tagged Smo cytoplasmic tail domain (aa 542–793) and lysates were
subjected to co-IP using anti-HA antibodies. (D) Deletion of 10 amino acids, which contains the WR motif, from the N-terminus of Smo cytoplasmic
tail domain abolishes the interaction between Smo and BBS proteins.
doi:10.1371/journal.pgen.1002358.g004
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with the BBSome within the cytoplasm and inhibits ciliary entry of

the BBSome. Alternatively, LZTFL1 may promote the exit of

BBSomes from the cilia. Although we cannot completely rule out the

second possibility, currently available data favor the entry inhibition

model over the exit promotion model. First, LZTFL1 does not show

any enrichment around the basal body or within the cilia either by

immunological methods or by GFP-fused recombinant protein.

Many proteins involved in vesicle trafficking commonly show some

degree of enrichment around the donor compartment. BBSomes also

show enrichment around the basal body and within the cilia with a

gradual increase toward the ciliary base, which is consistent with the

model that the BBSome is recruited to the plasma membrane near

the basal body for ciliary entry and to the ciliary membrane at the

ciliary base for exit. However, LZTFL1 does not show this

localization pattern. Second, although BBSomes show enrichment

around the basal body and within the cilia, LZTFL1-associated

BBSomes are found scattered throughout the cytoplasm, which is

consistent with the idea that LZTFL1 associates with the BBSome

within the cytoplasm and limits ciliary access of the BBSome. These

observations strongly favor the BBSome ciliary entry inhibition

model. Localization of LZTFL1 to the cytoplasm with cilia-related

function is similar to the recently characterized seahorse/Lrrc6,

which also localizes to the cytoplasm and regulates cilia-mediated

processes [27].

Our findings indicate that every BBS gene tested so far is

required for ciliary entry of the BBSome and loss of any single BBS

protein commonly results in a failure of BBSome ciliary trafficking.

This is not limited to BBSome subunits but also found with

depletion of other BBS proteins that are not part of the BBSome

including BBS3, BBS6, BBS10, and BBS12 (this study and S.S.

and V.C.S. unpublished results). These findings suggest that a

failure of BBSome ciliary trafficking is a common cellular feature

of BBS and support the idea that BBS results from a trafficking

defect to the cilia membrane. However, the precise mechanism

leading to BBSome mis-localization is different depending on the

missing BBS proteins. For example, BBS1, BBS2, BBS7, and

BBS9, which commonly contain b-propeller domains, are likely to

form the scaffold/core of the BBSome and required to recruit

other BBSome subunits. BBS6, BBS10, and BBS12 were

previously shown to be required for BBSome assembly by

interacting with these b-propeller domain containing BBS proteins

[8]. BBS4, BBS5, and BBS8 are likely to be at the periphery of the

BBSome and have limited impact on BBSome assembly. However,

BBS4 interacts with p150glued subunit of the cytoplasmic dynein

machinery and may link the BBSome to the cytoplasmic dynein

motor protein [28]. BBS5 was shown to interact with PIPs and

may be involved in the association of the BBSome to the

membrane [9]. The function of BBS8 is currently unknown and

requires further characterization. Despite these functional differ-

ences, all BBS proteins are essential for BBSome assembly or

ciliary trafficking and only the holo-BBSome enters the cilia.

BBSome mis-localization may be used as a cell-based assay to

evaluate BBS candidate genes. Remarkably, reducing LZTFL1

activity restores BBSome trafficking to the cilia at least in BBS3

and BBS5 depleted cells. It appears that decreased LZTFL1

activity can compensate for the loss of certain BBS proteins, which

are required for BBSome ciliary entry, as long as the BBSome is

formed. This implies that certain BBS subtypes may be treated by

modulating LZTFL1 activities.

Polydactyly is one of the cardinal features of BBS found in the

vast majority of human BBS patients [3] and also a hallmark

phenotype of disrupted SHH signaling or IFT function [2,29,30].

Several additional features including mid-facial defects and neural

crest cell migration defects found in BBS mutant animals are also

linked to SHH signaling defects [31]. Therefore, it is speculated

that BBS proteins may be involved in SHH signaling. In this work,

we show that BBS proteins are involved in ciliary trafficking of

SMO. We found that the SMO cytoplasmic tail domain physical

interacts with the BBSome at least in overexpressed conditions,

while ciliary localization defective mutant SMO does not.

Furthermore, ablation of LZTFL1 increases SMO ciliary

localization. These data indicate that BBS proteins and LZTFL1

are at least part of the SMO ciliary trafficking mechanism. It

remains to be shown that ciliary transport of Smo occurs together

with the BBSome (e.g. by live cell imaging) and in a directly

BBSome-dependent manner.

Our data also suggest the presence of alternative ciliary

trafficking mechanisms for SMO. For example, although ciliary

localization of SMO is significantly reduced by BBSome depletion,

it is not completely abolished, while ciliary localization of BBS8

and BBS9 is severely reduced. HH target gene GLI1 expression is

also relatively mildly affected by BBS protein depletion. This

suggests that the BBSome is only part of the transport mechanism

and that there is likely to be another mechanism by which SMO is

transported to the cilia. Currently, it is unknown whether IFT

proteins can directly mediate SMO ciliary trafficking or are

involved indirectly. These findings suggest that although BBS

proteins are involved in Smo ciliary trafficking, the presence of

alternative mechanisms is sufficient to support normal develop-

ment of neural tubes and survival in BBS mutants. In addition,

while polydactyly is very common in human BBS patients, none of

the BBS mouse models generated so far display polydactyly as is

seen in Smo or Shh mutants [2], implying a potential species-

specific requirement of BBS proteins or differential threshold in

SHH signaling in the limb bud.

While BBS and IFT proteins are part of the transport

machinery (like a train) to deliver cargos to and from the cilia,

NPHP, MKS, and Tectonic proteins localize to the transition zone

and function like a station (or immigration official) to control the

entry and exit of the ciliary proteins. For example, Garcia-

Gonzalo, et al. recently showed that the Tectonic complex, which

consists of Tctn1, Tctn2, Tctn3, Mks1, Mks2, Mks3, Cc2d2a,

B9d1, and Cep290, localizes to the transition zone of cilia and

controls ciliary membrane composition [32]. NPHP1, NPHP4,

and NPHP8 form another complex at the transition zone and

functions as a ‘gate keeper’ together with other NPHP and MKS

proteins [33,34,35]. These NPHP, MKS, and Tctn protein

functions also appear to be partly redundant. In this model, one

can envisage certain ciliary proteins transported by the BBSome

and allowed to enter the cilia by the Tectonic complex. Some

other proteins may be transported by a non-BBSomal mechanism

and granted access to cilia by the Tectonic complex or by

NPHP1–4–8 complex. LZTFL1 is a specific regulator of BBSome

ciliary trafficking activity. Some other proteins may regulate

activities of IFT complex or specific transition zone complexes.

Obtaining a complete picture of ciliary protein transport will be

the focus of future studies to understand the precise mechanisms of

cilia-related disorders.

Materials and Methods

Ethics statement
All animal work in this study was approved by the University

Animal Care and Use Committee at the University of Iowa.

Antibodies, plasmids, and reagents
Expression vectors for BBS genes were published [8]. Human

and mouse LZTFL1 cDNA clones (NM_020347 and NM_033322)
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were purchased from OpenBiosystems and subcloned into CS2

plasmids with Myc, FLAG, HA, or FS (FLAG and S) tag after PCR

amplification. Site-directed mutagenesis was performed by using

QuikChange protocol (Agilent) and PfuUltra II Fusion HS DNA

polymerase (Agilent). Small interfering RNAs (siRNAs) were

purchased from Dharmacon (ON-TARGETplus SMARTpool)

and transfected at 100 nM concentration for Gli1 gene expression

analysis and at 50 nM concentration for all other experiments with

RNAiMAX (Invitrogen) following manufacturer’s protocol.

Antibodies against BBS1, BBS2, BBS4 and BBS7 were

described previously [9]. To produce rabbit polyclonal antibody

for mouse Lztfl1, recombinant NusA-Lztfl1 protein (full-length)

was purified using HIS-SELECT Nickel Affinity Gel (Sigma) and

used as antigen to immunize rabbits (Proteintech Group). Smo-N

antibody was a generous gift from Dr. R. Rohatgi (Stanford

University). Other antibodies used were purchased from the

following sources: mouse monoclonal antibodies against acetylated

tubulin (6–11B-1; Sigma), c-tubulin (GTU-88; Sigma), LZTFL1

(7F6; Abnova), Myc (9E10; SantaCruz), FLAG (M2; Sigma), HA

(F-7; SantaCruz), b-actin (AC-15; Sigma), rabbit polyclonal

antibodies against ARL13B (Proteintech Group), BBS7 (Protein-

tech Group), BBS8 (Sigma), BBS9 (Sigma), c-tubulin (Sigma),

IFT57 (Proteintech Group), IFT88 (Proteintech Group), Smo

(Abcam), and rabbit monoclonal antibody against GFP (Invitro-

gen).

Transgenic mouse and Hematoxylin/Eosin (H&E) staining
The LAP-BBS4 transgenic mouse line was generated by

injecting the LAP-BBS4 expression cassette of the pLAP-BBS4

construct [9] into 1-cell pronuclear stage mouse embryo from

B6SJL (C57BL/6J X SJL/J; Jackson Laboratory) strain in the

University of Iowa Transgenic Animal Facility. Transgenic

animals were maintained in the mixed background of C57BL/6J

and 129/SvJ. Genotype was determined by PCR using the

following primers (59-GTCCTGCTGGAGTTCGTGAC-39 and

59-GGCGAAATATCAATGCTTGG-39). Progenies from three

founders expressed the LAP-BBS4 transgene. In two lines, LAP-

BBS4 levels were less than 50% of endogenous Bbs4 in the testis

and only one line expressed LAP-BBS4 higher than endogenous

Bbs4 (Figure S1). This line was used for the entire study. Bbs4

knock-out mouse model and hematoxylin/eosin staining was

previously described [26].

Tandem affinity purification (TAP) and co-
immunoprecipitation (Co-IP)

Testes from six wild-type and LAP-BBS4 transgenic animals

were used for TAP. Proteins were extracted with lysis buffer

(50 mM HEPES pH 7.0, 200 mM KCl, 1% Triton X-100, 1 mM

EGTA, 1 mM MgCl2, 0.5 mM DTT, 10% glycerol) supplement-

ed with Complete Protease Inhibitor cocktail (Roche Applied

Science). The remaining TAP procedure was described previously

[9]. TAP of FS-LZTFL1 was conducted with HEK293T cells

stably expressing FS-LZTFL1 or parental cells. Cell lysates from

twenty 15-cm dishes were loaded onto anti-FLAG affinity gel (M2;

Sigma), and bound proteins were eluted with 3xFLAG peptide

(100 mg/mL; Sigma). Eluate was loaded onto S-protein affinity gel

(Novagen), and bound proteins were eluted in 2x SDS-PAGE

sample loading buffer. Purified proteins were separated in 4–12%

NuPAGE gels (Invitrogen) and visualized with SilverQuest Silver

Staining Kit (Invitrogen). Excised gel slices were submitted to the

University of Iowa Proteomics Facility and protein identities were

determined by mass spectrometry using LTQ XL linear ion trap

mass spectrometer (Thermo Scientific). Co-IP was performed as

previously described [8].

Sucrose gradient ultracentrifugation and size exclusion
chromatography

Protein extract from one 10-cm dish of hTERT-RPE1 cell was

concentrated with Microcon Centrifugal Filter Devices

(50,000 MWCO; Millipore), loaded on a 4 ml 10–40% sucrose

gradient in PBST (138 mM NaCl, 2.7 mM KCl, 8 mM

Na2HPO4, 1.5 mM KH2PO4, 0.04% Triton X-100), and spun

at 166,400 x Gavg for 13 hrs. Fractions (,210 ml) were collected

from the bottom using a 26 G needle and concentrated by TCA/

acetone precipitation. Proteins were re-suspended in equal volume

of 2x SDS-PAGE sample loading buffer and analyzed by SDS-

PAGE and immunoblotting. Size exclusion chromatography was

previously described [8]. Briefly, protein extracts from testis and

eye were concentrated by Amicon Ultra-15 (30 kDa; Millipore)

and loaded on a Superose-6 10/300 GL column (GE Healthcare).

Eluted fractions were TCA/acetone precipitated and re-suspended

in 2x SDS loading buffer. The column was calibrated with Gel

Filtration Standard (Bio-Rad).

Quantitative real-time PCR, immunofluorescence
microscopy, and in situ proximity-mediated ligation assay
(PLA)

hTERT-RPE1 cells were maintained in DMEM/F12 media

(Invitrogen) supplemented with 10% FBS. Immortalized MEF

cells expressing Smo-YFP was kindly provided by Dr. M. Scott

(Stanford University) and cultured in DMEM with 10% FBS.

Primary MEF cells from wild-type and Bbs2 and Bbs4 null embryos

[25,26] were prepared following a standard protocol at embryonic

day 13.5. Cells were transfected with siRNAs using RNAiMAX for

48 hrs and further incubated in serum-free medium for 24 hrs for

ciliation. For RNA extraction, cells were treated with 100 nM

SAG (EMD Chemicals) for additional 18 hrs in a fresh serum-free

medium. Total RNA was extracted using TRIzol Reagent

(Invitrogen) following manufacturer’s instruction. Quantitative

PCR was performed as previously described [8]. RPL19 mRNA

levels were used for normalization and DDCt method [36] was

used to calculate fold inductions. The PCR products were

confirmed by melt-curve analysis and sequencing. Knock-down

efficiencies of BBS genes were measured by qPCR and samples

with more than 90% reduction in BBS gene expression levels were

used for GLI1 gene expression analysis. PCR primer sequences are

in Table S3. For immunofluorescence microscopy, cells were

seeded on glass coverslips in 24-well plates and transfected with

siRNAs using RNAiMAX or with plasmid DNAs using FuGENE

HD (Roche Applied Science). Cells were cultured for 72 hrs

before fixation with the last 30 hrs in serum-free medium to

induce ciliogenesis. For SAG treatment, 100 nM SAG was added

to fresh serum-free medium and incubated for 4 hrs at 37uC. Cells

were fixed with cold methanol, blocked with 5% BSA and 2%

normal goat serum in PBST, and incubated with primary

antibodies in the blocking buffer. Primary antibodies were

visualized by Alexa Fluor 488 goat anti-mouse IgG (Invitrogen)

and Alexa Fluor 568 goat anti-rabbit IgG (Invitrogen). Coverslips

were mounted on VectaShield mounting medium with DAPI

(Vector Lab), and images were taken with Olympus IX71

microscope. For in situ PLA, Duolink in situ PLA kit with anti-

mouse PLUS probe and anti-rabbit MINUS probe (OLINK

Bioscience) was used with mouse monoclonal antibody for

LZTFL1 (Abnova) and rabbit polyclonal antibody for BBS9

(Sigma) following manufacturer’s instruction. Briefly, RPE1 cells

were seeded onto an 8-well Lab-Tek II chamber slide (Nunc) and

treated as for immunofluorescence microscopy until the primary

antibody binding step. After washing, cells were decorated with
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PLA PLUS and MINUS probes (1:20 dilution) for 2 hrs in a 37uC
humidified chamber. Hybridization and ligation of probes,

amplification, and final SSC washing were performed per

manufacturer’s instruction in a humidified chamber. Complex

formation was detected by Duolink Detection kit 563 (OLINK

Bioscience) and Olympus IX71 microscope.

Homology search, secondary structure prediction, and
modeling

Homology search, secondary structure prediction, and model-

ing were performed by using human LZTFL1 protein sequence

(NP_065080), SWISS-MODEL Workspace, and InterProScan

[37,38]. Rat Stx1A H3 domain (PDB: 1hvv) was used as a

template and aligned with human LZTFL1 aa 212–284.

Protein cross-linking
For paraformaldehyde (PFA) cross-linking, HEK293T cells

were incubated with 1% PFA in DMEM at 37uC for 10 min. For

cross-linking with photoreactive amino acids, cells were cultured in

Dulbecco’s Modified Eagle’s Limiting Medium (DMEM-LM;

Pierce) with L-Photo-Leucine and L-Photo-Methionine (Pierce)

supplemented with 10% dialyzed FBS (Pierce). Cross-linking was

performed following manufacturer’s instruction. Cells were

irradiated in the UV Stratalinker 2400 (Stratagene) 5-cm below

the UV lamp for 6 minutes. After cross-linking, cells were washed

with PBS three times and lysed in the lysis buffer (50 mM Tris

pH 7.0, 150 mM NaCl, 0.5% Triton X-100, 0.5% CHAPS,

2 mM EDTA, 2 mM NaF, 2 mM NaVO4) supplemented with

Complete Protease Inhibitor cocktail (Roche Applied Science).

Protein extracts were loaded onto a 4–12% SDS-PAGE gel and

subjected to immunoblotting.

Immunofluorescence microscopy for the retinal sections
and spermatozoa

Wild-type mice at 2–3 months of age were used for retinal

sections. Animals were perfused with 4% PFA in PBS (2.5 ml/

min, 50 ml), and excised eyes were post-fixed for 30 min in the

same solution. After washing with PBS, eyes were frozen in OCT

and sectioned using cryostat with CryoJane system (myNeuroLab)

with 7 mm thickness. For mouse spermatozoa, testis and

epididymis from wild-type animals were minced by forceps in

Ham’s F10 solution (Invitrogen) and incubated for 20 minutes at

37uC in 5% CO2 incubator. The turbid upper fraction (‘‘swim-up’’

fraction) was collected using wide-opening tips and spread onto

positively charged slide glasses. Excess liquid was slowly aspirated

and samples were air-dried. After fixation with 4% PFA in PBS for

5 min, samples were processed for immunofluorescence following

standard protocol.

Supporting Information

Figure S1 Transgenic LAP-BBS4 is functionally equivalent to

endogenous Bbs4. (A) Expression of the LAP-BBS4 transgene in

the testis. Lysates from wild-type (WT), LAP-BBS4 transgenic (Tg)

testes from Bbs42/+, Bbs4+/2, and Bbs42/2 animals were subjected

to SDS-PAGE and immunoblotting with indicated antibodies.

Closed arrowhead marks endogenous Bbs4 and open arrowhead,

LAP-BBS4. Size markers are shown on the right. Bbs7 and b-actin

were used as loading controls. (B) LAP-BBS4 physically associates

with other BBSome subunits. Lysates from WT and Tg testes were

subjected to immunoprecipitation (IP) with anti-GFP antibody and

precipitated proteins were analyzed by immunoblotting with

indicated antibodies. (C) LAP-BBS4 reproduces the localization

pattern of endogenous Bbs4. Sperm cells from WT and Tg

animals were stained with antibodies against acetylated a-tubulin

(Tub), Bbs4, and GFP. No staining was found in the acrosomes

with the GFP antibody, suggesting that the staining in this area

with anti-Bbs4 antibody is likely to be from cross-reacting proteins.

Scale bar, 10 mm. (D) Introduction of LAP-BBS4 to the Bbs42/2

(4KO) animals restores sperm flagella. Scale bar, 50 mm.

(PDF)

Figure S2 LZTFL1 structure and interaction. (A) Amino acid

sequence alignment of LZTFL1 homologs from human (Homo

sapiens), mouse (Mus musculus), chicken (Gallus gallus), frog (Xenopus

tropicalis), zebrafish (Danio rerio), Ciona intestinalis, and Chlamydomonas

reinhardtii. The blue line above the amino acid (aa) sequences

represents the predicted coiled-coil domain following [16]. The

red line above the aa sequences designates the t-SNARE domain

determined by PSI-BLAST. Red boxes mark the basic amino

acids mutagenized in the KR (to AS) construct (see Figure 2).

Asterisks represent residues conserved in all species and colons,

similar residues. (B,C) Prediction of LZTFL1 secondary structure

(B) and modeling of C-terminal t-SNARE domain of LZTFL1 (C).

Rat Stx1A H3 domain (PDB: 1hvv, chain A) was used as a

template and aligned with human LZTFL1 aa 212–284. Lower

panels are 90u rotated images of the upper panels. (D) Homo-

oligomerization of LZTFL1. HA-LZTFL1 was co-transfected with

Myc-GFP or Myc-LZTFL1 into HEK293T cells and IP was

performed with anti-Myc antibody. (E) HEK293T cells were cross-

linked with 1% paraformaldehyde (PFA) in PBS or with L-Photo-

Leucine and L-Photo-Methionine (Photo-L/M). Lysates were

analyzed by SDS-PAGE and immunoblotting. Monomeric (mono)

and dimeric (di) forms of LZTFL1 were marked. Several forms of

dimeric LZTFL1 were found. (F) LZTFL1-interaction domain

mapping in BBS9. Deletion mutants of HA-BBS9 were co-

transfected with FLAG-LZTFL1. DCC indicates deletion of the

coiled-coil domain (amino acids 378–408).

(PDF)

Figure S3 LZTFL1 expression and localization. (A) Expression

profile of Lztfl1 in mouse tissues. Equal amounts of proteins from

indicated tissues were loaded on a SDS-PAGE gel and Lztfl1

protein levels were examined by immunoblotting. a-tubulin was

used as a loading control. (B) Protein extracts from HEK293T cells

transfected with siRNAs against control or LZTFL1 gene were

analyzed by immunoblotting. b-actin was used as a loading

control. (C) Cytoplasmic localization of LZTFL1 in HEK293T

cells. Cells were transfected with indicated siRNAs. In lower

panels (LZTFL1 siRNA transfected), presumptive untransfected

cells were included in the picture for direct comparison of

LZTFL1 staining intensities within the picture. (D) Localization of

Lztfl1 to the inner segment (IS) of photoreceptor cells. OS; outer

segment, ONL; outer nuclear layer, INL; inner nuclear layer.

Scale bar: 50 mm. (E) Localization of Lztfl1 in mouse spermatozoa.

Scale bar: 10 mm.

(PDF)

Figure S4 LZTFL1 regulates BBSome localization to the cilia.

(A) Gallery of BBS protein localization. Localization of LAP-

BBS4, endogenous BBS8, BBS9, and IFT88 was examined in

hTERT-RPE1 cells. Cilia and basal bodies are marked by

acetylated tubulin and c-tubulin (green) and BBS proteins and

IFT88 are in red. BBS proteins are found either within the cilia

(red arrowhead) or around the centrosomes (white arrowhead),

with a concomitant decrease in the other compartment. In

contrast, IFT88 is found within the cilia in virtually every cell. (B)

Depletion of LZTFL1 increases ciliary localization of LAP-BBS4.

hTERT-RPE1 cells were transfected with siRNAs as indicated.

Cilia were labeled with anti-acetylated tubulin and anti-c-tubulin
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antibodies (green) and LAP-BBS4, detected by anti-GFP antibody,

is in red. (C) While over-expression of wild-type (WT) Myc-

LZTFL1 suppresses ciliary localization of LAP-BBS4, N-terminal

deletion mutant (Myc-LZTFL1 aa 71–299) increases ciliary LAP-

BBS4. Transfected cells were determined by anti-Myc antibody

(green). (D) LZTFL1 depletion increases ciliary localization of

BBS8. Scale bars, 10 mm.

(PDF)

Figure S5 LZTFL1 does not regulate general IFT. hTERT-

RPE1 cells were transfected with siRNAs (A) or Myc-LZTFL1

variants (B) and localization of IFT88 (red) was probed. Scale bar,

10 mm.

(PDF)

Figure S6 Suppression of BBS gene expression by RNAi.

hTERT-RPE1 cells were transfected with siRNAs as indicated

and relative mRNA levels (A) and protein levels (B) were

compared by quantitative PCR and immunoblotting, respectively.

(PDF)

Figure S7 Reduction of LZTFL1 activity restores BBSome

ciliary trafficking in BBS3 and BBS5 depleted cells. (A)

Localization of BBS8 was probed by immunofluorescence after

transfecting indicated siRNAs into hTERT-RPE1 cells. Cilia are

labeled with antibodies for acetylated tubulin and c-tubulin (green)

and BBS8 is in red. (B) RPE1 cells were transfected with indicated

BBS and LZTFL1 (Lz) siRNAs and BBS8 localization (red) was

examined. (C) BBS9 localization (red) was examined after

depleting BBS genes and LZTFL1. Note that some panels are

also shown in Figure 6. Scale bar, 10 mm. (D,E) Summary of

BBSome ciliary localization. Graphs represent average percent-

ages of BBS8 (D) and BBS9 (E) positive cilia from at least two

independent experiments with minimum 100 cells counted in each

experiment. Error bars represent standard errors.

(PDF)

Figure S8 Expression of HH target gene GLI1 upon BBS

protein depletion. (A) Expression of GLI1 in hTERT-RPE1 cells.

RPE1 cells were transfected with siRNAs as indicated and treated

with or without 100 nM SAG for 18 hrs. GLI1 mRNA levels were

measured by quantitative PCR. Data are shown as means 6 SEM

of two independent experiments. (B) Expression of Gli1 in MEF

cells. Immortalized MEF cells were transfected with siRNAs as

indicated and SAG treatment was performed as in (A). Data are

shown as means 6 SEM of three independent experiments.

Asterisks indicate statistically significant differences compared to

control KD cells with SAG treatment (t-test; P,0.05). (C)

Reductions in Gli1 expression in Bbs22/2 and Bbs42/2 MEF

cells upon SAG treatment. Gli1 expressions in Bbs22/2 and

Bbs42/2 MEF cells were compared with that of WT MEF cells

from the same liter. Reverse transcription (RT) reactions without

reverse transcriptase (-) were used as a negative control. Shown are

representative results from a semi-quantitative PCR experiment.

(PDF)

Table S1 Summary of mass spectrometry analysis of the LAP-

BBS4 eluate.

(DOCX)

Table S2 Summary of mass spectrometry analysis of the FS-

LZTFL1 eluate.

(DOCX)

Table S3 Quantitative real-time PCR primer sequences.

(DOCX)
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