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With the rapid growth of next generation sequencing technologies, such as Slex, more and more data have been discovered and
published. To analyze such huge data the computational performance is an important issue. Recently, many tools, such as SOAP,
have been implemented on Hadoop and GPU parallel computing architectures. BLASTP is an important tool, implemented on
GPU architectures, for biologists to compare protein sequences. To deal with the big biology data, it is hard to rely on single GPU.
Therefore, we implement a distributed BLASTP by combining Hadoop and multi-GPUs. The experimental results present that
the proposed method can improve the performance of BLASTP on single GPU, and also it can achieve high availability and fault
tolerance.

1. Introduction

In the past decade, the sequencing technologies have been
improved dramatically. An entirely new technology was
developed, next generation sequencing (NGS), a fundamen-
tally different approach to sequencing DNA and RNA much
more cheaply and quickly than traditional Sanger sequenc-
ing. Meanwhile, NGS is well known as a high-throughput
sequencing technology.The number of output data produced
by NGS data has increased more than double each year
since it was invented. In 2007, a single sequencing run could
produce around one gigabase (Gb) of sequence data. By 2011,
it approaches a terabase (Tb) of data produced in a single
sequencing run—nearly a 1000× increase in four years. With
the ability to rapidly generate large amount of sequencing
data, NGS has enabled the researches in the field of biology
and other closely related fields can be done at a large-scale
level and also can move quickly from an idea to full data sets
in amatter of hours or days [1]. AsNGS becomes key player in
modern biological research, the analysis of the vast amount of
produced data is not an easy task and a great challenge in the

field of bioinformatics. Therefore, efficient tools to cope with
these big data to provide the knowledge easier and faster are
essential.

With the rapid development of multicore hardware,
graphics processing units (GPUs) are being used in numerous
applications to enhance computational performance. GPUs
have a low design cost and the increased programmability of
GPUs allows them to be more flexible than FPGAs. General-
purpose graphics processing units (GPGPU) programming
has been successfully used in scientific computing domains,
which involve a high level of numeric computation. The
greatest benefit of GPUs is that the number of processing
units is immense compared to those of CPUs (CPU, approx-
imately 2–16; GPU, approximately 128–512). In 2006, Nvidia
proposed the compute unified device architecture (CUDA).
CUDA uses a new computing architecture named single
instructionmultiple threads (SIMT).This architecture allows
threads to execute independent and divergent instruction
streams, thus facilitating decision-based execution, which
is not provided by the more common single instruction
multiple data (SIMD). Many well-known tools have been

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 541490, 7 pages
http://dx.doi.org/10.1155/2014/541490

http://dx.doi.org/10.1155/2014/541490


2 BioMed Research International

reimplemented based on GPU architecture [2–4]. One of the
wild-use alignment tools, BLASTP, is a heuristic algorithm
to produce a local alignment for protein. BLASTP has three
implementations on GPU, GPU-NCBI-BLASTP [5], CUDA-
BLASTP [6], and GPU-BLASTP [7]. All three implemen-
tations achieve 4x∼40x speedup over a single-thread CPU
implementation of NCBI-BLAST.

Meanwhile, the software architectures of distribution
computing have been developed rapidly as well. The cloud
computing as a new distribution computing service concept
has become popular for providing services with availability,
reliability, and on-demand computation to users. The cloud
computing environment can be a distributed system that has
massively scalable IT-related capabilities, providing multiple
external customers many services on Internet. In addition,
cloud computing can be used to copy with big data and
maintain high availability and fault tolerance. Hadoop [8] is
one of the commonly used open source software frameworks
intended to support data-intensive distributed applications.
Hadoop adopts Map/Reduce programming model to process
petabytes of data with thousands of nodes. Map/Reduce
programming model is useful to develop parallel com-
puting applications on cloud computing environment. In
Map/Reduce model, mappers and reducers complete a task.
Each mapper performs a map operation and each map oper-
ation is independent of the others. A task is split into many
subtasks, and each mapper processes its subtask. Similarly,
a set of reducers can perform a set of reduce operations.
Reducers deal with the data produced by mappers. An
important benefit of usingHadoop to develop the application
is fault tolerance. Hadoop can guide jobs toward a successful
completion even when individual nodes experience failure
in computation. In these situations, Hadoop platform is
considered as a much better solution for these real-world
applications. Currently, Hadoop has been applied in various
domains in bioinformatics [9–13]. Cloud-PLBS [14] is a
cloud service that combines the SMAP [15–17] and Hadoop
frameworks for 3D ligand binding site comparison and
similarity searching of a structural proteome. This platform
is computationally more efficient than standard SMAP. Hung
and Lin [12] proposed a parallel protein structure alignment
service based on the Hadoop distribution framework. This
service includes a protein structure alignment algorithm,
a refinement algorithm, and a Map/Reduce programming
model. The computational performance of their service is
proportional to the number of processors used in their cloud
platform.

In this paper, we combine these two different hetero-
geneous architectures, software architecture-Hadoop frame-
work and hardware architecture-GPU, to develop a high
performance cloud computing service for protein sequence
alignment. In this cloud service, each mapper performs
BLASTP and a reducer collects all resulting alignments
produced by mappers. The mappers work simultaneously. By
usingHadoop, the proposedGPUbased bioinformatics cloud
service can recover the comparison job from a crashed GPU
host by assigning this job to other health GPU hosts. This
cloud platform can achieve high performance, scalability,
and availability. The experimental results present that the

computational performance of the proposed service can be
enhanced by using Hadoop and GPU architecture.

2. Method

In the work, we integrate BLASTP with Hadoop. Hadoop
framework works with mappers and reducer. Mappers per-
form BLASTP on GPU, and reducer collects all alignment
results produced by mappers. Despite Hadoop distribution
computing framework, performance of BLASTP can be
enhanced bymultiplemappers. Hadoop guarantees that all of
BLASTP computational jobs on mappers can be completed,
even if some of the mappers stop.

2.1. GPU Programming. As theGPUhas become increasingly
more powerful and ubiquitous, researchers have begun devel-
oping various nongraphics or general-purpose applications
[18]. Traditionally, the GPUs are organized in a streaming,
data-parallel model in which the coprocessors execute the
same instructions on multiple data streams simultaneously.
ModernGPUs include several (tens to hundreds) of each type
of stream processor; both of graphical and general-purpose
applications thus are faced with parallelization challenges
[19].

Nvidia released the compute unified device architecture
(CUDA) SDK to assist developers in creating nongraphics
applications that run on GPUs. CUDA programs typically
consist of a component that runs on the CPU, or host, and
a smaller but computationally intensive component called
the kernel that runs in parallel on the GPU. Input data for
the kernel must be copied to the GPU’s on-board memory
from CPU’s main memory through the PCI-E bus prior to
invoking the kernel, and output data also should be written
to the GPU’s memory first. All memory used by the kernel
should be preallocated.

Kernel executes a collection of threads that computes a
result for a small segment of data. To manage multiple thr-
eads, kernel is partitioned into thread blocks, with each
thread block being limited to a maximum of 512 threads. The
thread blocks are usually positioned within a one- or two-
dimensional grid. Each thread can be positioned within a
given blockwhere it belongs, and this given block can be posi-
tioned within the grid. Therefore, each thread can calculate
which elements of data to operate on and which regions of
memory to writhe output to by an algebraic formula. Each
block is executed by a single multiprocessor, which allows all
threads within the block to communicate through on-chip
shared memory. The parallelism architecture of GPGPU is
illustrated in Figure 1.

2.2. Hadoop Framework. Hadoop is a software framework
to copy with distributed data in parallel by communicating
computing nodes. Hadoop runs data-intensive applications
through the Map/Reduce parallel processing technique. This
framework has been used inmany cloud industry companies,
such as Yahoo, Amazon EC2, IBM, and Google. The example
of computation of Map/Reduce framework is illustrated in
Figure 2. In the mapper stage, the input data is split into
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Figure 1: The parallelism architecture of GPGPU.
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Figure 2: Computation of Map/Reduce framework of Hadoop.

smaller chunks corresponding to the number of mappers,
and each mapper performs the operation on the data chuck.
Output of each mapper has the format of ⟨key, value⟩ pairs.
Outputs from all mappers, ⟨key, value⟩ pairs, are classified by
key before being distributed to reducer. Reducer adds values
by the same key. Outputs of reducers are ⟨key, value⟩ pairs
where each key is unique.

Hadoop cluster consists of a single master and multiple
slave nodes. The role of the master node is a jobtracker, task-
tracker, namenode, and datanode. A slave node, as computing
node, is a datanode and tasktracker.The jobtracker is the ser-
vice within Hadoop that manages Map/Reduce tasks that can
be completed on computing nodes in the cluster, the nodes
that already have the data. A tasktracker is a node in the
cluster that accepts tasks and maps, reduces, and shuffles
operations from a jobtracker. The architecture of Hadoop
cluster is shown in Figure 3.

Hadoop distributed file system (HDFS) is the distribution
file system used by Hadoop framework in default. Each input
data file is split into data blocks that are distributed on data-
nodes by HDFS. HDFS can create multiple replicas of data
blocks and distributes them on datanodes usually in the same
rack as the source datanode throughout a cluster to enable

reliable, extremely rapid computations.The namenode serves
as both a directory namespace manager and a node metadata
manager for the HDFS. There is a single namenode running
in the HDFS architecture.The architecture of HDFS is shown
in Figure 3.

2.3. BLASTP. The basic local alignment search tool (BLAST)
[20], as it is commonly referred to, is a database search
tool, developed and maintained by the National Center for
Biotechnology Information (NCBI). The web-based tool for
BLAST searches is available at http://blast.ncbi.nlm.nih.gov/
Blast.cgi.

The BLAST suite of programs has been designed to find
high scoring local alignments between sequences, without
compromising the speed of such searches. BLAST uses a
heuristic algorithm which seeks local as opposed to global
alignments and is therefore able to detect relationships among
sequenceswhich share only isolated regions of similarity [20].
The first version of BLAST was released in 1990 and allowed
users to perform ungapped searches only.The second version
of BLAST, released in 1997, allowed gapped searches [21].
BLASTP is used for both identifying a query amino acid
sequence and finding similar sequences in protein databases.
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Figure 3: The architecture of Hadoop cluster and HDFS.

BLASTP has three implementations on GPU, GPU-NCBI-
BLAST, CUDA-BLASTP, and GPU-BLASTP. All three imple-
mentations achieve 4x∼40x speedup over a single-thread
CPU implementation of NCBI-BLAST.

2.4. Cloud-BLASTP. To enhance the performance of CUDA-
BLASTP on single GPU is to scale with multiple GPUs. In
the proposed distributed GPU system, we utilized Hadoop
framework to manage multiple GPUs. The Cloud-BLASTP
architecture is demonstrated in Figure 4. Each single GPU
server has aGPUcard. To derive these distributedGPUcards,
Hadoop is suitable formanaging these cards. Everymapper in
a node performs BLASTP and a reducer collects all the results
produced by mappers. In this architecture, the sequence
database is separated into several parts and uploaded to
servers by HDFS. The features of Hadoop BLASTP are high
performance, availability and reliability, and scalability.

2.4.1. High Performance. In Hadoop BLASTP, the BLASTP
jobs are performed in parallel by Map/Reduce framework.
The number of the BLASTP jobs can be performed simulta-
neously which is the same as the number of the mappers. If
the number of the BLASTP jobs is greater than the number
of the mappers, then the number of mappers will assign
the rest of unperformed BLASTP jobs to available mappers
immediately.

2.4.2. Availability and Reliability. Hadoop BLASTP is able to
avoid the BLASTP jobs stop when mappers are down. By

using Hadoop fault tolerance mechanism, when a datanode
(mapper) is down during BLASTP computation, its BLASTP
job will be reassigned to another slave node (mapper) by
namenode.Therefore, all of the submittedBLASTP jobs never
stop because one of the datanodes fails in Hadoop BLASTP.
A hardware failure on the physical server causes a disastrous
failure as all mappers running on it die. One way is that all of
these jobs can be reassigned, and another way is that several
new mappers are created on available hosts and then these
jobs are reassigned to these new mappers. Thus, Hadoop
BLASTP has high availability.

2.4.3. Scalability. By Hadoop framework, Hadoop BLASTP
can create new slave mappers as datanodes according to the
number of submitted BLASTP jobs. When large amounts of
the BLASTP jobs are submitted, Hadoop BLASTP can create
more mappers to copy with more BLASTP jobs to enhance
the performance.

3. Cloud-BLASTP Platform

Cloud-BLASTP is a protein alignment cloud service under
Hadoop framework, BLASTP, and GPU architecture. The
cloud computing platform is composed of one NFS server
and 4GPU servers in the Providence University Cloud Com-
putation Laboratory. Each server is equipped with an Intel i7
3930 3.2GHz CPU, 16G RAM, and Nvidia GeForceGTS 480
graphics card (Fermi architecture). Each server is running
under the O.S. Ubuntu version 10.4 with Hadoop version 0.2
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Figure 4: The architecture of Cloud-BLASTP.

Map/Reduce framework. Each server is responsible for amap
operation and a reduce operation. The total number of the
Map/Reduce operations is up to 4, respectively.

4. Performance Evaluation

To assess the performance of the proposed cloud service, we
compared the execution time between stand-alone BLASTP
and Cloud-BLASTP. The performance of both programs
depends upon the amount of data set and the number of
computing mappers. Therefore, the performance between
the programs is tested with respect to these two factors.
In the first experiment, the data size of protein database is
841MB, and the numbers of query sequences are 102, 204,
and 408. The number of query sequences processed by each
mapper is the number of query sequences divided by the
number of mappers. For example, suppose there are two
mappers, and mapper 1 has to process 26 sequences and
mapper 2 has to process 25 sequences. The results are shown
in Figure 5. As shown in the figure, the execution time of
comparing 102 sequences can be reduced from 318 seconds
(consumed by the single GPU-BLASTP) to 187 seconds
and 88 seconds by executing Cloud-BLASTP with 2 and 4
mappers, respectively. Also, the execution time of comparing
204 sequences can be reduced from 622 seconds to 318
seconds and 164 seconds by executing Cloud-BLASTP with
2 and 4 mappers, respectively. For querying 408 sequences,
the execution time can be reduced from 1236 seconds to
622 seconds and 318 sequences by executing Cloud-BLASTP
with 2 and 4 mappers, respectively. It is obvious that with
less mappers (GPU servers) the performance is much worse.
Clearly, the execution time is effectively reduced when more
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mappers are involved. In general, more mappers achieve a
faster processing speed.

In Cloud-BLASTP, the important features are reliability
and availability. The computing process at the failed node
is able to continue at another node that has the replica of
data of the failed node.Therefore, we performed a simulation
to evaluate the reliability and availability of the proposed
cloud service when mappers fail. In this simulation, we
make half of the mappers fail in the duration of executing
BLASTP. In this simulation, the heartbeat time is set to one
minute, and the number of replicas is set to three as default.
Therefore, all of jobs can be completed even when some
of the nodes fail. Figures 6(a) and 6(b) demonstrate the



6 BioMed Research International

0
100
200
300
400
500
600
700
800
900

1000

102 204 408

Ex
ec

ut
io

n 
tim

e (
s)

The number of query sequences

Two Mappers
 50% mappers failure

(a)

0
50

100
150
200
250
300
350
400
450
500

102 204 408

Ex
ec

ut
io

n 
tim

e (
s)

The number of query sequences

Four mappers
25% mappers failure
50% mappers failure

(b)

Figure 6: Execution time of node failure at half of execution
duration of Cloud-BLASTP. (a) Two mappers; (b) four mappers.

performance of the proposedmethodmeeting corresponding
half of mappers fail and quarter of mappers fail for querying
102, 204 and 408 sequences when failures happen at duration
of 50% execution, respectively. The execution time with no
failure is shown as the blue bar, and the execution time with
failure in a half of mappers is shown as red bar. From the
experiment results, it shows that the jobs can be completed
when mappers fail, but the execution time is more than
normal execution time because the failed jobs have to be
assigned to other health mappers. Figures 7(a) and 7(b)
demonstrate the performance when the failures happen at
the duration of 25% execution. Although the mappers fail,
the execution time of redundancy is related to the number of
mappers too.Thereby, Cloud-BLASTP ismapper failure-free.

5. Conclusion

In the past few years, sequencing technologies have grown
rapidly. The amount of produced sequence data is from
gigabase increased to terabase, and the duration is from
months decreased to days. Therefore, the performance of the
bioinformatics tools is important to analyze data efficiently.
Sequence alignment is the basic and common analysis step
for biologists to practice further experiment. BLASTP is one
of the wild-used local alignment tools for protein sequences.
It is now provided on NCBI organization. BLASTP has
also been implemented on GPU to enhance the alignment
performance. Although BLASTP outperforms most existing
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Figure 7: Execution time of node failure at 25% of execution
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local sequence alignment tools, it does not satisfy the need
of high scalability and high availability for searching huge
protein database.

Hadoop framework has become popular for providing
efficient and available distributed computation to users.
In this paper, we propose a cloud computing tool, called
Cloud-BLASTP, for protein local alignment by integrating
Hadoop framework and BLASTP tool. Cloud-BLASTP takes
advantage of high performance, availability, reliability, and
scalability. Cloud-BLASTP guarantees that all submitted jobs
are properly completed, even when running job on an
individual node or mapper experience failure. The perfor-
mance experiment shows that it is desirable for biologists
to investigate the protein structure and function analysis
by comparing large protein database under reasonable time
constraints.
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