V = 3870.8 (3) Å³

Cu $K\alpha$ radiation

 $0.30 \times 0.28 \times 0.04 \text{ mm}$

17338 measured reflections

3813 independent reflections 3383 reflections with $I > 2.0\sigma(I)$

 $\mu = 0.89 \text{ mm}^-$

T = 150 K

 $R_{\rm int}=0.018$

Z = 8

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione

Gwendoline Cheng Lian Ee,* Siow Hwa Teo, Huey Chong Kwong, Mohamed Ibrahim Mohamed Tahir and Sidik Silong

Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Correspondence e-mail: gwen@science.upm.edu.my

Received 6 October 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 13.6.

The title compound, Artonol B, C₂₄H₂₀O₇, isolated from the stem bark of Artocarpus kemando, consists of four sixmembered rings and one five-membered ring. The tricyclic xanthone ring system is almost planar [maximum deviation 0.115 (5) Å], whereas the pyranoid ring is in a distorted boat conformation. The furan ring is almost coplanar with the fused aromatic ring, making a dihedral angle of $3.76 (9)^{\circ}$. The phenol ring serves as a intramolecular hydrogen-bond donor to the adjacent carbonyl group and also acts as an intermolecular hydrogen-bond acceptor for the methyl groups of adjacent molecules, forming a three-dimensional network in the crystal.

Related literature

For bond-length data, see Allen et al. (1987). For related structures, see: Doriguetto et al. (2001); Marek et al. (2003); Boonnak et al. (2007). For the biological activity of flavonoids from Artocarpus kemando and other species of Artocarpus, see: Burkill (1935); Makmur et al. (1999); Wei et al. (2005); Toshio et al. (2003); Lin et al. (1996); Shimizu et al. (2000); Patil et al. (2002); Tati et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

C24H20O7 $M_r = 420.42$ Monoclinic, C2/c a = 36.511 (2) Å b = 5.3275 (2) Å c = 20.0218 (8) Å $\beta = 96.318(5)^{\circ}$

Data collection

Oxford Diffraction Gemini E
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2006)
$T_{\min} = 0.780, \ T_{\max} = 0.965$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	280 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
3813 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C16-H161···O15 ⁱ	0.96	2.55	3.4062 (19)	148
$C20-H202\cdots O13^{i}$	0.97	2.53	3.4918 (19)	171
O22-H221···O5	0.88	1.78	2.5922 (19)	153
$C31 - H313 \cdot \cdot \cdot O22^{ii}$	0.97	2.57	3.5170 (19)	165
$C27 - H271 \cdots O5^{iii}$	0.94	2.58	3.4923 (19)	163
Symmetry codes: (i) $-x$	$+\frac{1}{2}, y + \frac{1}{2}, -z$	$+\frac{1}{2}$; (ii) $-x, -x$	y + 2, -z; (iii) $x, -z$	$y + 1, z - \frac{1}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYS-TALS.

The authors would like to acknowledge Ministry of Science, Technology and Innovation (MOSTI) for the e-science funding provided.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2279).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). *Acta Cryst.* E63, 03958–03959.
- Burkill, I. H. (1935). In A Dictionary of the Economic Products of the Malay Peninsula, Vol. 2. London: Crown Agents for the Colonies Calixto. Reprinted 1966, Kuala Lumpur: Ministry of Agriculture and Cooperatives, 2402
- Doriguetto, A. C., Santos, M. H., Ellena, J. A. & Nagem, T. J. (2001). Acta Cryst. C57, 1095–1097.
- Lin, C. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P., Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834–838.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Makmur, L., Syamsurizal, T., Syamsu, Y., Achmad, S. A., Aimi, N., Hakim, E. H., Kitajima, M., Mujahidin, D. & Takayama, H. (1999). *Proc. ITB.* **31**, 63–68.
- Marek, J., Veselá, D., Lišková, M. & Žemlička, M. (2003). Acta Cryst. C59, o127-o128.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Patil, A. D., Freyer, A. J., Killmer, L., Offen, P., Taylor, P. B., Votta, B. J. & Johnson, R. K. (2002). J. Nat. Prod. 65, 624–627.
- Shimizu, K., Kondo, R., Sakai, K., Buabarn, S. & Dilokkunanant, U. (2000). *Phytochemistry*, 54, 737–739.
- Tati, S., Sjamsul, A. A., Norio, A., Euis, H. H., Mariko, K., Hiromitsu, T. & Koichi, T. (2001). *Fitoterapia*, **72**, 912–918.
- Toshio, F., Kazue, S., Taro, N. & Hiroshi, S. (2003). Fitoterapia, 74, 720-724.
- Wei, B. L., Weng, J. R., Chiu, P. H., Hung, C. F., Wang, J. P. & Lin, C. N. (2005). J. Agric. Food Chem. 53, 3867–3871.

Acta Cryst. (2010). E66, o3331-o3332 [doi:10.1107/S1600536810048592]

12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione

G. C. L. Ee, S. H. Teo, H. C. Kwong, M. I. Mohamed Tahir and S. Silong

Comment

Flavonoids are polyphenolic compounds which are important for human health. Previous studies on flavonoids from this plant and other species of *Artocarpus* have revealed their wide range of pharmacological activities (Wei, *et al.*, 2005; Toshio, *et al.*, 2003; Lin *et al.*, 1996; Shimizu *et al.*, 2000; Patil *et al.*, 2002; Tati *et al.*, 2001). *Artocarpus kemando*, a tree of the forests and swamps is distributed in Thailand, Peninsular Malaysia, Sumatra and Borneo island (Burkill, 1935). In our continuing search for anti-cancer hit compounds we decided to look at *Artocarpus kemando*. We found that the chloroform extract of the stem bark of *Artocarpus kemando* displayed significant growth inhibition activities towards HL-60 cell lines and obtained Artonol B (I).

The molecular structure of (I) (Fig. 1) with the xanthone skeleton (ring B, C and D) is nearly planar with the exception of the atom C8 with the deviation from planarity of 0.115 Å. Rings A, B, C and D are individually almost planar, including the O5, O15 abd O22 atoms that are linked to them. The largest deviations from the individual least-squares planes are 0.030 Å, 0.023 Å, 0.037 Å and 0.019 Å for ring A, B, C and D, respectively. Rings A and B form a dihedral angle of 3.06°, those of B and C ring form an angle of 4.23° and rings C and D form an dihedral angle of 3.42°. The planes of rings B and D intersect on a line which is approximately through the middle of ring C and gives rise to a dihedral angle of 7.65°. The mean torsion angle of ring D is 16.26° and it adopts a conformation half way between an envolope and a half-boat. The major pucking is in ring D at C28, owing to the constraint of the double bond between C26 and C27.

Bond distances and angles in the titled compound are in normal range (Allen *et al.*, 1987). The average value of C—O1 bond lengths in pyranoid ring C is 1.368 Å and the observed geometries of pyranoid ring C are comparable to other reported pyranoxanthone geometries (Doriguetto *et al.*, 2001; Marek *et al.*,2003; Boonnak *et al.*, 2007). The crystal structure is stabilised by intra- and intermolecular O—H···O and C—H···O hydrogen bonding. The titled molecules exhibit a moderate intramolecular hydrogen bond O22—H221···O5, with O···O = 2.5922 (19) Å. Meanwhile, the H atom of the C31 methyl group forms a hydrogen bond with O22 at (-*x*, -*y* + 2, -*z*) [the C···O distance is 3.5170 (19) Å]. The H atom at C27 forms a hydrogen bond with O5 at (*x*, -*y* + 1, *z* - 1/2)[the C···O distance is 3.4923 (19) Å](Table 1).

The cystallographic data of this crystal structure has been deposited at Cambridge Crystallographic Data Center with deposition number CCDC 796169 (Allen, 2002).

Experimental

The powdered stem bark (4.7 kg) of *Artocarpus kemando* were defatted with n-hexane and sequentially extracted using methanol at room temperature for more than 48 h. This resulted in 198.5 g of methanol extract. The methanol extract was dissolved in a water-acetone mixture (1: 3, 500 mL) and the soluble portion was partitioned using chloroform (CHCl₃) (3×400 mL) to afford a crude chloroform extract (20 g). Repeated silica gel column chromatographic separation on the chloroform extract (20 g) (hexane, hexane-chloroform, chloroform-ethyl acetate, ethyl acetate-methanol and methanol in order of increasing polarity) followed by radial chromatography yielded pure artonol B (I), fine yellow solid with melting

point 462-467 K. Good single crystals for X-ray diffraction were prepared by slow evaporation and diffusion of diethyl ether into a solution of (I) in chloroform at room temperature.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93-0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. Structure and the labeling scheme for 12-acetyl-6-hydroxy-3,3,9,9-tetramethyl-furo[3,4-b]pyrano[3,2-h]xanthene-7,11(3*H*,9H)-dione. Displacement ellipsoids are drawn at the 50% probability level.

12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione

Crystal data	
$C_{24}H_{20}O_7$	F(000) = 1760
$M_r = 420.42$	$D_{\rm x} = 1.443 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Melting point: 189 K
Hall symbol: -C 2yc	Cu K α radiation, $\lambda = 1.54184$ Å
a = 36.511 (2) Å	Cell parameters from 8995 reflections
b = 5.3275 (2) Å	$\theta = 72.0 - 3.5^{\circ}$
c = 20.0218 (8) Å	$\mu = 0.89 \text{ mm}^{-1}$
$\beta = 96.318 (5)^{\circ}$	T = 150 K
$V = 3870.8 (3) \text{ Å}^3$	Plate, yellow
<i>Z</i> = 8	$0.30\times0.28\times0.04~mm$

Data collection

Oxford Diffraction Gemini E diffractometer	3813 independent reflections
Radiation source: sealed x-ray tube	3383 reflections with $I > 2.0\sigma(I)$
graphite	$R_{\rm int} = 0.018$
$\omega/2\theta$ scans	$\theta_{\text{max}} = 72.1^\circ, \ \theta_{\text{min}} = 4.4^\circ$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006)	$h = -44 \rightarrow 41$
$T_{\min} = 0.780, T_{\max} = 0.965$	$k = -6 \rightarrow 6$
17338 measured reflections	$l = -15 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^{2}(F^{2}) + (0.07P)^{2} + 3.68P],$ where $P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\text{max}} = 0.0003$
3813 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
280 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
0 restraints	

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.12808 (2)	0.38440 (18)	0.09348 (4)	0.0198
C2	0.10246 (3)	0.5702 (2)	0.07942 (6)	0.0185
C3	0.09197 (4)	0.7295 (2)	0.12975 (6)	0.0191
C4	0.10576 (4)	0.6903 (3)	0.19901 (6)	0.0202
05	0.09659 (3)	0.82336 (19)	0.24578 (5)	0.0261
C6	0.13177 (3)	0.4810 (2)	0.21237 (6)	0.0195
C7	0.14301 (4)	0.3455 (3)	0.15819 (6)	0.0190
C8	0.16981 (4)	0.1566 (3)	0.16701 (7)	0.0197
С9	0.18272 (4)	0.0989 (2)	0.23308 (7)	0.0201
C10	0.17096 (4)	0.2259 (3)	0.28733 (6)	0.0204
C11	0.14611 (4)	0.4195 (3)	0.27803 (7)	0.0205
H111	0.1386	0.5096	0.3144	0.0256*
C12	0.18915 (4)	0.1142 (3)	0.35190 (7)	0.0224
013	0.21047 (3)	-0.09518 (18)	0.32781 (5)	0.0251
C14	0.20880 (4)	-0.1013 (3)	0.25958 (7)	0.0223
015	0.22540 (3)	-0.2519 (2)	0.23027 (5)	0.0287
C16	0.21617 (4)	0.2917 (3)	0.39064 (7)	0.0288
H163	0.2033	0.4353	0.4063	0.0429*
H162	0.2289	0.2059	0.4301	0.0439*
H161	0.2342	0.3494	0.3624	0.0428*
C17	0.16119 (4)	0.0067 (3)	0.39501 (7)	0.0277
H171	0.1481	0.1395	0.4145	0.0409*
H172	0.1737	-0.0925	0.4316	0.0407*
H173	0.1438	-0.0978	0.3681	0.0410*
C18	0.18478 (4)	0.0411 (3)	0.10628 (7)	0.0213
O19	0.17671 (3)	-0.1689 (2)	0.08765 (6)	0.0334
C20	0.20997 (4)	0.2106 (3)	0.07285 (7)	0.0271
H203	0.2185	0.1277	0.0339	0.0398*
H202	0.2306	0.2608	0.1047	0.0413*
H201	0.1967	0.3604	0.0575	0.0414*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C21	0.06673 (4)	0.9261 (2)	0.11022 (7)	0.0208
O22	0.05637 (3)	1.08580 (19)	0.15665 (5)	0.0275
H221	0.0674	1.0316	0.1953	0.0432*
C23	0.05232 (4)	0.9535 (3)	0.04379 (7)	0.0221
C24	0.06218 (4)	0.7823 (2)	-0.00367 (6)	0.0198
C25	0.08781 (4)	0.5891 (2)	0.01261 (6)	0.0194
C26	0.09776 (4)	0.4252 (3)	-0.04086 (7)	0.0215
C27	0.07852 (4)	0.4357 (3)	-0.10100 (7)	0.0225
C28	0.04539 (4)	0.6033 (3)	-0.11489 (6)	0.0220
O29	0.04714 (3)	0.81622 (18)	-0.06783 (5)	0.0252
C30	0.04382 (5)	0.7261 (3)	-0.18347 (7)	0.0318
H301	0.0229	0.8361	-0.1902	0.0461*
H302	0.0663	0.8214	-0.1864	0.0468*
H303	0.0418	0.6015	-0.2176	0.0477*
C31	0.01040 (4)	0.4563 (3)	-0.10626 (8)	0.0307
H311	0.0115	0.3962	-0.0603	0.0455*
H313	-0.0111	0.5621	-0.1161	0.0455*
H312	0.0084	0.3170	-0.1366	0.0447*
H271	0.0845	0.3337	-0.1366	0.0260*
H261	0.1176	0.3146	-0.0317	0.0269*
H231	0.0354	1.0844	0.0313	0.0277*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0208 (5)	0.0204 (5)	0.0177 (4)	0.0048 (4)	-0.0006 (3)	-0.0008 (3)
C2	0.0172 (6)	0.0169 (6)	0.0212 (6)	0.0004 (5)	0.0018 (5)	0.0013 (5)
C3	0.0189 (6)	0.0175 (6)	0.0208 (6)	-0.0001 (5)	0.0021 (5)	0.0000 (5)
C4	0.0210 (6)	0.0188 (6)	0.0209 (6)	0.0001 (5)	0.0029 (5)	-0.0002 (5)
O5	0.0325 (5)	0.0262 (5)	0.0197 (5)	0.0085 (4)	0.0024 (4)	-0.0030 (4)
C6	0.0189 (6)	0.0183 (6)	0.0212 (6)	-0.0004 (5)	0.0016 (5)	0.0001 (5)
C7	0.0196 (6)	0.0184 (6)	0.0184 (6)	-0.0014 (5)	-0.0003 (5)	0.0008 (5)
C8	0.0188 (6)	0.0177 (6)	0.0224 (6)	-0.0007 (5)	0.0012 (5)	-0.0005 (5)
С9	0.0183 (6)	0.0179 (6)	0.0239 (6)	-0.0017 (5)	0.0007 (5)	0.0016 (5)
C10	0.0197 (6)	0.0202 (6)	0.0208 (6)	-0.0036 (5)	-0.0001 (5)	0.0019 (5)
C11	0.0223 (6)	0.0197 (6)	0.0194 (6)	-0.0015 (5)	0.0024 (5)	-0.0011 (5)
C12	0.0235 (7)	0.0204 (7)	0.0225 (6)	0.0008 (5)	-0.0003 (5)	0.0025 (5)
O13	0.0259 (5)	0.0233 (5)	0.0252 (5)	0.0044 (4)	-0.0011 (4)	0.0042 (4)
C14	0.0204 (6)	0.0206 (7)	0.0254 (7)	-0.0017 (5)	-0.0008 (5)	0.0028 (5)
015	0.0273 (5)	0.0257 (5)	0.0332 (5)	0.0074 (4)	0.0034 (4)	0.0004 (4)
C16	0.0289 (7)	0.0285 (8)	0.0274 (7)	-0.0030 (6)	-0.0047 (6)	0.0012 (6)
C17	0.0302 (7)	0.0287 (7)	0.0242 (7)	-0.0029 (6)	0.0023 (6)	0.0047 (6)
C18	0.0184 (6)	0.0217 (7)	0.0227 (6)	0.0049 (5)	-0.0027 (5)	-0.0015 (5)
O19	0.0353 (6)	0.0259 (6)	0.0398 (6)	-0.0016 (5)	0.0080 (5)	-0.0107 (5)
C20	0.0250 (7)	0.0298 (8)	0.0269 (7)	0.0021 (6)	0.0044 (5)	-0.0014 (6)
C21	0.0221 (6)	0.0178 (6)	0.0227 (6)	0.0005 (5)	0.0029 (5)	-0.0008 (5)
O22	0.0335 (5)	0.0253 (5)	0.0229 (5)	0.0117 (4)	-0.0007 (4)	-0.0034 (4)
C23	0.0225 (6)	0.0179 (6)	0.0254 (7)	0.0036 (5)	-0.0001 (5)	0.0024 (5)

C24	0.0210 (6)	0.0189 (6)	0.0189 (6)	-0.0017 (5)	-0.0001 (5)	0.0028 (5)
C25	0.0191 (6)	0.0187 (6)	0.0203 (6)	-0.0007 (5)	0.0020 (5)	0.0005 (5)
C26	0.0202 (6)	0.0229 (7)	0.0217 (6)	0.0023 (5)	0.0032 (5)	0.0002 (5)
C27	0.0241 (7)	0.0236 (7)	0.0203 (6)	-0.0002 (5)	0.0047 (5)	-0.0009 (5)
C28	0.0248 (7)	0.0223 (7)	0.0183 (6)	-0.0003 (5)	-0.0005 (5)	0.0001 (5)
O29	0.0325 (5)	0.0213 (5)	0.0203 (5)	0.0048 (4)	-0.0042 (4)	0.0008 (4)
C30	0.0414 (9)	0.0323 (8)	0.0207 (7)	0.0030 (7)	-0.0013 (6)	0.0039 (6)
C31	0.0237 (7)	0.0268 (8)	0.0415 (8)	0.0009 (6)	0.0024 (6)	0.0010 (6)
Geometric p	arameters (Å, °)					
O1—C2		1.3696 (16)	C17-	-H173	0.90	52
O1—C7		1.3651 (15)	C18-	O19	1.20)52 (18)
C2—C3		1.4025 (18)	C18-	C20	1.49	982 (19)
C2—C25		1.3886 (18)	C20-	-H203	0.97	76
C3—C4		1.4375 (18)	C20-	-H202	0.90	58
C3—C21		1.4213 (18)	C20-	-H201	0.90	57
C4—O5		1.2490 (16)	C21-		1.34	149 (16)
C4—C6		1.4700 (18)	C21-	C23	1.38	333 (19)
C6—C7		1.4016 (18)	022-	-H221	0.88	30
C6—C11		1.3996 (18)	C23-	C24	1.39	926 (19)
С7—С8		1.4009 (19)	C23-	-H231	0.94	17
C8—C9		1.3891 (18)	C24-	C25	1.40)50 (19)
C8—C18		1.5175 (18)	C24-		1.3	524 (15)
C9—C10		1.3875 (19)	C25-	C26	1.45	582 (18)
C9—C14		1.4879 (18)	C26-	C27	1.32	269 (19)
C10—C11		1.3727 (19)	C26-	-H261	0.93	37
C10-C12		1.5093 (18)	C27-	C28	1.50)48 (19)
C11—H111		0.938	C27-	-H271	0.94	41
C12—O13		1.4715 (17)	C28-		1.47	714 (16)
C12—C16		1.5166 (19)	C28-	-C30	1.5	62 (18)
C12—C17		1.5196 (19)	C28-	-C31	1.52	24 (2)
013—C14		1.3610 (17)	C30-	-H301	0.96	50
C14—O15		1.1973 (17)	C30-	-H302	0.9	72
C16—H163		0.969	C30-	—Н303	0.95	50
C16—H162		0.984	C31-	-H311	0.9	72
C16—H161		0.962	C31-	-H313	0.9	70
С17—Н171		0.961	C31-	-H312	0.95	57
С17—Н172		0.975				
C2-01-C7	,	119.81 (10)	H172	2—С17—Н173	109	.4
O1—C2—C3		121.60 (11)	C8—	-C18	121	.81 (13)
O1—C2—C2	.5	115.63 (11)	C8—	-C18C20	113	.98 (11)
C3—C2—C2	5	122.77 (12)	O19-		124	.21 (13)
C2—C3—C4		120.74 (12)	C18-	—С20—Н203	110	.5
C2—C3—C2	1	117.93 (12)	C18-		110	.0
C4—C3—C2	1	121.32 (12)	H203	Б—С20—Н202	111	.0
C3—C4—O5	i	123.14 (12)	C18-		109	.1
C3—C4—C6		115.85 (11)	H203	С20—Н201	108	.3
O5—C4—C6		121.01 (12)	H202	е—С20—Н201	107	.9

C4—C6—C7	119.24 (12)	C3—C21—O22	119.96 (12)
C4—C6—C11	121.07 (12)	C3—C21—C23	120.59 (12)
C7—C6—C11	119.68 (12)	O22—C21—C23	119.44 (12)
C6—C7—O1	122.41 (12)	C21—O22—H221	105.3
C6—C7—C8	122.17 (12)	C21—C23—C24	119.16 (12)
O1—C7—C8	115.41 (11)	C21—C23—H231	120.0
С7—С8—С9	116.00 (12)	C24—C23—H231	120.8
C7—C8—C18	119.90 (11)	C23—C24—C25	122.48 (12)
C9—C8—C18	123.96 (12)	C23—C24—O29	116.88 (12)
C8—C9—C10	122.38 (12)	C25—C24—O29	120.57 (12)
C8—C9—C14	129.44 (12)	C24—C25—C2	116.94 (12)
C10—C9—C14	108.15 (12)	C24—C25—C26	118.80 (12)
C9—C10—C11	121.15 (12)	C2—C25—C26	124.25 (12)
C9—C10—C12	109.47 (12)	C25—C26—C27	119.42 (12)
C11-C10-C12	129.38 (12)	C25—C26—H261	118.9
C6-C11-C10	118.48 (12)	C27—C26—H261	121.7
C6-C11-H111	120.0	C26—C27—C28	121.82 (12)
C10-C11-H111	121.6	C26—C27—H271	121.3
C10—C12—O13	102.52 (10)	C28—C27—H271	116.8
C10-C12-C16	113.10 (12)	C27—C28—O29	111.21 (11)
O13—C12—C16	107.61 (11)	C27—C28—C30	111.89 (12)
C10—C12—C17	112.04 (11)	O29—C28—C30	104.02 (11)
O13—C12—C17	108.25 (11)	C27—C28—C31	109.92 (12)
C16—C12—C17	112.61 (12)	O29—C28—C31	107.55 (11)
C12—O13—C14	112.35 (10)	C30—C28—C31	112.06 (12)
C9—C14—O13	107.28 (11)	C28—O29—C24	119.33 (10)
C9—C14—O15	130.08 (13)	C28—C30—H301	110.0
O13—C14—O15	122.60 (12)	C28—C30—H302	109.4
С12—С16—Н163	110.2	H301—C30—H302	109.6
C12—C16—H162	110.1	С28—С30—Н303	110.0
H163—C16—H162	108.0	H301—C30—H303	109.1
C12—C16—H161	110.3	H302—C30—H303	108.8
H163—C16—H161	109.0	C28—C31—H311	109.2
H162—C16—H161	109.1	C28—C31—H313	110.4
C12—C17—H171	110.4	H311—C31—H313	109.4
С12—С17—Н172	110.0	C28—C31—H312	109.4
H171—C17—H172	107.9	H311—C31—H312	109.8
С12—С17—Н173	110.0	H313—C31—H312	108.6
H171—C17—H173	109.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C16—H161···O15 ⁱ	0.96	2.55	3.4062 (19)	148
C20—H202···O13 ⁱ	0.97	2.53	3.4918 (19)	171
O22—H221…O5	0.88	1.78	2.5922 (19)	153
C31—H313···O22 ⁱⁱ	0.97	2.57	3.5170 (19)	165
C27—H271···O5 ⁱⁱⁱ	0.94	2.58	3.4923 (19)	163

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x, -y+2, -z; (iii) x, -y+1, z-1/2.

