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Abstract: The main purpose of the present study is to apply three classification models, namely,
the index of entropy (IOE) model, the logistic regression (LR) model, and the support vector
machine (SVM) model by radial basis function (RBF), to produce landslide susceptibility maps
for the Fugu County of Shaanxi Province, China. Firstly, landslide locations were extracted from
field investigation and aerial photographs, and a total of 194 landslide polygons were transformed
into points to produce a landslide inventory map. Secondly, the landslide points were randomly
split into two groups (70/30) for training and validation purposes, respectively. Then, 10 landslide
explanatory variables, such as slope aspect, slope angle, altitude, lithology, mean annual precipitation,
distance to roads, distance to rivers, distance to faults, land use, and normalized difference vegetation
index (NDVI), were selected and the potential multicollinearity problems between these factors
were detected by the Pearson Correlation Coefficient (PCC), the variance inflation factor (VIF),
and tolerance (TOL). Subsequently, the landslide susceptibility maps for the study region were
obtained using the IOE model, the LR–IOE, and the SVM–IOE model. Finally, the performance of
these three models was verified and compared using the receiver operating characteristics (ROC)
curve. The success rate results showed that the LR–IOE model has the highest accuracy (90.11%),
followed by the IOE model (87.43%) and the SVM–IOE model (86.53%). Similarly, the AUC values
also showed that the prediction accuracy expresses a similar result, with the LR–IOE model having
the highest accuracy (81.84%), followed by the IOE model (76.86%) and the SVM–IOE model (76.61%).
Thus, the landslide susceptibility map (LSM) for the study region can provide an effective reference
for the Fugu County government to properly address land planning and mitigate landslide risk.

Keywords: landslides; hybrid model; statistical method; machine learning; loess area

1. Introduction

Landslides often occur in mountainous and hilly areas and are one of the most dangerous
geological disasters [1]. Landslides can cause huge economic losses and a large number of casualties.
According to statistics, almost 1000 people and 4 billion dollars are lost annually in the world [2],
and this figure still keeps growing. China is also a region where landslides frequently occur; it has been
reported that 7122 geological disasters occurred in 2017, causing 327 deaths, 173 injured, 25 missing,
and a loss of 3.54 billion CNY [3]. In addition, in northwestern China, landslides pose a greater threat to

Entropy 2018, 20, 884; doi:10.3390/e20110884 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5589-3318
https://orcid.org/0000-0001-5091-6947
http://www.mdpi.com/1099-4300/20/11/884?type=check_update&version=1
http://dx.doi.org/10.3390/e20110884
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 884 2 of 24

resident security and transportation, because of the harsh environment and population concentration.
However, enormous manpower and material resources may be required to control and renovate every
landslide. Therefore, predicting landslide occurrence is both valuable and important.

As the first step to predicting landslide occurrences, a landslide susceptibility analysis aims to
recognize hazardous and high-risk regions, and a preference for the negative effects of landslides [4].
The landslide susceptibility map (LSM) is the final result of the landslide susceptibility analysis.
However, the traditional methods for landslide susceptibility mapping based on filed investigation and
manual analysis are time-consuming and expensive, and the result is imprecise [5,6]. In recent years,
geographical information systems (GIS) have been vigorously developed, which make the preparation
of the landslide susceptibility map more convenient, which has great advantages [7]. Meanwhile,
there has been a lot of research on the combination of geographical information systems, and statistical
and nonstatistical methods to evaluate landslide susceptibility—in terms of the binary statistical
method, for example, the frequency ratio (FR) model [8–13], the certainty factor (CF) model [14–17],
the statistical index (SI) [18,19], the weights of evidence (WOE) [20–22], and the index of entropy (IOE)
model [23,24]. The factor internal coefficient of certainty or weight of evidence is decided by landslide
data, but the selection of factors would be influenced by humans. As a multivariate statistical method,
the logistic regression (LR) model is extensively applied by many researchers [25–30].

Due to the limitation of statistical models, some machine learning algorithms that can avoid
the influence from humans were also introduced and applied for landslide susceptibility analysis,
such as artificial neural networks (ANN) [31–33], neuro-fuzzy [34–37], fuzzy logic [38,39], decision
trees [40–42], kernel logistic regression (KLR) [43,44], and support vector machines (SVM) [45–47].

Statistical models and machine learning algorithms have their own advantages and
disadvantages [48,49]. The internal parameters of the explanatory variables in binary statistical
models are determined by landslide data, which can avoid the interference of human factors and be
more objective. However, the selection of explanatory variables will receive interference from humans.
By contrast, multivariable statistical models and machine learning methods can avoid the problem of
factor dependence, but they are less widespread and limited to few cases of study for their intensive
computation [50,51]. In recent years, many hybrid models have been used in the literature, such as
the fuzzy weight of evidence method [17], adaptive network-based fuzzy inference system (ANFIS)
based on frequency ratio (FR–ANFIS) model [52], wavelet packet–statistical (WP–SM) models [53],
and integration of support vector machines and the multiboost [54]. According to plenty of research,
the hybrid model generally performed better than the original models, so trying to mix different
models and apply them to different regions is significant. Therefore, this research assembled the IOE
model with the LR and SVM models to form two hybrid models (LR–IOE and SVM–IOE) for landslide
susceptibility mapping in the Fugu County of Shaanxi Province, China.

2. Study Area

The Fugu County, whose geographic coordinates are 110◦25′ to 111◦15′ east longitude and 38◦42′

to 39◦33′ north latitude, covers an area of 3229 Km2 (Figure 1). The elevation in the study area is
between 761 and 1423 m above sea level, and increases from east to west. The temperate zone with an
arid continental monsoon climate is the main climate type in the study region, and the maximum and
minimum temperatures in history are 38.9 ◦C and −24 ◦C, while the average annual temperature is
9.1 ◦C. The average annual rainfall is 428.6 mm, and the geographical distribution of rainfall shows a
gradual increase from northwest to southwest. Meanwhile, most of the precipitation is concentrated
from July to September, accounting for 69% of the annual rainfall. There are 62 rivers with drainage
areas above 1 × 107 m2 in the study region, and the average annual runoff is 5.911 × 109 m3.
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Figure 1. Landslide inventory map and the location of study area.

The overall topography of the study area is high in the northwest and low in the southwest.
The main landform types can be divided into four types as follow: Loess girder landform, loess gully
landform, canyon hilly landform, and valley terraces. The dip direction of rock formation is roughly
southwest–northwest, with a dip angle of approximately 5–8 degrees except for a few areas, which are
about 20 degrees. The Carboniferous–Permian strata in the east and the Jurassic strata in the northwest
are coal-bearing strata, and the lithology in the study area is shown in Table 1.

Table 1. Lithological units of study area.

Category Geological Age Code Main Lithology

A
Holocene Q4 Sand, gravel, loess

Pleistocene Q3 Loess, gravel

B
Pliocene N2j Sandy clay
Pliocene N2b Quartz sand, clay

C
Middle Jurassic J2y Siltstone, sandstone, mudstone, shale, coal seam

Late Jurassic J1f Mudstone, glutenite

D

Early Triassic T3w Mudstone, shale, coal seam
Early Triassic T2-3y Glutenite, mudstone, shale, siltstone

Middle Triassic T2z Sandstone, mudstone
Late Triassic T1h Medium-fine sandstone, siltstone, mudstone
Late Triassic T1l Sandstone, mudstone

E

Early Permian P2s Glutenite, sandstone, mudstone

Early Permian P2sh Mudstone, silty mudstone, sandstone, clay minerals,
siliceous

Late Permian P1sh Feldspar quartz sandstone, conglomerate, sandstone,
mudstone, shale

Late Permian P1s Mudstone, shale, sandstone, coal seam

F Carboniferous C2t Calcaremaceous sandstone, coal seam, mudstone
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Due to the rich coal resources in the study area, the mining industry is developed and the
population is concentrated, which caused serious damage to the environment. At the same time, it has
also formed massive landslides.

3. Data Used

3.1. Landslide Inventory Map

A landslide inventory map is the first step in a landslide susceptibility analysis and includes
historical and newly discovered landslides and their relational information [43], such as the location,
the date of occurrence, the extent of landslide phenomena in a region, and the types of mass movements
that have left discernable traces [55]. In order to obtain a practical and accurate landslide inventory
map, data collection and an adequate field survey were significantly in the current study. A digital
elevation model (DEM) of the study region with 30 m resolution was obtained from ASTER GDEM,
downloaded from Geospatial Data Cloud [56]. The geological map and mean annual precipitation
data were provided by the government of Fugu County. Based on field investigations, a total of
194 landslides polygons, including 162 slides, 29 falls, and 3 debris flows, were drawn according to
the depletion zone, and these landslides were triggered by rainfall and excavation. In the study area,
the smallest and largest sizes of these landslides were about 39 m2 and 13.5 × 104 m2, respectively.
Because only 12% of landslides are over 10,000 m2 in size, landslide polygons were transformed into
points using the centroid method and then the landslide inventory map (Figure 1) was obtained in the
present study [57,58].

To avoid the overfitting problems in modeling, a total of 194 nonlandslide points were randomly
generated and mapped on the landslide inventory map. All of these landslide and nonlandslide points
were randomly divided into two groups; namely, the training dataset, including 272 (70%) points,
was used to train the models, and the validating dataset, including 116 (30%) points, was used for
validation propose.

3.2. Landslide Explanatory Variables

In order to produce the landslide susceptibility map, 10 landslide explanatory variables, namely
slope aspect, altitude, slope angle, lithology, mean annual precipitation, distance to roads, distance to
rivers, distance to faults, land use, and normalized difference vegetation index (NDVI), were selected
to produce data layers representing themselves with a resolution of 30 × 30 m. Slope aspect, altitude,
and slope angle maps were extracted from DEM data using ArcGIS software. Land use and NDVI were
extracted from GF-2 satellite images gathered from the China Center for Resources Satellite Data and
Application. Lithology, distance to roads, mean annual precipitation, distance to rivers, and distance
to faults maps were extracted based on existing data.

The slope aspect, which is considered to be a prerequisite condition, was frequently adopted
by many works in the literature to produce a landslide susceptibility map [30]. The slope aspect
was reclassified into nine groups, based on the equal interval method, as follows: Northwest, west,
southwest, south, southeast, east, northeast, north, flat, respectively (Figure 2a).

As it is considered to be another critical factor, the slope angle was widely used by a lot of
relevant research [59]. In the current research, the slope angle was divided into the following six
categories, based on the Jenks natural break method, as follows: 0◦–6.65◦, 6.65◦–11.40◦, 11.40◦–16.39◦,
16.39◦–22.09◦, 22.09◦–29.45◦, 29.45◦–60.57◦ (Figure 2b).

Altitude is also considered a significant factor for landslide susceptibility mapping [1]. Thus,
based on the Jenks natural break method, elevation values were classified into the following seven
ranges: 761–903 m, 903–984 m, 984–1054 m, 1054–1124 m, 1124–1194 m, 1194–1262 m, and 1262–1423 m
(Figure 2c).
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The difference of lithology is the basis of landslide formation conditions [60]. According to
field investigations and the existing geological data and maps, lithological units were divided into
six categories (Table 1) and the lithology map was produced (Figure 2d).

Previous research has indicated that there is a strong correlation between mean annual
precipitation and landslide occurrences [61–63]. According to the existing and local observation
data, mean annual precipitation is divided into seven classes based on equal interval method as
follows: <360 mm/y, 360–380 mm/y, 380–400 mm/y, 400–420 mm/y, 420–440 mm/y, 440–460 mm/y,
and >460 mm/y (Figure 2e).

Distance to roads is used as an important landslide explanatory variable to prepare the distance to
roads map [64]. In this study, the values of distance to roads were reclassified into five ranges based on
equal interval method as follows: <200 m, 200–400 m, 400–600 m, 600–800 m, and >800 m (Figure 2f).

River erosion of slope is considered to be a significant explanatory variable inducing landslides;
thus, distance to rivers is employed to be a quantitative index of river erosion [25]. In this study,
with 200 m as the interval, the values of distance to rivers were reclassified into five ranges based on
equal interval method as follows: <200 m, 200–400 m, 400–600 m, 600–800 m, and >800 m (Figure 2g).

Fault movement is not only the requirement for individual landslide occurrences, but also a
controlling factor for regional landslide occurrences [12]. A mass of field surveys indicated that the
more fault movement occurred acutely, the more landslides were triggered. In the current research,
with 2000 m as the interval, the values of distance to faults were reclassified into five ranges based on
equal interval method as follows: <2000 m, 2000–4000 m, 4000–6000 m, 6000–8000 m, and >8000 m
(Figure 2h).

Land use in different regions will be different. The use of these land may lead to an asymmetrical
distribution of landslides [65]. Thus, land use was also employed to be an explanatory variable in the
study region, which was generally divided into five categories as follows: Water, residential areas,
bare land, forest/grassland, and farmland (Figure 2i).

NDVI reflects the surface condition and provides a quantitative estimate of vegetation growth
and biomass. This is depending on the biomass, the position within the hillslope profile, the root-zone
depth and possibility to crack rocks and to prevent or ease water infiltration [66,67]. Therefore, NDVI is
also considered to be a pivotal explanatory variable. The computational formula of NDVI is defined
as follows:

NDVI =
NIR− R
NIR + R

, (1)

where R stands for the red part of electromagnetic spectrum, while NIR represents the infrared
part of electromagnetic spectrum. Using the Jenks natural break method, the NDVI values were
reclassified into five categories as follows: −0.39 to −0.019, −0.019 to 0.063, 0.063–0.134, 0.134–0.216,
and 0.216–0.607 (Figure 2j).
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4. Methodologies

4.1. Multicollinearity Diagnosis

In the study region, not all explanatory variables have a positive impact on the classification
results. Multicollinearity problems may exist between explanatory variables, which may lead to an
overfit in modeling. Thus, the Pearson correlation coefficient (PCC), the variance inflation factor (VIF),
and tolerance (TOL) were introduced to detect the potential multicollinearity problems [68].

The essence of PCC is a statistical linear correlation coefficient, and its analysis is usually used to
measure the linear relationship between distance variables. For two sets of samples Xi (i = 1, 2, 3, ..., n)
and Yj (j = 1, 2, 3, ..., n), the PCC between them can be expressed as:

PCC =

n
∑

i=1
(xi − x)

n
∑

j=1
(yj − y)√

n
∑

i=1
(xi − x)2 n

∑
j=1

(yi − y)2
, (2)

where xi and yj are variable values for Xi and Yj. x and y are the average of Xi and Yj, respectively.
In general, the greater the absolute value of PCC is, the higher the risk of multicollinearity between
the landslide explanatory variables [69], and a PCC of >0.7 indicates a multicollinearity problem [70].

The VIF and TOL are two important indexes for a multicollinearity diagnosis. VIF refers to the
ratio of the variance when there is multicollinearity between the conditioning factors and the variance
when there is no multicollinearity, and the tolerance is the reciprocal of VIF [71]. In general, the larger
the VIF values and the smaller the tolerances values are, the stronger the multicollinearity between
the conditioning factors. In this study, the explanatory variables with VIF >2 or TOL <0.4 should be
abandoned [72].
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4.2. Index of Entropy (IOE) Method

The first classification model applied in the present study is the index of entropy (IOE) model,
which is a bivariate statistic model; the IOE is also used to be the input data to build the hybrid models
in the subsequent modeling. The entropy means the degree of unsteadiness and indeterminacy of a
system, and also indicates that elements in a natural environment are the most related development for
mass movement [23]. In addition, the entropy represents the degree of different explanatory variables
that affect the development of landslides in a landslide susceptibility analysis. The weight values (Wj)
of each landslide explanatory variable are determined by the following equations [73]:

FRij =
yij

xij
, (3)

Sij =
FRij

Nj

∑
j=1

FRij

, (4)

Mj = −
Nj

∑
i=1

Sij log2 Sij,j = 1, 2, 3, ..., n, (5)

Mjmax = log2 Nj, (6)

Ij =
Mjmax −Mj

Mjmax
, (7)

Wj = Ij × FRij, (8)

where FRij is the frequency ratio value; x and y represent the percentage of domain and percentage of
landslides, respectively; Sij stands for the probability density; entropy values are represented by Mj
and Mjmax; Nj means the number of categories or ranges of each explanatory variables; and Ij is the
information parameters.

Then, the final weight values are calculated by SPSS software. Because these three explanatory
variables (aspect, lithology, and land use) are generated from vector graphics with no attribute values,
the FR values of aspect, lithology, and land use were used as input data for the computation of Wj.
Finally, the landslide susceptibility map for the IOE model is produced using the following equation:

LSIIOE =
n

∑
j=1

e
f j
× C×Wj, (9)

where LSIIOE stands for the sum of all the categories; j represents the number of explanatory variable
maps; e means the number of classes within explanatory variable maps with the greatest number of
groups; fj is the number of classes within particular explanatory variable maps; and C indicates the
value of the categories after secondary classification [74].

4.3. Integration of Logistic Regression and Index of Entropy Model

The logistic regression (LR) model is employed to integrate with the IOE to build a new hybrid
model, namely, the LR–IOE model in this study. Logistic regression is a commonly used statistical
analysis method for regression analysis of binary classification dependent variables. The superiority
of the LR model is that independent variables can be discrete or continuous and there is no need to
satisfy the normal distribution [75]. In a logistic regression analysis, the dependent variable has values
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of 0 and 1, representing nonlandslide occurrences and landslide occurrences, respectively. The LR
model can be expressed as the following equation:

P =
exp(Z)

1 + exp(Z)
, (10)

where P stands for the probability of landslide occurrences, whose value ranges from 0 to 1; Z is
calculated by the following equation with the output values range from −∞ to +∞:

Z = B0 + B1X1 + B2X2 + · · · · · ·+ BnXn, (11)

where n is the number of independent variables; Bi (i = 1, 2, 3, ..., n) is the logistic regression coefficient
and Xi are the values of the n explanatory variables; and B0 is a constant.

Because the values of Sij were obtained from the IOE model and the dimension of Sij is uniform,
it can avoid the linear correlation between landslides and explanatory variables and also reduce the
noise in modeling. In this study, the 10 explanatory variables were reclassified with the corresponding
Sij values. Then, the values of Sij were regarded as the input data to build the hybrid model (LR–IOE)
through the forward stepwise method to calculate B0 and Bi.

4.4. Integration of Support Vector Machine and Index of Entropy Model

The basic theory of the support vector machine is to transform the input space into
high-dimensional space through an inner product function using the training data [76]. The support
vectors are defined as the training samples that have the smallest distance from the optimal hyper
plane [40]. In this study, SVM is designed to solve binary classification problems, which means that
the positive and negative samples exist at the same time.

Consider a set of training vectors xi (i = 1, 2, 3, ..., n), and xi consists of two types denoted as
yi = ±1 [77]. SVM aims to search an n-dimensional hyperplane distinguishing the two categories;
meanwhile, ensure that these two classes are farthest from the hyperplane. Using mathematical
formulas, this can be expressed as follows:

P =
1
2
‖w‖2, (12)

followed by constraints:
yi((w× xi) + k) ≥ 1 (13)

where ‖w‖ stands for the norm of hyperplane normal; k is a constant. By applying the Lagrangian
multiplier (λi), the cost function can be written as:

L =
1
2
‖w‖2 −

n

∑
i=1

λi(yi((w× xi) + k)− 1). (14)

In addition, slack variable ξi is applied to solve the nonseparable problems [76]; thus,
Equations (12) and (13) can be modified as:

yi((w× xi) + k) ≥ 1− ξi, (15)

L =
1
2
‖w‖2 − 1

vn

n

∑
i=1

ξi, (16)

where v stands for misclassification, with values ranging from 0 to 1. In addition, by introducing
a kernel function, the nonlinear decision boundary can be calculated. In the current research,
the following kernel function, namely, the radial basis function (RBF), which is considered to be one of
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the most powerful kernels [78], is selected to calculate LSISVM and produce landslide susceptibility
map. The radial basis function is shown as follows:

K(xi, xj) = exp(−δ‖xi − xj‖2), δ > 0, (17)

where δ accounts for the width of the Gaussian kernel function [19].
Similarly, the Sij was used to be the input data for the SVM model and then build the new hybrid

model (SVM–IOE).

4.5. The ROC Curve

To test the performance of LSMs obtained by the three models, the receiver operating
characteristics (ROC) curve was applied. Based on a series of different dichotomies (cutoffs or decision
thresholds), the ROC curve plots 1—specificity as X-axis and sensitivity as Y-axis, which can be
expressed as:

X− axis = 1− specificity = 1−
[

TN
TN + FP

]
, (18)

Y− axis = 1− sensitivity =
TP

TP + FN
, (19)

where TP represents true positive, TN is true negative, FP is false positive, and FP is false negative [79].
The quality of these three models predicting the occurrences or non-occurrences of landslide can be
measured by the area under the ROC curve (AUC) [9]. The AUC values range from 0 to 1; in addition,
if the AUC value is closer to 1, it indicates that the accuracy of model prediction is higher. Conversely,
if AUC value is less than 0.5, and closer to 0, it indicates that the model prediction has no practical
value [80].

5. Results

5.1. Assessment of Explanatory Variables

In this study, the training dataset was used to evaluate explanatory variables and the Pearson
correlation coefficient between pairs of explanatory variables was calculated (Table 2). It can be seen
from the results that the lowest PCC value is −0.009, which happened between altitude and NDVI,
and the highest PCC value happened between slope aspect and distance to rivers (0.368). All PCC
values are less than 0.7.

The calculation results of VIF and TOL are shown in Table 3. It can be observed that the maximum
VIF value is 1.926 and the minimum TOL value is 0.519, which means all the explanatory variables can
be applied for landslide susceptibility modeling.
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Table 2. Pearson correlation coefficient between pairs of explanatory variables.

Explanatory
Variables Slope Aspect Slope Angle Altitude Lithology Mean Annual

Precipitation
Distance to

Roads
Distance to

Rivers
Distance to

Faults Land Use

Slope aspect 1
Slope angle 0.037 1

Altitude 0.116 0.003 1
Lithology 0.165 0.170 0.010 1

Mean annual
precipitation 0.140 0.100 −0.021 0.025 1

Distance to roads 0.280 0.067 0.079 0.048 0.205 1
Distance to rivers 0.368 0.104 0.112 −0.010 0.004 0.160 1
Distance to faults 0.320 0.054 −0.070 0.075 0.024 0.034 0.119 1

Land use 0.123 −0.116 0.087 0.053 0.287 0.050 0.084 0.019 1
NDVI 0.038 0.011 −0.009 0.179 0.146 −0.065 −0.055 0.047 0.082
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Table 3. VIF and tolerances for explanatory variables.

Explanatory Variables VIF Tolerances

Slope angle 0.657 1.523
Slope aspect 0.962 1.040

Altitude 0.790 1.265
Distance to rivers 0.687 1.455
Distance to roads 0.573 1.746
Distance to faults 0.909 1.100

NDVI 0.770 1.298
Land use 0.910 1.099
Lithology 0.519 1.926

Mean annual precipitation 0.611 1.637

5.2. Result of IOE Model

The calculation method of Wj has already been described in Section 4.2, Equations (3)–(8), and the
results are shown in Table 4. The FRij values shown in Table 4 were used as the input data for slope
aspect, lithology, and land use. For the remaining explanatory variables, the original (continuous)
data were used as input data to compute the IOE values. Based on the obtained results, the landslide
susceptibility index for the IOE model (LSIIOE) was calculated using Equation (9) and was written
as follows:

LSIIOE = (slope aspect × 0.084) + (slope angle × 0.064) + (altitude × 0.874) + (lithology ×
0.119) + (mean annual precipitation × 0.232) + (distance to roads × 0.517) + (distance to

rivers × 0.127) + (distance to faults × 0.030) + (land use × 0.974) + (NDVI × 0.303)

(20)

In the end, all of the 10 explanatory variables were used to build the IOE model, and LSIIOE values
range from −10.37 to 11.67. LSIIOE values reflect the probability of landslide occurrence. In other
words, the closer the values of LSIIOE are to 11.67, the higher the probability of landslide occurrence,
and the values of LSIIOE are close to −10.37, indicating that the probability of occurrence of a landslide
is lower. Then, the natural break method was applied to classify the final LSM produced by the IOE
model into four categories, which were low (−10.37 to −4.33), moderate (−4.33 to −1.65), high (−1.65
to 1.64), and very high (1.64 to 11.67) (Figure 3a). Additionally, the area percentage of low, moderate,
high, and very high regions is 31.24%, 16.39%, 33.23%, and 19.14%, respectively.
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Table 4. Spatial relationship between each landslide explanatory variable and landslide by the index of entropy (IOE) model.

Explanatory
Variables Classes No. of Pixels

in Domain
% Percentage

of Domain
No. of

Landslide
% Percentage
of Landslides

FRij Sij Mj Mjmax Ij Wj Bi

Slope aspect

Flat 736 0.021 0 0.000 0.000 0.000 2.870 3.170 0.095 0.084 0.061
North 436,175 12.234 9 6.569 0.537 0.067

Northeast 478,233 13.413 21 15.328 1.143 0.143
East 453,979 12.733 9 6.569 0.516 0.065

Southeast 435,974 12.228 32 23.358 1.910 0.239
South 492,245 13.806 15 10.949 0.793 0.099

Southwest 471,646 13.229 25 18.248 1.379 0.173
West 413,514 11.598 13 9.489 0.818 0.103

Northwest 382,820 10.737 13 9.489 0.884 0.111

Slope angle (◦)

0–6.65 434,598 12.190 16 11.679 0.958 0.135 2.445 2.585 0.054 0.064 0.043
6.65–11.40 954,012 26.758 31 22.628 0.846 0.119

11.40–16.39 937,524 26.296 25 18.248 0.694 0.098
16.39–22.09 640,546 17.966 28 20.438 1.138 0.161
22.09–29.45 349,550 9.804 14 10.219 1.042 0.147
29.45–60.57 249,092 6.987 23 16.788 2.403 0.339

Altitude (m)

761–903 71,702 2.011 26 18.978 9.437 0.675 1.577 2.807 0.438 0.874 −0.252
903–984 354,938 9.955 26 18.978 1.906 0.136

984–1054 796,328 22.335 27 19.708 0.882 0.063
1054–1124 851,004 23.869 26 18.978 0.795 0.057
1124–1194 989,546 27.755 28 20.438 0.736 0.053
1194–1262 487,438 13.672 4 2.920 0.214 0.015
1262–1423 14,366 0.403 0 0.000 0.000 0.000

Lithology

Category A 80,805 2.266 1 0.730 0.322 0.109 1.963 2.585 0.240 0.119 −0.013
Category B 650,270 18.239 14 10.219 0.560 0.189
Category C 2,029,316 56.918 115 83.942 1.475 0.497
Category D 736,194 20.649 6 4.380 0.212 0.072
Category E 65,704 1.843 1 0.730 0.396 0.134
Category F 3033 0.085 0 0.000 0.000 0.000
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Table 4. Cont.

Explanatory
Variables Classes No. of Pixels

in Domain
% Percentage

of Domain
No. of

Landslide
% Percentage
of Landslides

FRij Sij Mj Mjmax Ij Wj Bi

Mean annual
precipitation

(mm/y)

<360 63,468 1.780 2 1.460 0.820 0.081 2.357 2.807 0.160 0.232 0.239
360–380 630,456 17.683 5 3.650 0.206 0.020
380–400 537,282 15.070 20 14.599 0.969 0.096
400–420 850,900 23.866 22 16.058 0.673 0.066
420–440 999,895 28.045 44 32.117 1.145 0.113
440–460 451,402 12.661 39 28.467 2.248 0.222

>460 31,919 0.895 5 3.650 4.077 0.042

Distance to
roads (m)

<200 385,498 10.812 77 56.204 5.198 0.617 1.609 2.322 0.307 0.517 −0.533
200–400 311,580 8.739 20 14.599 1.670 0.198
400–600 282,125 7.913 9 6.569 0.830 0.099
600–800 248,289 6.964 4 2.920 0.419 0.050

>800 2,337,830 65.571 27 19.708 0.301 0.036

Distance to
rivers (m)

<200 1,108,722 31.097 86 62.774 2.019 0.501 1.956 2.322 0.158 0.127 −0.269
200–400 881,383 24.721 26 18.978 0.768 0.191
400–600 642,145 18.011 12 8.759 0.486 0.121
600–800 389,497 10.925 7 5.109 0.468 0.116

>800 543,575 15.246 6 4.380 0.287 0.071

Distance to
faults (m)

<2000 526,624 14.771 19 13.869 0.939 0.190 2.251 2.322 0.030 0.030 0.110
2000–4000 459,271 12.882 10 7.299 0.567 0.115
4000–6000 431,651 12.107 14 10.219 0.844 0.171
6000–8000 344,339 9.658 20 14.599 1.512 0.307

>8000 1,803,437 50.583 74 54.015 1.068 0.217

Land use

Water 13,266 0.372 0 0.000 0.000 0.000 1.258 2.322 0.458 0.974 0.061
Residential areas 86,117 2.415 25 18.248 7.555 0.711

Bare land 178,0712 49.945 71 51.825 1.038 0.098
Forest/Grassland 1,317,845 36.963 17 12.409 0.336 0.032

Farmland 367,382 10.304 24 17.518 1.700 0.160

NDVI

−0.39 to −0.019 278,430 7.809 40 19.197 3.739 0.577 1.779 2.322 0.234 0.303 −0.354
−0.019 to 0.063 988,700 27.731 38 27.737 1.000 0.154

0.063–0.134 1,233,777 34.605 43 31.387 0.907 0.140
0.134–0.216 837,512 23.491 12 8.759 0.373 0.058
0.216–0.607 226,903 6.364 4 2.920 0.459 0.071

B0 is 2.345.
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5.3. Result of LR–IOE Model

The calculation method of Z has already been described in Section 4.2, Equations (3)–(8). The Sij
values shown in Table 4 were used as the input data for all 10 explanatory variables through the
reclassification method to build the LR–IOE model and to compute B0 and Bi using SPSS software.
Based on the results, Equation (11) can be written as follows:

Z = 2.345 + (slope aspect × 0.061) + (slope angle × 0.043) + (altitude × −0.252) + (lithology ×
−0.013) + (mean annual precipitation × 0.239) + (distance to roads × −0.533) + (distance to rivers

× −0.269) + (distance to faults × 0.110) + (land use × 0.061) + (NDVI × −0.354)

(21)

Subsequently, the LSILR–IOE values were obtained, which range from 0.016 to 0.983. LSILR–IOE

values reflect the probability of landslide occurrence. In other words, the closer the values of LSILR–IOE

are to 1, the higher the probability of landslide occurrence, and the values of LSILR–IOE are close
to 0, indicating that the probability of landslide occurrence is lower. Similarly, the natural break
method was applied to classify the final LSM produced by the LR–IOE model into four categories:
Low (0.016–0.248), moderate (0.248–0.445), high (0.445–0.688), and very high (0.688–0.983) (Figure 3b).
In addition, the area percentage of low, moderate, high, and very high is 16.77%, 33.06%, 21.05%,
and 29.12%, respectively.

5.4. Result of SVM–IOE Model

In the current research, the parameters of the radial basis function were selected by the grid
search method with 10-fold cross validation, and then the entropy was regarded as the input data to
calculate the LSISVM–IOE values based on SVM–IOE model. The LSISVM–IOE values range from 0.061
to 0.984. The closer the values are to 1, the higher the probability of landslide occurrence, and the
values of LSISVM–IOE are close to 0, indicating that the probability of landslide occurrence is lower.
Then, the natural break method was applied to classify the final LSM produced by the SVM–IOE
model into four categories: Low (0.061–0.271), moderate (0.271–0.437), high (0.437–0.658), and very
high (0.658–0.984) (Figure 3c). The area percentage of low, moderate, high, and very high is 15.08%,
29.56%, 33.39%, and 21.97%, respectively.

5.5. Validation of Landslide Susceptibility Maps

In the current study, the ROC curve was used to validate and compare the performance of the
IOE, LR–IOE, and SVM–IOE models. The final AUC values represent the success and prediction rate
derived from the training and validating dataset, respectively.

In the end, for success rate results, the AUC values for the IOE, LR–IOE, and SVM–IOE models
were observed to be 0.8743, 0.9011, and 0.8653, respectively (Figure 4a). That is to say, the training
accuracy of the susceptibility maps is 87.43%, 90.11%, and 86.53%, respectively. In terms of prediction
rate results, the AUC values for the IOE, LR–IOE, and SVM–IOE models were found to be 0.7686,
0.8184, and 0.7661, respectively (Figure 4b). In other words, the prediction accuracy of the susceptibility
maps is 76.86%, 81.84%, and 76.61%, respectively.
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Generally, the results of both the success rate and prediction rate express reasonable and practical
accuracies in the current research. However, the LR–IOE model shows the best result for the
current study.

6. Discussion

Spatial prediction of landslides is a critical process in the study of landslides and the accuracy of
prediction will be affected by the models that we used, and the input data extracted from explanatory
variables. However, there is no definitive conclusion about the methods used to select and evaluate
explanatory variables. Therefore, it is necessary to investigate the methods which will help us to
obtain reasonable conclusions. In this study, we calculated the IOE and PCC to assess 10 explanatory
variables, and evaluated three classification models, namely, IOE, LR–IOE, and SVM–IOE, for landslide
susceptibility mapping.

According to PCC values (Table 2), all 10 factors are less than 0.7, which means these 10 factors
cannot generate noise in landslide susceptibility modeling. From the index of entropy (Table 4), we can
see the residential areas have the highest value (7.555), which means that most landslides occurred
in this region. We believe that the reason for this condition is the concentration of population and
the fact that human engineering activities are intense in this area. Similarly, the closer to the road,
the higher the frequency of landslides that occurred was. For the slope aspect, most landslides occurred
on south-facing slopes; the reason for this condition may be the climate, and the same results were
also reported by the authors of [37] (p. 82). The category C (Siltstone, sandstone, mudstone, shale,
coal seam, glutenite) in lithology is the region where the largest number of landslides has occurred.
This may be due to the softness of sandstone and siltstone structures and strong weathering erosion.
In the case of slope angle and mean annual precipitation, the rate of landslide occurrence is roughly
proportional to them. The reason may be that a large amount of water infiltrate increases the water
content and weight of the rock and soil mass and increases the sliding force of the rock and soil mass,
and the steeper the slope, the stronger the slip force of the rock and soil mass. Interestingly, with the
values of distance to faults, distance to rivers, distance to roads, altitude, and NDVI increasing, the IOE
is gradually decreasing. The reason for this phenomenon is that road construction usually causes
instability, while roads in the study region are generally built at low altitudes and away from faults.
The root of the vegetation is conducive to the stability of the soil, while the erosion of the rivers will
affect the stability of the slope. These conditions are roughly the same as those observed in the field.

In this study, the selection of explanatory variables was based on previous studies and field
observations, which will cause interference from human factors. In addition, although we calculated
all the Wj values for the 10 explanatory variables, it is not clear how much the method developed in
the work is sensitive to the number of the classes and to the choice of the breaking points. Therefore,
this is the focus of future research.
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As shown in Figure 4, we can see the AUC value of the LR–IOE model is the highest among
the three models, whether it is for the success or prediction rate, which means that the LR–IOE
model performs best in landslide susceptibility mapping in this study. However, the AUC value of
the SVM–IOE model is the lowest, which may be due to the fact that the SVM–IOE model is more
dependent on the selection of the kernel function, and there is no objective way to solve it.

In terms of the proportion of the final susceptibility mapping results (Figure 5), it can be observed
that the proportion of high and very high regions obtained by the three models is about 52%. Among
them, the LR–IOE model has the lowest result (50.17%), which implies an efficient result corresponding
to the LR–IOE model, and it can also improve the efficiency of decision-making and reduce costs.
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7. Conclusions

In this present study, the IOE model, LR–IOE model, and SVM–IOE model were used to obtain
landslide susceptibility maps for the Fugu County of Shaanxi Province, China. Ten explanatory
variables, namely, altitude, slope aspect, mean annual precipitation, slope angle, lithology, distance
to roads, land use, distance to rivers, distance to faults, and NDVI, were selected and the potential
multicollinearity problem among them was detected by PCC, VIF, and TOL. The results of the analysis
showed that there are no potential multicollinearity problems between these 10 factors and they
are available for landslide susceptibility modeling. A total of 194 landslides, including landslides
recognized from extensive field investigations and historical landslide records, and 194 nonlandslide
points were also randomly generated. To build the models, 272 (70%) landslide and nonlandslide
points were randomly selected and the remaining 116 (30%) landslide and nonlandslide points were
applied for validating purposes. A natural break method was used to split the study region into four
categories: Low, moderate, high, and very high. In the end, the performance of the achieved landslide
susceptibility maps was evaluated using AUC values.

In terms of the success rate presented by the AUC values, the LR–IOE model has the highest
training accuracy (90.11%), followed by the IOE model (87.43%) and the SVM–IOE model (86.53%).
As for the prediction rate, the LR–IOE model has the highest training accuracy (81.84%), followed by
the IOE model (76.86%) and the SVM–IOE model (76.61%). Thus, the results prove that these three
models present good performance in landslide susceptibility mapping. The LR–IOE model performed
best for this research and is more suitable for landslide susceptibility mapping in the study area.

The results of this study provide available information for the engineers, decision makers,
and urban planners in this study region.
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