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Abstract
Background: Acute cutaneous neurogenic inflammation initiated by activation of transient receptor
potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by
dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary
afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the
release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors
initiates neurogenic inflammation via triggering DRRs.

Results: Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic
receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin.
The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by
measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in
anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP)
resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or
intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the
capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not
significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1
receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation
was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses
between 30–150 µg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP
receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If
both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger
reduction in the capsaicin-initiated inflammation was produced.

Conclusion: Our data suggest that 1) the generation of DRRs is critical for driving the release of
neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV1 receptors in
primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released
CGRP and SP participate in neurogenic inflammation.

Published: 25 October 2007

Molecular Pain 2007, 3:30 doi:10.1186/1744-8069-3-30

Received: 15 September 2007
Accepted: 25 October 2007

This article is available from: http://www.molecularpain.com/content/3/1/30

© 2007 Lin et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17961222
http://www.molecularpain.com/content/3/1/30
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Pain 2007, 3:30 http://www.molecularpain.com/content/3/1/30
Background
The inflammation initiated by release of inflammatory
mediators from primary afferent nerve terminals (mainly
nociceptors) is referred to as neurogenic inflammation
[1,2]. A wide range of inflammatory diseases like allergic
arthritis, asthma, dermatitis, rheumatoid arthritis, inflam-
matory bowel diseases and migraine are suggested to
include a neurogenic component [3]. Many studies dem-
onstrate that inflammatory peptides in a population of
primary nociceptive neurons are critically important for
induction and development of neurogenic inflammation.
Experimentally, intradermal capsaicin (CAP) injection
induces neurogenic inflammation and is characterized by
arteriolar vasodilation, plasma extravasation, and pain
(hyperalgesia and/or allodynia) [4-8]. The underlying
mechanisms are that CAP sensitizes nociceptors by acti-
vating transient receptor potential vanilloid-1 (TRPV1)
receptors distributed in small diameter myelinated (Aδ)
and unmyelinated (C) primary afferent nociceptive fibers,
which leads to the release of inflammatory peptides from
these sensitized afferent terminals.

It is generally accepted that antidromic activation of affer-
ent nociceptors is the cause of inflammatory peptide
release and that dorsal root reflexes (DRRs) play a critical
role in this process. DRRs are triggered pathophysiologi-
cally by excessive primary afferent depolarization of the
central terminals in the spinal dorsal horn [9-11], which
results from the opening of Cl- channels and efflux of Cl-

ions from the synaptic terminals of primary afferents
when GABAA receptors are activated by GABA released
from spinal GABAergic interneurons [11,12]. DRRs are
triggered in the spinal dorsal horn by GABAergic interneu-
ronal circuits and conducted antidromically toward the
periphery along the primary afferent nociceptive fibers
[9,11,13-16].

Intradermal injection of CAP to activate TRPV1 receptors
in primary afferent nociceptors can trigger and enhance
DRRs [17,18], which are accompanied by flare (vasodila-
tion) and edema (increased paw volume) in the paw
[17,19], suggesting that there is a close relationship
between enhanced DRRs and neurogenic inflammation
presumably elicited by neuropeptide release [20]. The pri-
mary afferent fibers critically involved in triggering DRRs
are CAP-sensitive fibers [18,21]. Although antidromic
activation of primary nociceptive afferent endings (effec-
tor function) is well established to be a mechanism of
driving the mediator release leading to neurogenic inflam-
mation [22-26], there is no direct evidence to demonstrate
that the release of inflammatory substances from nocicep-
tive terminals is due to the triggering of DRRs and how
activation of TRPV1 receptors initiates neurogenic inflam-
mation via triggering DRRs. We hypothesize that the
release of inflammatory peptides in the periphery is

driven by the generation of DRRs, which contributes to
the spread of cutaneous inflammation and to the develop-
ment of neurogenic inflammation that exacerbates pain
perception. This process is initiated by activation of TRPV1
receptors after CAP injection. To test this hypothesis, we
have examined the role of the inflammatory neuropep-
tides, calcitonin gene-related peptide (CGRP) and sub-
stance P (SP), in DRR-mediated neurogenic inflammation
by using the rat model of neurogenic inflammation
induced by intradermal injection of CAP. Pharmacologi-
cal and surgical manipulations were used to evaluate the
role of DRRs [17,19]. The degree of acute cutaneous
inflammation that followed intradermal injection of CAP
was assessed by measurements of local blood flow
(vasodilation) and paw-thickness (edema) of the rat foot
skin. Some preliminary data have been presented in
abstract form [27].

Results
Effects of dorsal root reflex removal on capsaicin- and 
neuropeptide-evoked inflammation
Observations on vasodilation and edema evoked by CAP
and neuropeptides were made in three groups of rats for
each agent.

Intradermal CAP-evoked inflammation
In a group of rats (n = 7), the animals underwent sham
surgery without sectioning the L2-S1 dorsal roots ipsilater-
ally. An elevated blood flow was seen at a site 15–20 mm
away from the CAP injection spot (Fig. 1A) and reached its
peak around 15 min after CAP injection (Fig. 1C). The
peak increase and the value at 60 min after CAP injection
were 388.7 ± 35.7% and 300.9 ± 33.3%, respectively (P =
0.0015 and P = 0.0023, compared with baseline level,
one-way RM ANOVA; Fig. 1C). Change in paw-thickness
on the side ipsilateral to CAP injection was presented as
the difference score before and after CAP injection. In
sham-operated group, the difference score of paw-thick-
ness was 1.4 ± 0.2 (P = 0.003, compared with the group
with intradermal vehicle injection, Dunnett's test; Fig.
1D). In the dorsal rhizotomized group of rats in which
DRRs were removed surgically (n = 7), the enhanced
blood flow induced by the same dose of CAP injected was
much less than in rats with sham-dorsal rhizotomy (Fig.
1B). The blood flow increased slightly to 165.5 ± 19.9–
171.1 ± 23.1% at 15–30 min after CAP injection and then
recovered toward the baseline. Peak increase and the value
at 60 min after CAP injection were 171.1 ± 23.1% and
159.9 ± 19.0%, respectively (P = 0.025 and P = 0.026,
compared with baseline level, one-way RM ANOVA; Fig.
1C), which was much smaller than that in the sham-oper-
ated group (P = 0.0052 and P = 0.0063; Dunnett's test; Fig.
1B,C). The difference score of paw-thickness was signifi-
cantly decreased to 0.82 ± 0.03 (P < 0.05, compared to the
sham-operated group, Dunnett's test; Fig. 1D). Data from
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the group of rats in which DRRs were eliminated pharma-
cologically by pretreatment with bicuculline intrathecally
(n = 7) show results similar to those of dorsal rhizot-
omized rats (Fig. 1C,D). Peak increase and the value at 60
min after CAP injection were 222.5 ± 41.6% and 164.9 ±
33.4%, respectively, which was much smaller than that in
the intrathecal ACSF group (n = 6, P = 0.0082 and P =
0.032, Dunnett's test). Thus, the above data confirm that
DRR removal led to an attenuation of the inflammatory
reaction [17].

A control experiment has been done on the same model
in our previous study by intradermal injection of vehicle
(Tween 80 and saline), which did not produce obvious
changes in blood flow and edema in the foot skin [17]. In
addition, a previous study by our group showed that intra-
dermal injection of CAP into the hindpaw did not signif-
icantly increase the blood flow level in the forepaw skin,
suggesting that the local blood flow reaction is not the
result of a change in systemic blood pressure [28].

Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral intradermal (i.d.) injection of CAP in the hindpaw and the effects of dorsal rhizotomy (DRZ) and intrathecal bicucuclline (BICU)Figure 1
Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral intradermal (i.d.) injection of 
CAP in the hindpaw and the effects of dorsal rhizotomy (DRZ) and intrathecal bicucuclline (BICU). A and B: Samples of the 
laser Doppler flowmetry traces show changes in cutaneous blood flow in the rat hindpaw following CAP injection and the 
effects of dorsal rhizotomy. C and D: Mean results of blood flow and paw-thickness recordings summarizing the effects of DRZ 
and intrathecal BICU on the CAP-evoked inflammation. Blood flow pre-CAP injection was expressed as 100% (dashed line). 
Change in paw-thickness following CAP injection was presented as the difference score before and after CAP injection. Bicuc-
ulline (BICU) or ACSF was given intrathecally 20 min prior to CAP injection. Inset shows the sites where CAP was injected 
intradermally and blood flow was measured. *: P < 0.05, compared to the value in sham-dorsal rhizotomized or ACSP pre-
treated group.
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Intra-arterial CGRP-evoked inflammation
In a group of sham-dorsal rhizotomized rats (n = 6), local
administration of CGRP by intra-arterial injection pro-
duced an increase in cutaneous blood flow in the hind-
paw skin without significant change in the paw-thickness
(Fig. 2). Blood flow level reached its peak at 20 min after
CGRP application. The peak increase and the value of
blood flow at 60 min after CGRP injection were 435.2 ±
41.4% and 245.8 ± 17.9%, respectively (P < 0.001 and P
< 0.001, compared with baseline level, one-way RM
ANOVA; Fig. 2C). However, removal of DRRs either surgi-
cally (dorsal rhizotomy, n = 7) or pharmacologically
(intrathecal bicuculline, n = 7) produced no significant
effects on the CGRP-evoked vasodilation and paw-thick-

ness (Fig. 2B,C,D). In the dorsal rhizotomy group, P was
0.158 for the peak value when compared to sham group,
and P was 0.181 for the value at 60 min after CAP injec-
tion when compared to sham group. In the intrathecal
bicuculline group, P was 0.457 for the peak value when
compared to intrathecal ACSF group (n = 6), and P was
0.825 for the value at 60 min after CAP injection when
compared to intrathecal ACSF group. Difference score of
paw-thickness in dorsal rhizotomized rats was 0.22 ±
0.13, P = 0.181, compared with sham-dorsal rhizot-
omized rats. Difference score of paw-thickness in the
intrathecal bicuculline group was 0.19 ± 0.15, P = 0.198,
compared with the intrathecal ACSF group.

Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral intra-arterial (i.a.) injection of CGRP in the hindpaw and the effects of DRZ and intrathecal BICUFigure 2
Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral intra-arterial (i.a.) injection of 
CGRP in the hindpaw and the effects of DRZ and intrathecal BICU. A and B: Samples of the laser Doppler flowmetry traces 
show changes in cutaneous blood flow of rat hindpaw following CGRP injection and the effects of DRZ. C and D: Mean results 
of blood flow and paw-thickness recordings summarizing the effects of DRZ and intrathecal BICU on the CGRP-evoked inflam-
mation.
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Intra-arterial SP-evoked inflammation
When dorsal roots were intact (sham-dorsal rhizotomy, n
= 6), local administration of SP intra-arterially produced a
short-lasting vasodilation and substantial edema (Fig. 3).
Peak increase was 338.8 ± 38.8% at 5 min after SP appli-
cation (P = 0.003, compared with the baseline value, one-
way RM ANOVA). Consistent with the results of CGRP
administration, neither surgical (dorsal rhizotomy, n = 6)
or pharmacological (intrathecal bicuculline, n = 6) treat-
ments affected significantly the SP-evoked inflammation
(Fig. 3B, C, D). In the dorsal rhizotomy group, P was
0.954 for the peak value compared with the sham group.
In the intrathecal bicuculline group, P was 0.879 for the
peak value compared with the intrathecal ACSF group (n
= 6). Difference score of paw-thickness in the dorsal rhizo-

tomy group was 2.54 ± 0.29, P = 0.196, compared with
the sham group. Difference score of paw-thickness in the
intrathecal bicuculline group was 1.92 ± 0.56, P = 0.73,
compared with the intrathecal ACSF group.

To exclude the possibility that the neuropeptide-evoked
vasodilation was due to a systemic effect, change of blood
flow in the forepaw was monitored simultaneously. The
data show that local injection of these neuropepetides in
the hindpaw did not produce significant change in blood
flow in the forepaw (data not shown).

Thus, the differential effects of DRR removal on CAP- and
neuropeptide-evoked inflammation indicate a close rela-

Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral i.a. injection of SP in the hind-paw and the effects of DRZ and intrathecal BICUFigure 3
Changes in cutaneous blood flow and paw-thickness in the hindpaw of rats following ipsilateral i.a. injection of SP in the hind-
paw and the effects of DRZ and intrathecal BICU. A and B: Samples of the laser Doppler flowmetry traces show changes in 
cutaneous blood flow of rat hindpaw following SP injection and the effects of DRZ. C and D: Mean results of blood flow and 
paw-thickness recordings summarizing the effects of DRZ and intrathecal BICU on the SP-evoked inflammation.
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tionship between DRRs and the release of these neuropep-
tides.

Effects of blockade of TRPV1, CGRP, neurokinin 1 or 
CGRP/neurokinin 1 receptors on the capsaicin-evoked 
inflammation
We further examined how the blockade of TRPV1, CGRP,
neurokinin 1 (NK1), or CGRP/NK1 receptors in the
periphery affected the CAP-evoked inflammation and
what differences there were by using dose-response analy-
ses of antagonistic effects.

Blockade of TRPV1 receptors by capsazepine
After baseline measurements were taken, either cap-
sazepine at one of three doses (6, 30 and 150 µg) or vehi-
cle was given intra-arterially 10 min prior to CAP
injection. The dose-response relationship (Fig. 4) shows
that capsazepine produced a dose-dependent antagonism.
A low dose (6 µg, n = 6) produced a slight reduction in the
flare reaction (peak value was 355.0 ± 32.6%, P = 0.21,
compared to the peak value, 429.0 ± 75.8%, in vehicle
group, n = 6, Dunnett's test) and in the difference score of
paw-thickness (0.89 ± 0.05, n = 6; P < 0.01, compared to
the vehicle group, 1.4 ± 0.03, n = 6, Dunnett's test). When
the periphery was pretreated with capsazepine at 30 or

150 µg, the inhibition of CAP-evoked inflammation
reached a maximum (see Fig. 4). There was no statistical
difference in the flare reaction or change in paw-thickness
between groups receiving 30 µg (n = 7) or 150 µg (n = 7)
of capsazepine. CAP-evoked flare was nearly completely
abolished when the dose of capsazepine reached either 30
or 150 µg (Fig. 4). A comparison was further made
between groups receiving 30 µg and 6 µg of capsazepine.
In 30 µg group, the peak blood flow reaction and differ-
ence score of paw-thickness were 134.5 ± 15.4% and 0.36
± 0.09, respectively, that were significantly lower than
those in 6 µg group (P < 0.001 and P < 0.01).

Blockade of CGRP receptors by CGRP8–37
The effect of blockade of CGRP receptors on the CAP-
evoked inflammation was analyzed by pretreatment of
the periphery with 3 doses of CGRP8–37. A dose-depend-
ent inhibition of the CAP-evoked inflammation was seen
with pretreatment with 0.4 (n = 6), 2 (n = 6) and 10 µg (n
= 7) of CGRP8–37, respectively (Fig. 5). A slight decrease in
flare reaction and paw-thickness change was induced by
CAP injection when a low dose of CGRP8–37 (0.4 µg) was
given (P < 0.01 and P < 0.01, compared to vehicle pretreat-
ment group, n = 6, Dunnett's test). A further decrease in
flare reaction and paw-thickness change was seen when

The effects of blockade of TRPV1 receptors on the CAP-evoked inflammation by pretreatment of the periphery with three dif-ferent doses of capsazepine (CPZ)Figure 4
The effects of blockade of TRPV1 receptors on the CAP-evoked inflammation by pretreatment of the periphery with three dif-
ferent doses of capsazepine (CPZ). CPZ was given intra-arterially 10 min prior to CAP injection. **: P < 0.01, compared to the 
value in the group of i.a. injection of vehicle (Veh). ++: P < 0.01, compared to the value with the lowest dose of the same drug.
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the dose of CGRP8–37 reached either 2 or 10 µg. Unlike the
blockade of TRPV1 receptors by capsazepine, blockade of
CGRP receptors did not completely inhibit the flare and
edema induced by CAP injection (Fig. 5). Since there was
no statistical difference in the flare reaction and change in
paw-thickness between groups receiving 2 µg or 10 µg of
CGRP8–37, the inhibition of CAP-evoked inflammation by
either 2 or 10 µg should presumably be maximal. A com-
parison was further made between groups receiving 2 µg
and 0.4 µg of CGRP8–37. The peak blood flow reaction
(225.1 ± 7.1%) in 2 µg group was significantly lower than
that in the group receiving 0.4 µg of CGRP8–37 (P = 0.002).
The difference score of paw-thickness in 2 µg group (0.95
± 0.13) were slightly lower than that in the group receiv-
ing 0.4 µg of CGRP8–37 (1.12 ± 0.05), but the difference
did not reach statistical significance (P = 0.246).

Blockade of NK1 receptors by spantide I
Similar to the results obtained from the experiments with
CGRP8–37, a dose-dependent inhibition of CAP-evoked

inflammation was seen with pretreatment with 0.4 (n =
6), 2 (n = 6) and 10 µg (n = 7) of spantide I, respectively
(Fig. 6), but blockade of NK1 receptors did not completely
inhibit the flare or edema induced by CAP injection. The
inhibition of CAP-evoked inflammation by either 2 or 10
µg of spantide I should be maximal because there was no
statistical difference in the flare reaction or change in paw-
thickness between groups given 2 µg and 10 µg (Fig. 6).
There was a significant difference both in peak reaction of
blood flow and difference score of paw-thickness between
groups receiving 2 µg and 0.4 µg of spantide I (P < 0.001
and P < 0.01). The blood flow reaction and difference
score of paw-thickness were much lower in the group
receiving 2 µg of spantide I.

Fig. 7 summarizes differential effects of blockade of
TRPV1, CGRP, NK1 or CGRP/NK1 receptors on the CAP-
evoked inflammation. The dose-response analyses of
antagonism by the three antagonists have revealed that
150 µg of capsazepine, 10 µg of CGRP8–37 or spantide I

The effects of blockade of CGRP receptors on the CAP-evoked inflammation by pretreatment of the periphery with three dif-ferent doses of CGRP8–37Figure 5
The effects of blockade of CGRP receptors on the CAP-evoked inflammation by pretreatment of the periphery with three dif-
ferent doses of CGRP8–37. CGRP8–37 was given intra-arterially 10 min prior to CAP injection. **: P < 0.01, compared to the 
value in the group of i.a. injection of vehicle (Veh).
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produced a maximal inhibition of the CAP-evoked
inflammation. Comparison of their inhibitory effects by
these doses shows that vasodilation following CAP injec-
tion could be reduced by blockade of CGRP or NK1 recep-
tors. The CAP-induced edema was also reduced by either
blockade of CGRP or NK1 receptors, but the NK1 antago-
nist (spantide I) produced a much stronger inhibition of
edema. However, when both CGRP and NK1 receptors
were blocked by co-administration of 10 µg of CGRP8–37
and spantide I, inhibition of the CAP-evoked vasodilation
became stronger. The peak value (154.1 ± 15.1%) was sig-
nificantly lower than the peak value in the CGRP8–37
group (P = 0.035, Dunnett's test). Inhibition of the CAP-
evoked edema by co-administration of CGRP8–37 and
spantide I was slightly stronger compared to the group
with spantide I pretreatment, but did not reach statistical
significance. Finally, blockade of TRPV1 receptors abol-
ished nearly completely the CAP-induced vasodilation
and edema. The peak value of vasodilation in the cap-
sazepine pretreated group was 118.3 ± 10.2%, which was
statistically significant lower than that in CGRP8–37 pre-
treated (P = 0.001, Dunnett's test) and in spantide I pre-
treated (P = 0.005, Dunnett's test) groups, respectively,

but not statistically significant lower than that in CGRP8–

37+spantide I pretreated group (P = 0.073, Dunnett's test).
Difference score of paw-thickness in the capsazepine pre-
treated group was 0.25 ± 0.12, which was statistically sig-
nificant smaller than that in CGRP8–37 pretreated (P <
0.01, Dunnett's test) and in spantide I pretreated (P <
0.05, Dunnett's test) groups, respectively, but not statisti-
cally significantly smaller than that in CGRP8–37+spantide
I pretreated group (P = 0.164, Dunnett's test).

Discussion
Previous studies by our and other groups on an acute
experimental model of neurogenic inflammation evoked
by intradermal injection of CAP have physiologically and
pharmacologically demonstrated that cutaneous inflam-
matory reactions characterized by local vasodilation
(flare) and edema (increased paw-thickness) are predom-
inantly mediated by triggering DRRs [17,19,20]. DRR
activity has been recorded electrophysiologically from the
central end of individual Aδ- and C-primary afferents and
shown to be enhanced after CAP injection [18,21,29]. In
the present study, we have further extended our ongoing
project in the following respects. 1) New evidence has

The effects of blockade of neurokinin 1 receptors on the CAP-evoked inflammation by pretreatment of the periphery with three different doses of spantide IFigure 6
The effects of blockade of neurokinin 1 receptors on the CAP-evoked inflammation by pretreatment of the periphery with 
three different doses of spantide I. Spantide I was given intra-arterially 10 min prior to CAP injection. **: P < 0.01, compared to 
the value in the group of i.a. injection of vehicle (Veh). ++: P < 0.01, compared to the value with the lowest dose of the same 
drug.
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been provided to confirm the view that DRRs are triggered
and then enhanced by activation of TRPV1 receptors to
evoke neurogenic inflammation by driving the release of
neuropeptides (CGRP and/or SP). 2) pharmacological
studies using dose-response analyses of antagonism of
TRPV1 and neuropeptide receptors reveal that the released
CGRP and SP participate critically in the neurogenic
inflammation; 3) activation of TRPV1 receptors in primary
afferent nociceptors following CAP injection initiates this
process, including triggering of DRRs.

Many primary nociceptive afferent neurons and their
axons (Aδ- and C-fibers) are peptidergic with the capacity
to release inflammatory peptides [30-35]. CGRP and SP
are major inflammatory mediators that contribute a neu-
rogenic component to inflammation [36,37]. When
released from primary afferent neurons, CGRP and SP
produce neurogenic inflammation by interacting with
endothelial cells, mast cells, immune cells and arterioles.
For instance, CGRP is potent vasodilator that produces a
strong and long-lasting vasodilation [38], and SP results
preferentially in stronger plasma extravasation [39].

A critical concern addressed in the present study is the
mechanism by which inflammatory mediators are
released in the periphery to induce neurogenic inflamma-
tion. It has been suggested that intradermal injection of
CAP results in a local vasodilation, increased plasma
extravasation, and hyperalgesia through release of neu-
ropeptides from peripheral primary afferent terminals
[11,40-42]. These afferent fibers can be sensitized by CAP
due to activation of TRPV1 receptors, a key nociceptive
molecule expressed in these fibers, to contribute to nocic-
eptive transmission and neurogenic inflammation
[5,6,43-45]. Thus, CAP plays not only a sensory role by
activating nociceptors, but it also has an efferent function
by initiating neurogenic inflammation. The latter results
from CAP-induced Ca2+ influx into nerve terminals
through TRPV1 receptors and voltage-dependent Ca2+

channels, causing the exocytosis of inflammatory media-
tors [46-49] and their release into the periphery to pro-
duce sensitization of primary afferent nociceptors and
neurogenic inflammation [50-53]. The above process can
be modulated by antidromic activation of afferent fibers,
which would drive and trigger the release of inflammatory

Summary of differential effects of blockade of peripheral TRPV1, CGRP, NK1, or CGRP/NK1 receptors on the CAP-evoked inflammation by intra-arterial injection of 150 µg capsazepine, 10 µg CGRP8–37, 10 µg spantide I, or co-administration of 10 µg CGRP8–37 and spantide IFigure 7
Summary of differential effects of blockade of peripheral TRPV1, CGRP, NK1, or CGRP/NK1 receptors on the CAP-evoked 
inflammation by intra-arterial injection of 150 µg capsazepine, 10 µg CGRP8–37, 10 µg spantide I, or co-administration of 10 µg 
CGRP8–37 and spantide I. *: P < 0.05, **: P < 0.01, ***: P < 0.001, compared to the value with vehicle pretreatment in the same 
antagonist (ANT) group. ++: P < 0.01, compared to the value with CGRP8–37 pretreatment. #: P < 0.05, compared to the value 
with spantide I pretreatment.
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mediators that initiates neurogenic inflammation,
because experimentally antidromic activation of the cut
dorsal roots can evoke obvious vasodilation and plasma
extravasation when the electrical stimulus strength is
strong enough to active C-fibers [54-56]. In the present
study, experiments were designed to determine whether
there was a release of CGRP and SP from sensory afferent
terminals (nociceptors) and whether this release was
antidromically driven by DRRs in the CAP-evoked neuro-
genic inflammation. We proposed that removal of DRRs
would interrupt this pathway to alleviate the neurogenic
inflammation induced by CAP injection. The data have
shown that local vasodilation and increased paw-thick-
ness evoked by CAP injection were greatly reduced after
dorsal rhizotomy or intrathecal bicuculline administra-
tion that removed DRRs. In contrast, inflammatory reac-
tions evoked by direct application of CGRP or SP in the
periphery that would mimic the DRR-mediated inflam-
mation induced by CAP injection were unchanged under
the same conditions when DRRs were removed. Thus,
there should be a close relationship between DRRs and
the release of these neuropeptides based on the observa-
tions of differential effects of DRR removal on CAP- and
neuropeptide-evoked inflammation, which suggests that
the release of CGRP and/or SP is driven by DRRs to partic-
ipate critically in the CAP-evoked inflammation. In this
process, activation of TRPV1 receptors appears to be an ini-
tial step. Therefore, we wanted to analyze further how
neurogenic inflammation was initiated and developed via
DRRs by differentiating the roles of TRPV1, CGRP and NK1
receptors.

Dose-response analysis of the antagonistic effect of the
TRPV1 receptor antagonist, capzasepine, on the CAP-
evoked inflammation indicates that vasodilation and
edema evoked by CAP injection are inhibited in a dose-
dependent manner by capsazepine pretreatment. When
the dose of capsazepine was in the range of 30–150 µg,
the inhibition seemed to reach a maximum. This result is
consistent with studies on other pain models that a block-
ade of TRPV1 receptors by similar doses of capsazepine
antagonized selectively the CAP-evoked hyperalgesia and
alleviated other inflammogen-evoked pain behaviors in a
dose-dependent manner [57-59]. Importantly, CAP-
evoked inflammation was nearly completed blocked with
these doses. This suggests that neurogenic inflammation
after CAP injection is initiated by activation of TRPV1
receptors that in turn trigger and then enhance DRRs,
which release inflammatory neuropeptides.

Since the mechanism underlying neurogenic inflamma-
tion evoked by CAP injection and driven by DRRs seems
to be the result of CGRP and/or SP release, we assumed
that a blockade of either CGRP or NK1 receptors in the
periphery should alleviate the inflammation. The analysis

of antagonistic effects of blockade of CGRP or NK1 recep-
tors by examining the dose-response relationships when
CGRP8–37 or spantide I was given as a pretreatment shows
that each antagonist when given individually reduced the
CAP-evoked inflammation in a dose-dependent manner,
but the inflammation was not completely abolished when
the effect of each antagonist was maximal. Thus, each neu-
ropeptide released contributes partially to neurogenic
inflammation initiated by CAP injection via activation of
TRPV1 receptors. A further analysis of blockade of both
CGRP and NK1 receptors revealed that the CAP-evoked
inflammation (prominently vasodilation) was more
effectively alleviated by co-administration of CGRP8–37
and spantide I compared to the effect of a single antago-
nist. This suggests that CGRP and SP are two major
inflammatory mediators in the neurogenic inflammation
initiated by activation of TRPV1 receptors and driven by
triggering of DRRs.

In summary, the present results update the role of DRRs
in neurogenic inflammation by providing new evidence
to suggest that the release of CGRP and SP in the periphery
is driven by the generation of DRRs, which participate crit-
ically in neurogenic inflammation with that pain percep-
tion is exacerbated. Further, this process is initiated by
activation of TRPV1 receptors after CAP injection.

Methods
Experimental animals
Male Sprague-Dawley rats weighing 250–350 g were used
in this study. The animals were housed in groups of two
to three, with food and water available ad libitum, and
were allowed to acclimate under a light/dark cycle for
approximately 1 wk prior to experiments. The experi-
ments were carried out in accordance with the National
Institutes of Health Guide for the Care and Use of Labora-
tory Animals and with the approval of the Institutional
Animal Care and Use Committee of the University of
Texas Medical Branch. All efforts were made to minimize
the number of animals used and their suffering.

Rats were initially anesthetized with sodium pentobarbi-
tal (i.p. 50 mg kg-1) to perform surgery. Anesthesia was
then maintained throughout the experiment by continu-
ous intravenous infusion of a saline solution containing
sodium pentobarbital. The infusion rate was adjusted (5–
8 mg kg-1 h-1) depending upon the depth of anesthesia.
The depth of anesthesia was judged as being sufficiently
deep when withdrawal responses to noxious limb stimu-
lation and/or the eye-blink reflex to air-puffs were absent.
Once anesthetic level was adequately established, the ani-
mals were paralyzed with pancuronium (0.3–0.4 mg h-1,
i.v.). The rats were then ventilated artificially, and end-
tidal CO2 was physiologically kept between 3.5 and 4.5%
by adjusting the respiratory parameters. The adequacy of
Page 10 of 14
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the depth of anesthesia during an experiment was evalu-
ated by the examination of the pupillary reflexes and
assessing the stability of the expired CO2. Cutaneous
blood flow and paw-thickness were measured on anesthe-
tized and paralyzed rats because a series of previous stud-
ies on blood flow measurements by our group have been
conducted under the same conditions [17,28,60,61]. Rec-
tal temperature was monitored using a rectal probe and
maintained at 37°C by a servo-controlled heating blan-
ket.

Induction of acute cutaneous inflammation
An acute cutaneous inflammation model was induced by
intradermal injection of CAP (from Fluka, prepared in a
solution of 7% Tween 80 and 93% saline at a concentra-
tion of 1%) as previously described [17,28,61]. CAP was
injected intradermally into the plantar surface of the foot
in a volume of 15 µl. Control experiments were done by
vehicle injections using Tween 80 and saline at the same
volume as the CAP solution [17].

Measurements of cutaneous vasodilation
Blood flow was detected as blood cell flux by a laser Dop-
pler flowmeter (Moor Instruments, UK). The output
showing blood flow level was then recorded by a compu-
ter data acquisition system (CED 1401 plus, with Spike-2
software) in millivolt units (see panels A &B in Figs. 1, 2
and 3) and also in [17,19,28,60,61]. To measure the cuta-
neous blood flow level and the local vasodilation (flare)
that followed intradermal injection of CAP into the skin
of the foot, the probe from the laser Doppler flow meter
was attached to the plantar skin surface of the foot with
adhesive tape. The flowmeter we used has been reported
to produce a laser beam that penetrates to a depth of 500–
700 µm below the surface where the probe is placed [62],
which assured that the laser Doppler flow probe picked up
the blood flow signal mainly from the microvasculature
in the dermis.

The flare reaction after CAP injection could be detected at
distances up to 30 mm away from the CAP injection spot.
A number of studies by our group [17,19,28,60,61] have
consistently indicated that a large blood flow reaction
seen at a distance of 15–20 mm away from the site where
CAP was injected is mainly mediated by DRRs. In this
study, therefore, we only measured the blood flow
changes in the foot skin at a distance of 15–20 mm away
from the CAP injection spot (see inset in Fig. 1).

Paw-thickness measurements
The degree of cutaneous inflammation due to CAP injec-
tion was also assessed by paw-thickness measurements to
reflect edema due to plasma extravasation. This was done
with a digital caliper placed near the site where the laser
Doppler probe was placed. Care was taken to assure that

the caliper was placed at the same site on the paw for each
measurement. Each measurement was the mean value cal-
culated from 3 trials [17].

Surgical and pharmacological elimination of DRRs
To evaluate the involvement of DRRs in driving the release
of CGRP and/or SP to contribute to neurogenic inflamma-
tion, inflammation was evoked under conditions that
DRRs were eliminated surgically or pharmacologically.

Dorsal rhizotomy
This was done to eliminate DRRs surgically. Laminectomy
was performed to expose the dorsal roots of segments L3-
S1 bilaterally. The exposed cord and roots were protected
from drying and cooling by formation of warmed oil pool
between skin flaps. The dorsal roots that needed to be sec-
tioned were gently dissected, and a small piece of cotton
containing 2% lidocaine was applied to them at the site
where the roots were to be cut to minimize injury dis-
charges.

Intrathecal administration of bicuculline
This was done to eliminate DRRs pharmacologically
[12,17,63,64]. The suboccipital region was exposed by a
midline incision; the dura over the cisterna magna was
opened with a small vertical incision, and a catheter (32G,
from Micor, Allison Park) was advanced through a guide
cannula to the spinal subarachnoid space at the T12-L1 ver-
tebral level for intrathecal administration. Five µg of bicu-
culline (a GABAA receptor antagonist from Sigma-Aldrich)
dissolved in artificial cerebrospinal fluid (ACSF) in a vol-
ume of 15 µl, was injected intrathecally. A previous study
has demonstrated that 5 µg of bicuculline administered
intrathecally can effectively block DRRs and CAP-evoked
inflammation [17,60].

Peripheral administration of agonists and antagonists of 
inflammatory peptide receptors and antagonist of TRPV1 
receptors
Close-by intra-arterial injections were used to deliver
drugs to the periphery [28,29,45,61]. To do this, one
branch of the femoral artery on the side of blood flow
measurement was carefully isolated from connective tis-
sue and ligated proximally. The artery was then cannu-
lated distally by a small sized polyethylene tube that was
connected with a Hamilton syringe. Drugs were given
intra-arterially in a volume of 10 µl.

Experimental protocol
1. To determine whether the release of CGRP or SP from
sensory afferent terminals (nociceptors) was driven by
DRRs and the role in the CAP-evoked neurogenic inflam-
mation, the spread of flare and edema in the plantar skin
of the foot on the side ipsilateral to local injection of CAP
(1%, 15 µl), CGRP (from Tocris, 1.0 µg) or SP (from Toc-
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ris, 0.1 µg) were measured. CAP was injected intrader-
mally, and CGRP or SP was injected intra-arterially.
Solutions of CGRP and SP were made with saline (pH cor-
rected to 7.2–7.4). After local injection of CAP, CGRP or
SP, changes in blood flow and paw thickness were
recorded and monitored for 1–1.5 hr, and the effects were
compared to the effects of the same agents evoked under
the conditions when DRRs were removed surgically (dor-
sal rhizotomy) or pharmacologically (intrathecal admin-
istration of bicuculline at a dose of 5 µg). Dorsal
rhizotomy (L2-S1) was performed on the side ipsilateral to
the injection on the day when the experiment was con-
ducted.

2. The effects of blockade of TRPV1, CGRP, NK1, or both
CGRP and NK1 receptors on the CAP-evoked neurogenic
inflammation were analyzed pharmacologically. After
control values of blood flow and paw thickness were
recorded, three doses of each antagonist (capsazepine,
CGRP8–37, or spantide I) were given intra-arterially in dif-
ferent groups of animals 10 min prior to CAP injection.
These included the TRPV1 receptor antagonist, cap-
zazepine (from Tocris) at doses of 6, 30 and 150 µg [57-
59]; the CGRP receptor antagonist, CGRP8–37 (from Toc-
ris), at doses of 0.4, 2.0 and 10.0 µg [65,66] and the NK1
receptor antagonist, spantide I (from Tocris) at doses of
0.4, 2.0 and 10.0 µg [67,68]. Capsazepine was dissolved
in vehicle made from 10% DMSO and 90% saline.
CGRP8–37 and spantide I were dissolved in saline. The
changes both in blood flow and paw thickness were mon-
itored for 1–1.5 h following CAP injection. The inhibition
of the CAP-evoked inflammation induced by the highest
dose of each antagonist or co-administration of CGRP
and NK1 receptor antagonists were compared among
groups of capsazepine, CGRP8–37, spantide I and CGRP8–

37/spantide I pretreated animals. In separate groups, vehi-
cle used for making the solution of each antagonist was
injected prior to CAP injection for control purposes.

Data analysis
All data are expressed as mean ± S.E. Baseline blood flow
level (pre-CAP) was expressed as 100% and percentage
changes after CAP injection were compared for groups of
animals that received different treatments. A change in
paw-thickness following CAP injection is presented as the
difference score before and after CAP injection and com-
pared for the groups of animals that received different
treatments. Statistical differences between groups were
determined by one-way ANOVA followed by the Dun-
nett's analysis. Data obtained before and different time
points after CAP injection were compared using one-way
repeated measures ANOVA followed by Student t-tests. P
< 0.05 was considered statistically significant.
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