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Abstract 

Background:  Clinical trial protocols are the foundation for advancing medical sciences, however, the extraction 
of accurate and meaningful information from the original clinical trials is very challenging due to the complex and 
unstructured texts of such documents. Named entity recognition (NER) is a fundamental and necessary step to pro-
cess and standardize the unstructured text in clinical trials using Natural Language Processing (NLP) techniques.

Methods:  In this study we fine-tuned pre-trained language models to support the NER task on clinical trial eligibility 
criteria. We systematically investigated four pre-trained contextual embedding models for the biomedical domain (i.e., 
BioBERT, BlueBERT, PubMedBERT, and SciBERT) and two models for the open domains (BERT and SpanBERT), for NER 
tasks using three existing clinical trial eligibility criteria corpora. In addition, we also investigated the feasibility of data 
augmentation approaches and evaluated their performance.

Results:  Our evaluation results using tenfold cross-validation show that domain-specific transformer models 
achieved better performance than the general transformer models, with the best performance obtained by the 
PubMedBERT model (F1-scores of 0.715, 0.836, and 0.622 for the three corpora respectively). The data augmentation 
results show that it is feasible to leverage additional corpora to improve NER performance.

Conclusions:  Findings from this study not only demonstrate the importance of contextual embeddings trained from 
domain-specific corpora, but also shed lights on the benefits of leveraging multiple data sources for the challenging 
NER task in clinical trial eligibility criteria text.

Keywords:  Clinical trial, Eligibility criteria, Named entity recognition, Pre-trained language model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Background
Clinical trial protocols define important details about 
design and execution of clinical trials, which are the 

foundation for advancing medical sciences. An impor-
tant section of clinical trials is the eligibility criteria 
(EC), which is often described in free text and not read-
ily amenable for computer processing [1]. Formal repre-
sentations developed in the past years have been used to 
optimize patient recruitment; but often require labori-
ous manual effort to convert free text EC to structured 
representations [2, 3]. To address this challenge, natural 
language processing (NLP) techniques have also been 
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investigated to process the EC text in clinical trials and 
convert them into standard representations in an efficient 
and effective manner [4, 5]. Named entity recognition 
(NER) is a fundamental and necessary step for extracting 
and standardizing EC using NLP. Recent deep learning 
approaches based on pre-trained language models such 
as Bidirectional Encoder Representations from Trans-
formers (BERT) [6] have shown promising results in 
many NLP tasks including NER. Many transformer-based 
models using BERT and its variants have been studied for 
biomedical NER tasks, mainly for clinical notes in elec-
tronic health records (EHR) or articles in biomedical bib-
liographic databases. Few studies have applied BERT and 
its variants to NER tasks for clinical trial documents [5]. 
More specifically, there is no study that has systematically 
explored and compared performance of different BERT 
models on NER of EC in clinical trial documents.

In this study, we proposed to investigate different pre-
trained language models (including both those trained 
from the general English domain and those specifically 
trained for the biomedical domain) for the NER tasks 
on EC of clinical trial documents. We systematically 
compared four biomedical domain-specific pre-trained 
contextual embedding models (named BioBERT [7], 
BlueBERT [8], PubMedBERT [9], and SciBERT [10]) 
and two general-domain models (named BERT and 
SpanBERT [11]), for extracting diverse types of clini-
cally relevant entities from three annotated clinical tri-
als corpora: (1) 470 in-house drug development study 
protocols annotated by Covance [5], (2) 230 Alzheimer’s 
disease (AD) clinical trial documents from ClinicalTrials.
gov (named EliIE) [4], and (3) 1000 interventional, Phase 
IV clinical trials selected from ClinicalTrials.gov (named 
Chia) [12]. In addition, we investigated the feasibility of 
data augmentation approaches to leveraging different 
datasets to improve NER performance in EC.

Related work
NER has been extensively studied and has shown its great 
use of supporting downstream applications in the medi-
cal domain, such as drug repurposing and clinical deci-
sion support [13, 14]. A lot of work has been focused on 
NER tasks for clinical reports, e.g., clinical concepts rec-
ognition, including rule-based, machine learning-based, 
and deep learning-based methods [15–21]. Many shared 
tasks have been organized and several annotated cor-
pora of clinical notes have been created and made pub-
licly available. For example, the well-known 2010 i2b2/
VA Workshop on NLP Challenges for Clinical Records 
contained a task for concept extraction from clinical dis-
charge summaries, the objective of which was to extract 
medical problems, treatments, and lab tests from patient 
reports [16]. Another example is the 2018 National NLP 

Clinical Challenges, which hosted shared tasks such as 
extraction of adverse drug events (ADEs) from narra-
tive discharge summaries [17]. Recently, as the newly 
developed pre-trained language models including BERT 
and its variants achieved the state-of-the-art perfor-
mance in a number of NLP tasks including NER, more 
and more studies have examined those pre-trained trans-
former-based models on NER tasks for clinical notes and 
reported superior performance [22, 23].

Clinical trial protocols, which provide detailed infor-
mation about trial design and execution, are another 
type of important textual data in healthcare. In the past 
decade, researchers have worked on extracting and 
standardizing content of clinical trial documents (e.g., 
EC sections), with the goal to promote computerized 
applications during trial execution (e.g., automated cri-
teria matching for trial recruitment). Different methods 
and tools have been developed for NER tasks that aim to 
extract key clinical concepts from EC and other sections 
of clinical trial protocols, including rule-based, machine 
learning-based, and hybrid methods [4, 24, 25]. In [4], an 
open-source information extraction tool called EliIE was 
developed, and it consists of four components: (1) entity 
and attribute recognition, (2) negation detection, (3) rela-
tion extraction, and (4) concept normalization and out-
put structuring. EliIE used the conditional random field 
(CRF) algorithm for its NER task and achieved an overall 
F1 score of 0.786 on 7 types of entities. Zhang and Fush-
man [26] proposed rule-based strategies that extracted 
named entities using MetaMap and used them for clas-
sifying criteria. Yuan et al. [27] further developed a new 
natural language interface named Criteria2Query, which 
automatically transformed eligibility criteria to SQL 
queries for searching patients from clinical databases in 
OMOP Common Data Model. Like the EliIE tool, Cri-
teria2Query also applied machine learning methods for 
NER and relation extraction tasks. More recently, Chen 
et al. [5] investigated deep learning models on NER from 
EC of clinical trials. In their study, BERT and BioBERT 
have been examined to extract entities from clinical trial 
protocols and they show improved performance, com-
pared with traditional machine learning algorithms. 
Nevertheless, there is no comprehensive study that sys-
tematically investigates different contextual embeddings 
for NER in EC section of clinical trial documents. Recent 
state-of-the-art pre-trained language models that are 
developed for the biomedical domain (e.g., BlueBERT [8] 
and PubMedBERT [9]) have not been applied to clinical 
trial documents yet.

In addition, annotated corpora for NER in the EC sec-
tion of clinical trial protocols have been developed in 
multiple studies, including (1) EliIE [4], which contains 
230 annotated protocols of Alzheimer’s Disease (AD) 
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clinical trial from ClinicalTrials.gov; (2) Covance [5], 
which contains 470 annotated drug development study 
protocols collected from in-house studies by Covance; 
and (3) Chia [12], which contains 1000 annotated pro-
tocols randomly selected from interventional Phase IV 
clinical trials registered in ClinicalTrials.gov. In addition 
to entities, both Covance and Chia also annotated modi-
fiers to main clinical entities. Table  1 and 2 show some 
statistics of entities in the three corpora. Although such 
existing corpora provide great opportunities for method 
development and evaluation for NER in EC text, to the 
best of our knowledge, currently there is no study that 
has investigated NER approaches and systems across 
multiple clinical trial corpora.

The purpose of this study is twofold: (1) we want to sys-
tematically examine the performance of different state-
of-the-art pre-trained language models (from both open 
domains and the biomedical domain) on NER for EC in 
clinical trial protocols; and (2) we plan to compare NER 
performance across multiple EC corpora and explore the 
feasibility of leveraging multiple data sources to improve 
NER performance in EC.

Materials and methods
Dataset
In this study, we included all three corpora listed in 
Table  1: EliIE, Covance, and Chia. Among them, EliIE 
and Covance share similar annotation guidelines, 
although Covance contains more entity types than that in 
EliIE. The Chia corpus contains more fine-grained anno-
tations of entity types and relations, e.g., including dis-
joint, nested, and overlapping entities. As such non-flat 
annotations require specific NER methods, we converted 
Chia annotations to continuous, non-overlapping entities 
only, to make them similar to EliIE and Covance anno-
tations to ease the comparison. We applied two rules in 
this conversion: (1) for nested entities, we kept the out-
side entity only and removed the annotation of the nested 
one (Fig. 1-Left); and (2) we merged the disjoint entities 
to form a longer, continuous entity (Fig. 1-Right).

For Chia, there are two distinct datasets titled With 
Scopes and Without Scopes describing the inclusion or 
exclusion of Scope entities. The two datasets differs only 
in their utilization of Scope entity within the annota-
tion model. We chose the Without Scopes dataset and 

Table 1  Basic information and statistics of entities in the three EC corpora for NER

Corpus EliIE Covance Chia

Number of documents 230 470 1000

Source Clinicaltrials.org In-house by Covance clinicaltrials.org

Disease Areas Alzheimer’s disease only All diseases All diseases

Table 2  Main entities (entity types)—Count (number of occurrence) in the three EC corpora; numbers in the parentheses are nested 
occurrence for Chia corpus

EliIE Covance Chia
Main entities Count Main entities Count Main entities Count

Condition 4138 Condition 21,022 Condition 12,039 (127)

Drug 1465 Drug 13,671 Drug 3801 (24)

Qualifier 1715 Qualifier_Modifier 12,953 Qualifier 4157 (127)

Measurement 1029 Measurement 7732 Measurement 3305 (9)

Procedure_Device 652 Procedure 5635 Procedure 3595 (54)

Observation 1765 Observation 12,391 Observation 1216 (19)

Temporal_measurement 812 Temporal_constraint 11,326 Temporal 3580 (1066)

Anatomic_location 83 Anatomic_location 648 Negation 843 (0)

Negation_Cue 1551 Device 386 (2)

Event 4053 Multiplier 671 (8)

Permission_Cue 2108 Person 1666 (2)

Demographics 869 Value 4002 (60)

Device 360 Visit 165 (1)

Refractory_condition 662 Mood 616 (13)

Investigational_product 559 Reference_point 934 (116)
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combined the inclusion and exclusion together for each 
annotated EC file for our evaluation.

Pre‑trained language models
This study systematically investigated six state-of-the-
art transformer-based language models: two from open 
domains: BERT and SpanBERT; and four for the biomed-
ical domain: BioBERT, BlueBERT, PubMedBERT, and 
SciBERT.

BERT: A bidirectional deep transformer encoder model 
pre-trained on general domain corpora using masked 
language modeling (MLM) and next sentence prediction 
(NSP). The large model architecture has 24 transformer 
blocks with a hidden size of 1024 and 16 attention heads. 
The total number of parameters is 340 million. The model 
was trained on general English corpus from Wikipedia 
and BooksCorpus [28].

SpanBERT: A pre-trained transformer model extended 
BERT by: (1) masking contiguous random spans instead 
of random tokens, and (2) training the span boundary 
representations without relying on the individual token 
representations within it.

BioBERT: The first domain-specific BERT based model 
pre-trained on biomedical corpora. BioBERT was initial-
ized with weights from BERT at first, then pretrained 
with additional corpus from large biomedical domain 
(PubMed abstracts and PMC full-text articles). BioBERT 
utilized WordPiece tokenization [29] to address the out-
of-vocabulary issue so that any new words would be 
represented with subsequent subwords. It was shown 
to achieve better performance than the original BERT 
model on several biomedical NLP tasks like NER, rela-
tion extraction, and question answering.

BlueBERT: A pre-trained domain-specific transformer 
model by continual pretraining of BERT on biomedical 
and clinical corpora. Similar to BioBERT, BlueBERT was 
initialized with BERT firstly and then continue to pre-
train the model using the large biomedical and clinical 
domain (PubMed abstracts and clinical notes MIMIC-
III). The Biomedical Language Understanding Evaluation 
(BLUE) benchmark evaluated on five tasks with ten cor-
pora shows that the BERT model pre-trained on PubMed 

abstracts and MIMIC-III clinical notes achieved better 
performance than most state-of-the-art models.

PubMedBERT: A pre-trained domain-specific trans-
former model by pretraining from scratch on a large 
biomedical domain. It generated the vocabulary and pre-
trained from scratch to extend the uncased BERT Base 
model over a collection of PubMed abstracts and full 
PubMed Central articles.

SciBERT: A pre-trained domain-specific transformer 
model by pre-training from scratch on biomedicine and 
computer science domain. It generated the vocabulary 
and pre-trained from scratch to extend the cased BERT 
Base model over a random sample of 1.14 M papers from 
Semantic Scholar (18% papers from the computer science 
domain and 82% from PMC).

NER using transformer models
Figure  2 shows the architecture of the NER task using 
pre-trained transformer models. The NER task is formu-
lated as a sequence labeling task, to assign a predefined 
B/I/O tag to each token of the sequence, where “B” rep-
resents the beginning of an entity, “I” represents tokens 
inside an entity, and “O” represents all other nonentity 
words. At first, the annotated sentences in each corpus 
were preprocessed and transformed into the “BIO” for-
mat (e.g., sentence boundary detection and initial tokeni-
zation) by CLAMP (Clinical Language Annotation, 
Modeling, and Processing toolkit) [30], then the input 
instances were processed by appending with a special 
token [CLS] at the beginning of the text. The processed 
inputs were tokenized based on the pre-trained language 
model’s vocabulary and then fed into the language model. 
Then the contextual representations of the tokenized 
processed input were generated. Finally, the NER task 
is done by using an additional linear classification layer 
on the contextual representations to predict token tags. 
To address the out-of-vocabulary (OOV) problem, the 
transformer models usually split original words into mul-
tiple pieces of sub-tokens, using a special tag “##” to be 
inserted in the front of the following sub-tokens.

All transformer models were downloaded from the 
HuggingFace website (https://​huggi​ngface.​co/​models). 
All NER models were trained using an NER package 

Fig. 1  Examples of conversions of non-flat entities in the Chia corpus. Left: Nested entities; Right: Disjoint entities

https://huggingface.co/models
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developed on the Transformers library implemented by 
the HuggingFace team [31] using PyTorch.

Experiments and evaluation
For each corpus, a tenfold cross-validation (train/dev/
test subsets with a ratio of 80%:10%:10%) was used to 
train and evaluate the performance of the NER models. 
Based on the state-of-the-art research in [35] and our 
previous experience, the following hyperparameters 
were used for all the models (Table 3).

We evaluated the performance of all the transformer-
based NER models using both the strict and relaxed 
micro precision, recall, and F1-score [32], where strict 
means that an entity is correctly identified if both 
the boundary and entity type is same as those in gold 
standard, the relaxed means that an entity is correctly 
identified if its entity type is correct and its boundary 
overlaps with that in the gold annotations.

For the data augmentation experiment, we trained 
NER models by directly combining additional corpora 
(EliIE, Chia, and EliIE + Chia) with the training set of 
the Covance corpus and then evaluated their perfor-
mance on the test set of the Covance corpus.

Results
Table 4 shows the strict and relaxed micro P/R/F1 scores 
of six transformer-based models for NER in EC of trials 
on three corpora from Covance, EliIE, and Chia. Among 
all models, the PubMedBERT achieved the best per-
formance on all three datasets, with strict and relaxed 
F1-scores of 0.715 (0.835), 0.832 (0.900), and 0.622 
(0.744), respectively. To report the statistical signifi-
cance of the differences among the results of the various 
experiments, the Wilcoxon rank sum tests [33], were also 
applied to compare the strict F1 metric of PubMedBERT 
with the other pre-trained models across the three cor-
pora. Compared with the general domain pre-trained 
BERT model, the PubMedBERT improved the F1-scores 
by 1%, 2.9%, and 2.4% on Covance, EliIE and Chia cor-
pora respectively. Different transformer models also 
showed consistent patterns for performance on the three 
corpora—all models achieved highest performance on 
the EliIE corpus and the lowest performance on the Chia 
corpus, with Covance in the middle. Moreover, the vari-
ations of the same model on different corpora were large 
(e.g., more than 20% in F1 score between EliIE and Chia), 
indicating the intrinsic differences between those anno-
tated corpora in EC of trials.

Table 5 shows the detailed results of the PubMedBERT 
model for each entity in the three corpora. Our results 
showed large differences in performance for different 
types of entities: F1-measures ranged from 0.429 to 0.830 
for the Covance corpus, 0.507 to 0.881 for the EliIE cor-
pus, and 0.015 to 0.808 for the Chia corpus.

Table  6 shows the results of the data augmentation 
experiments on common entities. When the EliIE cor-
pus was added to the training set of the Covance cor-
pus, it slightly improved the overall performance on 
the test set of Covance—F1 score was improved from 

Fig. 2  Architecture of the NER task using pre-trained transformer models

Table 3  Hyperparameters used for all the transformer models

Hyperparameters Value

training epochs 10

Learning rate 5.00E−05

Adam epsilon 1.00E−08

Training batch size 8

Maximum sequence length 256
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0.715 to 0.721. However, when Chia or Chia + EliIE was 
added to the training set of Covance, it dropped the 
overall F1 score on the test set of Covance.

Table 7 shows the computational time per epoch for 
all the models that trained on the three corpora using 
a single NVIDIA A100 GPU. Different models also 
showed consistent patterns for time complexity on the 
three corpora—all models spent longest time on the 
Covance corpus (with training data size 7.1  MB) and 
the shortest time on the EliIE corpus (with training 

data size 1.0 MB), with Chia in the middle (with train-
ing data size 4.0 MB).

Discussion
In this study, we systematically investigated general and 
domain-specific pre-trained language models for NER 
in EC text using three clinical trials corpora. Experi-
mental evaluation shows that the PubMedBERT model 
achieved the best overall performance in all three cor-
pora among six models. It achieved strict F1-scores 

Table 4  The strict and relaxed overall performance on the test sets of COVANCE, ELIIE, and CHIA corpora

Bold values were calculated using the Wilcoxon rank sum test. The Wilcoxon rank sum test is a non-parametric test method that determines whether the means of 
strict F1 scores (Bold values) from the 10-fold experiments of the PubMedBERT model and each other model (BERT, SpanBERT, BioBERT, SciBERT) are statistically 
different from each other based on ranks rather than the original F1 scores of the experiments. The detailed definition of the Wilcoxon rank sum test can be found in 
the reference [33] as shown in the manuscript

Numbers in the parentheses are results based on relaxed criteria

*Indicates p < 0.05 when comparing to other pre-trained models

Models Covance EliIE Chia
P R F1 P R F1 P R F1

BERT 0.691
(0.810)

0.719
(0.849)

0.705
(0.829)

0.810
(0.877)

0.842
(0.917)

0.826
(0.896)

0.577
(0.701)

0.620
(0.761)

0.598
(0.730)

SpanBERT 0.692
(0.810)

0.718
(0.847)

0.705
(0.828)

0.813
(0.879)

0.843
(0.917)

0.828
(0.897)

0.593
(0.711)

0.628
(0.758)

0.610
(0.734)

BioBERT 0.694
(0.812)

0.722
(0.851)

0.708
(0.831)

0.810
(0.879)

0.837
(0.915)

0.823
(0.896)

0.589
(0.707)

0.632
(0.765)

0.609
(0.735)

BlueBERT 0.689
(0.807)

0.718
(0.848)

0.703
(0.827)

0.811
(0.880)

0.838
(0.917)

0.824
(0.898)

0.590
(0.702)

0.616
(0.737)

0.603
(0.719)

PubMedBERT 0.704
(0.820)

0.727
(0.851)

0.715*
(0.835)

0.817
(0.881)

0.847
(0.920)

0.832*
(0.900)

0.606
(0.724)

0.639
(0.765)

0.622*
(0.744)

SciBERT 0.696
(0.813)

0.723
(0.850)

0.709
(0.831)

0.813
(0.883)

0.839
(0.915)

0.825
(0.899)

0.589
(0.709)

0.634
(0.768)

0.611
(0.737)

Table 5  The strict performance of the PubMedBERT model for each main entity across the three corpora

Main entities Covance Main entities EliIE Main entities Chia

P R F1 P R F1 P R F1

Condition 0.783 0.806 0.795 Condition 0.871 0.892 0.881 Condition 0.742 0.773 0.757

Drug 0.734 0.762 0.748 Drug 0.850 0.881 0.865 Drug 0.747 0.798 0.771

Qualifier_Modifier 0.597 0.599 0.598 Qualifier 0.780 0.814 0.796 Qualifier 0.444 0.486 0.462

Measurement 0.786 0.818 0.801 Measurement 0.863 0.871 0.866 Measurement 0.669 0.689 0.678

Procedure 0.651 0.674 0.662 Procedure_device 0.725 0.765 0.742 Procedure 0.574 0.630 0.600

Observation 0.651 0.679 0.664 Observation 0.754 0.792 0.771 Observation 0.278 0.260 0.267

Temporal_constraint 0.717 0.751 0.733 Temporal_measurement 0.807 0.829 0.815 Temporal 0.552 0.638 0.592

Anatomic_location 0.458 0.407 0.429 Anatomic_location 0.519 0.499 0.507 Negation 0.569 0.626 0.595

Negation_Cue 0.500 0.502 0.501 Device 0.528 0.515 0.520

Event 0.814 0.848 0.830 Multiplier 0.374 0.406 0.388

Permission_Cue 0.578 0.635 0.604 Person 0.795 0.824 0.808

Demographics 0.714 0.743 0.727 Value 0.727 0.745 0.735

Device 0.565 0.567 0.559 Visit 0.504 0.579 0.530

Refractory_condition 0.519 0.586 0.547 Mood 0.302 0.360 0.325

Investigational_product 0.657 0.630 0.641 Reference_point 0.398 0.524 0.453
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of 0.715 and 0.832 on the Covance and EliIE corpora 
respectively, which were better than previously pub-
lished results on these corpora (e.g., F1 of 0.708 for 
Covance in [5] and F1 of 0.786 on EliIE in [4]). These 
findings indicate that domain-specific language mod-
els are valuable for NER in EC and it worth further 
investigation.

BERT and SpanBERT were pre-trained using gen-
eral corpora from English Wikipedia and BooksCorpus. 
Domain-specific models were built by either continu-
ously fine-tuning on the top of BERT using biomedical 
corpora (e.g., BioBERT and BlueBERT) or training lan-
guage models from scratch using biomedical corpora 
(e.g., PubMedBERT and SciBERT), thus providing more 
meaningful and representative word embeddings for 
downstream domain-specific tasks. As shown in Table 4, 
PubMedBERT and SciBERT also show slightly better 
performance than BioBERT and BlueBERT. One of the 
reasons could be that they have better vocabulary cover-
age on clinical trial documents, as they are trained from 
scratch using biomedical vocabularies. Table 8 shows the 

percentages of vocabulary coverage of BERT, PubMed-
BERT, and SciBERT on words from the three corpora 
of clinical trial protocols, which obviously indicates a 
smaller OOV problem for PubMedBERT. The reason that 
PubMedBERT outperformed SciBERT could be related 
to the training corpora—the SciBERT model was pre-
trained from scratch using mixed domain corpora from 
both computer science and biomedicine. Nevertheless, 
the differences of performance between any domain-spe-
cific models are small.

A large performance variation was observed among 
three corpora (e.g., F1 scores of 0.715, 0.832, and 0.622 
on Covance, EliIE, and Chia respectively, for the same 
PubMedBERT model), and patterns were consistent for 
all models (e.g., EliIE > Covance > Chia), which indicates 
the intrinsic differences among three annotated corpora, 
including (1) information models (e.g., types of enti-
ties and relations included); (2) annotation schemes and 
guidelines (e.g., whether to allow nested or disjoint enti-
ties); (3) sub-domains of samples (e.g., EliIE is from AD 
trials only); and (4) sample sizes. All models have better 
performance on the EliIE corpus probably due to that it 
contains trials from AD only and the types of entities are 
relatively simple. The low performance of Chia is prob-
ably mainly related to its complex and notable non-flat 

Table 6  The strict performance for the common main entities of COVANCE with augment corpora using the PubMedBERT model

Bold values were calculated using the Wilcoxon rank sum test. The Wilcoxon rank sum test is a non-parametric test method that determines whether the means of 
strict F1 scores (Bold values) from the 10-fold experiments of the PubMedBERT model and each other model (BERT, SpanBERT, BioBERT, SciBERT) are statistically 
different from each other based on ranks rather than the original F1 scores of the experiments. The detailed definition of the Wilcoxon rank sum test can be found in 
the reference [33] as shown in the manuscript

*Indicates p < 0.05 when comparing to the original Covance corpus

Main entities Covance Covance + EliIE Covance + Chia Covance + EliIE + Chia

P R F1 P R F1 P R F1 P R F1

Condition 0.783 0.806 0.795 0.784 0.808 0.796 0.765 0.801 0.783 0.767 0.799 0.782

Drug 0.734 0.762 0.748 0.734 0.761 0.747 0.731 0.754 0.742 0.727 0.756 0.741

Measurement 0.786 0.818 0.801 0.783 0.814 0.798 0.751 0.790 0.770 0.748 0.786 0.766

Observation 0.651 0.679 0.664 0.651 0.678 0.664 0.643 0.657 0.650 0.650 0.661 0.655

Procedure 0.651 0.674 0.662 0.652 0.660 0.656 0.636 0.665 0.650 0.632 0.663 0.647

Qualifier_Modifier 0.597 0.599 0.598 0.602 0.595 0.598 0.580 0.572 0.576 0.584 0.579 0.581

Temporal_constraint 0.717 0.751 0.733 0.720 0.751 0.735 0.707 0.750 0.728 0.707 0.748 0.727

Overall 0.704 0.727 0.715 0.712 0.731 0.721* 0.697 0.720 0.708 0.697 0.721 0.709

Table 7  Computational time for training all the models on three 
corpora

Models Training time (seconds per epoch)

Covance EliIE Chia

BERT 518.4 69.9 212.3

SpanBERT 520.3 70.5 212.3

BioBERT 343.4 30.9 92.6

BlueBERT 529.8 69.6 212.6

PubMedBERT 395.7 30.7 92.5

SciBERT 341.7 30.5 92.3

Table 8  Percentages of vocabulary coverage of BERT, 
PubMedBERT, and SCIBERT in ELIIE, COVANCE, and CHIA

EliIE (%) Covance (%) Chia (%)

BERT 47.5 28.1 34.3

PubMedBERT 63.2 44.4 53.4

SciBERT 54.8 34.1 41.9
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annotation schemes, as it stated that Chia was the first 
clinical trial corpus with considerable size annotated in 
a non-flat mode which supported annotations of nesting 
and disjoint entities [12]. When we applied rules to con-
vert disjoint, nested or overlapping entities to continuous 
and non-overlapping entities in the preprocessing mod-
ule, it may cause other issues such as reducing some types 
of entities while removing the inner nested entities or 
bringing certain noise while merging the disjointed enti-
ties, which would inevitably lower their performance. As 
the performance on Chia is not optimal, more advanced 
methods should be investigated to further improve NER 
systems to handle nested, disjoint, or overlapping entities 
in EC [34].

Our experiment that directly combined different cor-
pora shows slight improvement when adding EliIE to 
the training set of Covance, the Wilcoxon rank sum tests 
show that the improvement is statistically significant with 
p < 0.05, therefore indicating it is worth investigating such 
data augmentation approaches for NER tasks in clinical 
trial documents. The reason that adding Chia to Covance 
did not improve the model performance is probably due 
to the differences of annotation schemes and guidelines 
between Covance and Chia. As stated in [5], the Covance 
corpus was constructed following a similar guideline as 
that of EliIE. Our next step is to investigate more sophis-
ticated data augmentation algorithms, e.g.,, different 
domain adaptation methods [35–37].

There are limitations in this study. We mainly explored 
pre-trained language models on the NER tasks only. 
However, to support downstream applications, modifiers 
of clinical entities and standard codes of those entities 
should be identified as well. Therefore, our next step is to 
explore pre-trained language models on relation extrac-
tion tasks [15] in EC text. Furthermore, it is interesting 
to develop a robust mechanism to process the complex, 
non-flat annotations in Chia.

Conclusion
In this study, we systematically compared BERT and 
its variants for NER in clinical trial eligibility criteria 
text and our results show that the PubMedBERT, which 
trained domain-specific language models from scratch 
using PubMed abstracts and full-text articles, achieved 
the best performance across multiple corpora, although 
variation among different models is small. However, large 
performance gaps were observed among different clinical 
trial corpora, calling for in-depth analysis of variations 
among different types of clinical trials, so that more gen-
eralizable approaches can be developed for all types of 
trial documents.
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