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Acute Ischemia and Sudden Cardiac Death
Disturbances in cardiac rhythm resulting from an acute 
reduction in blood supply to a region of the heart are a major 
cause of sudden cardiac death (SCD).1,2 Specifically, lethal 
ventricular arrhythmias (sustained ventricular tachycardia 
[VT] or ventricular fibrillation [VF]) due to acute coronary 
artery occlusion account for 80% of all cases of SCD with-
out a prior history of heart disease.3 The electrophysiological 
changes leading to the induction and sustenance of ventricular 
arrhythmias in the acute (∼1 hour) period of regional ischemia 
(phase 1, during which approximately 50% of all SCDs occur4) 
have been extensively studied,5,6 yet the mechanisms remain 
unclear. Here, we briefly summarize known contributors to 
acute ischemia-induced ventricular arrhythmias, followed by a 
more detailed exploration of the potential role that changes in 
intracellular calcium (Ca2+) handling may play in that setting.

Ischemia-Induced Ventricular Arrhythmias
Ventricular arrhythmias in acute ischemia are caused by focal 
(ectopic excitation) and nonfocal (reentry) mechanisms, due to an 
interaction of alterations in myocardial electrical, mechanical, and 
biochemical properties (summarized below – for further details 
and references, see reviews by Carmeliet5 or Janse and Wit6).

Subcellular effects. Principal ischemia-induced intracellular 
changes include: (i) decreased adenosine triphosphate (ATP) 
and increased adenosine diphosphate (ADP) (due to hypoxia/
anoxia); (ii) decreased pH (resulting from carbon dioxide reten-
tion and increased proton production); (iii) increased sodium 
(Na+) concentration (caused by increased Na+ influx and 
decreased efflux); (iv) increased Ca2+ concentration ([Ca2+]i, 
discussed below); (v) activation of the ATP-inactivated potas-
sium (K+) current (IK,ATP, with an increase in the ADP/ATP 
ratio); (vi) decreased fast Na+ current (INa, primarily a result 
of increased inactivation due to acidosis, oxidative stress, and 
depolarization of resting transmembrane potential, Vm); and 
(vii) decreased L-type Ca2+ current (ICa,L, discussed below). 
These occur at the same time as important interstitial changes, 
including increased extracellular K+ concentration (largely 
due to increased K+ efflux via IK,ATP, and to a lesser extent to 
decreased influx and shrinkage of the extracellular space) and 
elevated levels of catecholamines (due to acidosis-induced 
endogenous release from sympathetic nerve terminals).

Cell- and tissue-level effects. At the whole cell level, 
extracellular hyperkalemia causes a shift in the equilibrium 
potential for K+, which results in depolarization of resting Vm 
(facilitated by an increasing inward leak current). Initially, 
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this causes an increase in cell excitability as Vm approaches 
threshold. As extracellular K+ concentration continues to 
increase, there is a subsequent decrease in the rate of the 
action potential (AP) upstroke and in AP amplitude, as INa 
is decreased due to channel inactivation. At the same time, 
the AP is at first slightly prolonged (due to a decrease in local 
temperature of the myocardium), followed by AP shortening 
(primarily by activation of IK,ATP). In contrast to the effect on 
AP duration (APD), ischemia causes an increase in the effec-
tive refractory period (ERP, caused by INa inactivation), which 
results in post-repolarization refractoriness (although ERP is 
shortened at the border between healthy and fully ischemic 
tissue, explained below). In tissue, conduction velocity (CV, 
which is determined by AP upstroke velocity and amplitude, as 
well as the ease of intercellular propagation) is reduced, at first 
by the change in AP characteristics, and then more severely 
with the closure of gap junctions as ischemia progresses.

Mechanisms of arrhythmogenesis. As acute ischemia 
is dynamic, with effects progressing in time after coronary 
artery occlusion, so is the frequency of the associated arrhyth-
mias. Arrhythmias tend to occur in two distinct phases. Spe-
cific timings vary with species and experimental preparation, 
but in general the first phase (phase 1a) occurs approximately 
2-10 minutes after occlusion (with a peak in arrhythmias at 
around 6 minutes), while the second phase (phase 1b) occurs 
after approximately 20–40  minutes (with a peak at around 
30  minutes). In addition, effects are nonuniform across the 
ischemic region, with heterogeneities pronounced at the 
ischemic border. These heterogeneities, such as an increase 
in excitability and a shortening of ERP in the border zone 
(due to injury current), are important factors in the generation  
of arrhythmias.

The nature and underlying mechanisms of arrhyth-
mias in the two subphases of acute ischemia are also 
distinct. Phase 1a arrhythmias are not generally lethal, 
manifesting as short periods of VT only (facilitated 
by the ischemia-induced decrease in excitation wave-
length = APD × CV). These arrhythmias are mostly trig-
gered by reentry near the border zone, with abnormal 
impulses traveling through an extended circuit in the isch-
emic tissue or multiple wavefronts around a region of con-
duction block (although some ectopic excitation occurs as 
excitability is initially increased). Phase 1b arrhythmias, on 
the other hand, are more deadly (and thought to be the 
primary source of SCD), as they often degenerate into 
VF. The mechanism of their genesis, however, is less clear. 
In phase 1b, there is a greater extent of ectopic excitation 
than in phase 1a, both in the ventricular myocardium and 
in Purkinje fibers, most likely resulting from a combina-
tion of depolarizing influences of increased catecholamine 
levels (stimulating, for instance, intracellular Ca2+ release), 
enhanced stretch of border zone tissue (which stimulates 
stretch-activated currents), an increased source–sink rela-
tionship (due to cellular uncoupling), increased [Ca2+]i, and 

increased injury current. At the same time, the propensity 
for triggered activity to result in reentry is heightened by 
the decrease in CV (as gap junctions begin to close) and 
a further increase in extracellular K+ concentration. As 
mentioned earlier, the extensive reviews by Carmeliet5 or 
Janse and Wit6 can be referred to for references and further 
details.

Changes in Intracellular Calcium Handling During 
Acute Ischemia
While it is clear that many factors contribute to arrhythmias 
during acute ischemia, the involvement of altered intracellular 
Ca2+ handling is of particular interest, as it appears to have 
a critical role in arrhythmogenesis in various other disease 
states.7 Specifically, acute ischemia is known to affect various 
aspects of Ca2+ handling, resulting in important changes in 
[Ca2+]i and the Ca2+ transient.

Intracellular calcium handling under physiological 
conditions. Under normal conditions, excitation rapidly 
propagates into the cell interior via specialized sarcolemmal 
invaginations (transverse tubules). Depolarization causes 
opening of voltage-sensitive L-type Ca2+ channels (LCCs) 
concentrated in this region, which causes an influx of Ca2+ 
into the dyadic cleft and a localized increase in [Ca2+]i. In 
direct apposition to LCCs are sarcoplasmic reticulum (SR) 
release channels (ryanodine receptors [RyR]), which together 
form couplons that allow a regional increase in [Ca2+]i to 
stimulate RyR opening and cause release of Ca2+ from the 
SR (a process known as Ca2+-induced Ca2+ release [CICR]). 
This large increase in [Ca2+]i (up to 10 times diastolic levels) 
forms the upstroke of the Ca2+ transient, during which Ca2+ 
binds to troponin C on the myofilaments, enabling cross-
bridge cycling and muscle contraction. Upon relaxation, Ca2+ 
is released from the myofilaments and then either extruded 
from the cell by the Na+-Ca2+ exchanger (NCX, ∼28% of 
cytosolic Ca2+, and to a lesser degree the sarcolemmal Ca2+ 
ATPase, ∼2%), or resequestered in the SR by the SR Ca2+ 
ATPase (SERCA, ∼70%), so that preexcitation Ca2+ con-
centrations are restored. It is worth noting that only a small 
fraction of cytosolic Ca2+ is free at rest, with most bound to 
cytoplasmic proteins.

Ca2+ is also found in other intracellular compartments, 
where it is has important regulatory functions. In the mito-
chondria, Ca2+ regulates dehydrogenase activity to match 
energy production to utilization. The free concentration of 
Ca2+ in the mitochondria is generally lower than in the cyto-
sol and follows changes in that compartment. Ca2+ influx 
occurs primarily through the uniporter driven by an elec-
trical gradient (the mitochondrial matrix is negative with 
respect to the cytoplasm). Efflux depends on the proton 
gradient, occurring through mitochondrial NCX and the 
Na+/hydrogen (H+) exchanger (NHE), which act in concert 
to keep intramitochondrial Ca2+ and Na+ concentrations at 
low levels. As the mitochondria constitute a large fraction of 
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cell volume, they can accumulate a relatively large amount 
of Ca2+, and as such act essentially as a Ca2+ buffer. Specific 
details regarding normal intracellular Ca2+ handling can 
be found in the comprehensive review by Bers8 or Santulli 
and Marks.9

Ischemic effects on calcium-induced calcium release. 
Effects on L-type Ca 2+ channel activity. It has been shown 
in human embryonic kidney cells expressing the α1-subunit 
of the LCC (which contains the pore-forming and voltage-
sensing regions of the channel and is able to conduct ions in 
the absence of other accessory subunits) that hypoxia alone 
impairs ICa,L activation kinetics in a PO2-dependent manner.10 
This is thought to occur via posttranslational redox modi-
fication of the channel11 or a change in the sensitivity to 
changes in oxygen tension,12 although confirmation of 
their relative contribution is still needed.13 With reduced 
oxygen availability, there is a reduction in ATP, which 
further affects ICa,L by decreasing peak current, as demon-
strated in isolated guinea pig ventricular myocytes.14 On 
the other hand, it has also been shown in these cells that 
hypoxia increases LCC sensitivity to β-adrenergic stimula-
tion (as occurs with increased catecholamine levels during 
acute ischemia), which acts to increase ICa,L, opposing the 
reduction in activation and peak current.11 In the case of 
combined oxidative and glycolytic metabolic inhibition (as 
occurs in phase 1b), the efficacy of LCCs to initiate CICR 
is impaired, causing a reduction in the ratio of ICa,L to Ca2+ 
transient amplitude.15 This effect, however, was found not to 
be linked with LCC dephosphorylation, so may be a result 
of alterations in RyR activity.

Acidosis also affects IC,aL, reducing peak current in isolated 
guinea pig ventricular myocytes.16 In isolated rabbit hearts, 
reductions in pH to 6.3 have been shown to produce a ∼70% 
reduction in the maximal conductance of ICa,L.17 This effect 
is enhanced when combined with inhibition of the NHE,18 
as occurs in phase 1b. Of interest, in isolated rabbit sinoatrial 
node cells, ischemia in fact increases ICa,L,19 which is thought 
to relate to differences in the LCC α-subunit found in sinoa-
trial node (Cav 1.3) vs. ventricular (Cav1.2) cells.20 In addition, 
there is a reduction in the conductance of T-type Ca2+ channels 
during acute ischemia,19 but the expression of that channel in 
ventricular myocytes is negligible.5

Ligands produced during acute ischemia similarly 
affect ICa,L. Amphiphiles (long-chain acylcarnitines, LCAs) 
accumulate in ischemia as β-oxidation slows.21 The effect of 
LCAs on LCCs is debated, with previous literature indicat-
ing both current amplification22 and inhibition.23 In support 
of the importance of an LCA effect on Ca2+ handling during 
ischemia, however, is the finding that in isolated rat ventricu-
lar myocytes, an increase in LCAs is associated with afterde-
polarizations (although this may also be linked to enhanced 
INa).24 Reactive oxygen species (ROS) have also been shown to 
be produced during acute ischemia in cultured chick embryo 
ventricular myocytes25,26 and intact guinea pig hearts.27 ROS 

is produced with mitochondrial electron transport chain 
damage28 or uncoupling of nitric oxide synthase (NOS),29 
and by NADPH30 or xanthine31 oxidase (for further details 
regarding ROS production during ischemia, see the review 
by Raedschelders et al.32). These volatile molecules have been 
shown to increase ICa,L density,33 via redox modification of the 
LCC α1-subunit.34,35 LCCs are also sensitive to the increase 
in [Ca2+]i that occurs with ischemia, which increases the 
rate of their inactivation (via modulation of the α1-subunit 
by the Ca2+-calmodulin complex36), resulting in a negative 
inhibition of LCCs (similar to the voltage dependence of  
their inactivation).37

Effects on RyR activity. RyR channels are regulated by 
various accessory proteins and their modulators, including 
cytosolic calmodulin, FK506-binding protein (FKBP 
12.6), protein kinase A, protein phosphatases, and luminal 
triadin, junctin, and calsequestrin.8 Within the first hour 
of ischemia, it has been shown in canine myocardium and 
isolated rat hearts that the number of available RyR chan-
nels is significantly reduced.38,39 The sensitivity of the RyR 
to cytosolic Ca2+ is reduced by progressive acidification, and 
to a lesser extent reductions in ATP,40 which is an impor-
tant modulator of RyR sensitivity to both luminal and cyto-
plasmic SR [Ca2+].41,42 Conversely, increased ROS, which 
alters the oxidative status of RyR, leads to enhanced Ca2+ 
sensitivity and leak.30 This posttranslational modification 
of RyR by ROS has been linked to an increase in the open 
probability of the channel by S-glutathionylation.43 Further-
more, the activity of NOS has been shown to be augmented 
early in acute ischemia,44,45 promoting an increase in nitric 
oxide and cGMP production.46 This increase in NOS activ-
ity, acting through cGMP-dependent or -independent path-
ways, modifies phosphodiesterase activity or nitrosylation of 
cysteine residues on proteins,47 which reduces ICa,L,48–50 while 
amplifying RyR and SERCA activity (thus increasing Ca2+  
spark frequency).48,51

Ischemic effects on calcium extrusion and reuptake. 
Effects on NCX activity. With a reversal potential of ∼−35 mV, 
NCX typically functions during diastole in forward mode, 
extruding one Ca2+ ion in exchange for three Na+ ions, and 
thus generating a net inward current.52 During ischemia, 
however, it has been proposed that NCX begins to function 
primarily in reverse mode, reducing Ca2+ efflux while increas-
ing influx, thus contributing to cytosolic Ca2+ overload.53 This 
is thought to be linked to the increase in intracellular Na+ con-
centration resulting from enhanced NHE activity in response 
to the reduction in intracellular pH.54,55 There is some debate, 
however, regarding the changes in NHE activity that occur 
with ischemia, as some have shown that NHE is inhibited 
by ischemia.18 Inhibition of NHE is thought to be driven 
by a decrease in extracellular pH,56 but others have shown 
that the stimulatory effects of low intracellular pH domi-
nate.57 Either way, as ischemia progresses, NCX function is  
generally reduced.58
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Effects on SERCA activity. During acute ischemia, SERCA 
expression has been shown to be relatively unchanged.59 Its 
function, however, is highly dependent on metabolic status 
(decreased ATP in ischemia reduces the energy available for 
its activity), in addition to the activity of the inhibitory pro-
tein phospholamban (PLB).60 Within the first ∼20 minutes of 
ischemia, PLB has been shown to increase phosphorylation 
of SERCA.61 This increase in phosphorylation results from 
reduced activity of protein phosphatases by acidotic inhibi-
tion, thus maintaining the phosphorylation status of PLB and 
of SERCA activity.62 As ischemia progresses, the maximum 
rate of SERCA conductance is reduced,63,64 and dephospho-
rylation of PLB by calcineurin-activated protein phosphatases 
impairs SERCA kinetics and reduces SR Ca2+ load.59 Redox 
modification of SERCA has also been demonstrated, how-
ever, its effects are generally limited.65

Ischemic effects on intracellular calcium concentration 
and calcium transient morphology. During acute ischemia, 
Ca2+ influx begins to exceed efflux (with some delay), due to 
reduced efficiency of Ca2+ removal by the NCX (and ultimately 
influx when it operates in reverse mode),54,55 combined with 
an increased inward leak current. This causes diastolic [Ca2+]i 
to increase, plateauing at approximately three times that of 
initial values by 30 minutes.17,66,67 This increase in [Ca2+]i is 
facilitated by the ischemia-induced reduction in Ca2+ uptake 
by the SR,63,64 as well as displacement of Ca2+ from cyto-
plasmic binding sites by protons,68 an increase in Ca2+ spark 
frequency,69 and decreased myofilament Ca2+ sensitivity.70 At 
the same time, the increase is mitigated by accumulation of 
Ca2+ in mitochondria due to reduced mitochondrial electrical 
and proton gradients as oxidative metabolism is reduced.71

Ischemia-induced alterations in CICR, on the other 
hand, result in a decrease in SR Ca2+ release, which manifests 
as a decrease in the rate of the Ca2+ transient upstroke72 and in 
Ca2+ transient amplitude.73 At the same time, the rate of Ca2+ 
transient decay is decreased,74 although Ca2+ transient dura-
tion is generally maintained (or only slightly increased).72,75,76 
In the face of a decreasing APD, a maintained (or length-
ened) Ca2+ transient is partly accounted for by slowed RyR 
kinetics, which reduces the rate of Ca2+ release, thus indirectly 
delaying recovery,77 which is enhanced as SERCA function 
declines. Yet this appears to occur without a change in SR 
Ca2+ content,17 suggesting that ischemia equivocally impairs 
both release and reuptake mechanisms.

Calcium-Driven Arrhythmias During Acute Ischemia
Ischemia-induced changes in intracellular Ca2+ handling may 
have important implications for arrhythmogenesis, contribut-
ing to arrhythmic triggers (premature excitation) and substrate 
(proarrhythmic condition creating a setting for reentry).78

Arrhythmic triggers driven by Ca2+, manifesting as pre-
mature depolarizations, are commonly classified as early or 
delayed afterdepolarizations (EADs or DADs, respectively).79 
EADs occur during the plateau or repolarization phase of the 

AP. In many disease states, EADs during the AP plateau occur 
when repolarization is delayed, resulting in an increase in APD 
sufficient for the reactivation of ICa,L and a subsequent depo-
larizing current.80,81 During acute ischemia, however, APD is 
shortened and ICa,L inhibited, so it is unlikely that EADs occur 
during the AP plateau in that setting. EADs during AP repo-
larization, on the other hand, have been shown to occur both 
with increased and decreased APD. In the case of increased 
APD, EADs during AP repolarization can occur independent 
of changes in cytosolic Ca2+, resulting from electrotonic inter-
actions between regions of varying APD,80,82 which may be 
important during regional ischemia,83 where spatial heteroge-
neities in APD exist between ischemic and healthy tissues.84,85 
In the case of shortened APD, on the other hand, if Ca2+ tran-
sient duration in maintained (as is the case during much of 
the acute phase of ischemia), [Ca2+]i remains elevated during 
cellular repolarization (under normal conditions, AP and Ca2+ 
transient duration are generally similar86). This divergence of 
AP and Ca2+ transient duration creates a vulnerable window 
for EADs to occur, due to the depolarizing current generated 
by the NCX,87,88 which is exasperated by the increased intra-
cellular Na+ concentration.89 Evidence for the importance of 
this mechanism in acute ischemia comes from a global isch-
emia model in the isolated rabbit heart with Ca2+ chelation 
by BAPTA.76 In that study, it was shown that during global 
ischemia AP duration decreased, while Ca2+ transient duration 
increased (Fig. 1A and C). With pre-application of BAPTA, 
however, Ca2+ transient duration instead decreased during 
ischemia (and to a similar degree as AP duration; Fig.  1B 
and  D). Thus, while the duration of the Ca2+ transient was 
greater that the AP in both cases, the difference  was higher 
without BAPTA (Fig.  1C and D), such that Ca2+ chelation 
reduced the period over which the Ca2+ transient intruded into 
electrical diastole (Fig.  1A and B). This change was associ-
ated reduction in the incidence of endocardial focal discharges 
(a result attributed to a reduced incidence of EADs).

DADs, on the other hand, occur during the resting phase 
of the AP. The driving current for DADs has been shown in 
both isolated human ventricular myocytes and sheep ventricu-
lar and Purkinje cells to be generated by elevated [Ca2+]i, acting 
through the NCX90 or the Ca2+-activated chloride channel.91 
This has been demonstrated to be an important mechanism 
for ischemia-induced arrhythmias in chronically instrumented 
dog experiments, in which pretreatment with BAPTA reduced 
the incidence of arrhythmias.92 Moreover, it has been sug-
gested that both DADs and EADs during ischemia may be 
more prevalent in endocardial tissue,76,93 potentially relating to 
transmural differences in SERCA expression94 and [Ca2+]i.95

EADs and DADs may be exasperated by additional 
factors during acute ischemia. Nonuniform contraction that 
occurs with changes in mechanical properties of the myocar-
dium, especially stretch at the border zone, may contribute to 
EADs and DADs.96 While stretch-activated channels may 
partly account for stretch-induced premature excitation,97,98 
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stretch also causes significant changes in intracellular Ca2+ 
handling.99–101 Stretch can result in an acute and transient 
increase in Ca2+ spark frequency,102 related to increased 
ROS.103 At the same time, stretch increases the affinity of 
troponin C for Ca2+, such that with stretch more Ca2+ is bound 
and then released upon relaxation, which slows Ca2+ transient 
decline104 and can result in Ca2+ waves,105 DADs,106 and sus-
tained arrhythmias.107 The localized increase of catecholamines 
during acute ischemia108,109 may also have important impli-
cations for Ca2+-driven arrhythmias.110,111 β-adrenergic 
stimulation increases ICa,L,112 especially during ischemia, as 
translocation of β-adrenergic receptors to the sarcolemma is 
increased73 and the sensitivity of LCC to β-adrenergic stimu-
lation is enhanced,11 promoting their reactivation. Importantly, 
Ca2+-driven membrane depolarization becomes especially rel-
evant under conditions of moderate cellular uncoupling dur-
ing acute ischemia,113 as the electrotonic influence of healthy 
myocardium on ischemic tissue (the so-called source–sink 

relationship) is reduced,114,115 thus facilitating the propagation 
of EADs and DADs. The interaction of β-adrenergic-induced 
Ca2+-driven afterdepolarizations and cellular uncoupling has 
been demonstrated with localized injection of norepineph-
rine in the isolated rabbit heart.116 In that study, norepineph-
rine injection caused focal ventricular excitation (Fig. 2A(ii)), 
associated with a decrease in Ca2+ transient duration (com-
pared to saline injection-induced excitation; Fig. 2B(i), B(ii), 
and D), along with a localized reduction in the Vm-Ca2+ delay 
(Fig. 2C(i), C(ii), and E). Under conditions of moderate cel-
lular uncoupling (by pre-application of carbenoxolone), the 
effect of norepinephrine injection on Ca2+ transient duration 
was similar (Fig. 2B(iii) and D), however the spatial extent of 
changes in the Vm-Ca2+ delay was increased (Fig. 2C(iii) and 
E). Thus, with uncoupling, a larger effect on Vm was observed 
for the same effect on Ca2+, indicating a decrease in the elec-
trotonic influence of the surrounding myocardium, which 
increased the propensity for Ca2+-mediated focal arrhythmias 
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Figure 2. Effects of localized catecholamine (norepinephrine, NE) application in the isolated rabbit heart. (A) Transmembrane potential (Vm) activation time, 
(B) calcium (Ca2+) transient duration at 50% amplitude (CaTD50), and (C) Vm-Ca2+ delay measured during a premature ventricular excitation induced by local 
injection (at the site indicated by the white asterisk) of normal Tyrode’s solution (i; NT – CON) or NE (ii; NE – CON) under control conditions, or after local NE 
injection with moderate cellular uncoupling by pre-application of carbenoxolone (iii; NE – CBX). (D) CaTD50 and (E) Vm–Ca2+ delay for each type of injection 
as a function of distance from the injection site. (F) Number of premature ventricular complexes (PVCs) per injection and (G) the proportion of injections 
resulting in $1 PVC (right) for low-dose (gray) and high-dose (black) NE under control conditions (solid bars) and with application of CBX (hatched bars; 
*P , 0.05 and **P , 0.01 when compared to control). Reproduced from Myles et al.116, with permission from Wolters Kluwer Health, Inc. Promotional and 
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(Fig.  2F and G). As ischemia progresses, however, cellular 
uncoupling becomes more severe as connexin phosphorylation 
is reduced, in part due to the increase in [Ca2+]i

117,118 (which 
in fact can be prevented by reducing Ca2+ overload119). While 

this increase in uncoupling is likely to prevent propagation of 
EADs and DADs, it will increase the potential for reentry 
by causing conduction block or by slowing conduction and 
increasing the excitable gap.120
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Alterations in Ca2+ handling during ischemia have also been 
shown to give rise to rate-dependent beat-to-beat variations in the 
magnitude of Ca2+ release (Ca2+ transient alternans, which occurs 
when excitation precedes recovery of the previous Ca2+ transient, 
resulting in reduced Ca2+ release, followed by a compensatory 
increase).73,75,121,122 Ca2+ transient alternans may be arrhyth-
mogenic if beats with augmented Ca2+ release are sufficient to 
initiate afterdepolarizations.123,124 As for EADs and DADs, Ca2+ 
transient alternans appear to occur more readily in the endocar-
dium, because of transmural heterogeneities in Ca2+ handling.125 
Moreover, if Ca2+ transient alternans in turn contributes to electri-
cal alternans, the increase in dispersion of refractoriness may pro-
mote conduction slowing or block, facilitating reentry.126

Conclusion
Arrhythmias during acute ischemia result from a combination 
of electrical, mechanical, and biochemical changes in the heart. 
Alterations in intracellular Ca2+ handling, specifically, may play 
an important role in both ectopic excitation and reentrant activity. 
With further investigation, especially focusing on the importance 
of intrasubject heterogeneities and intersubject variability,127 facil-
itated by a combined experimental–computational approach,128 
there is the potential for identification of novel Ca2+ handling-
related targets for antiarrhythmic therapy.
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