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Abstract

Several diseases have common risk factors. The joint modeling of disease outcomes within
a spatial statistical context may provide more insight on the interaction of diseases both at
individual and at regional level. Spatial joint modeling allows for studying of the relationship
between diseases and also between regions under study. One major approach for joint spa-
tial modeling is the multivariate conditional autoregressive approach. In this approach, it is
assumed that all the covariates in the study have linear effects on the multiple response var-
iables. In this study, we relax this linearity assumption and allow some covariates to have
nonlinear effects using the penalized regression splines. This model was used to jointly
model the spatial variation of human immunodeficiency virus (HIV) and herpes simplex
virus-type 2 (HSV-2) among women in Kenya. The model was applied to HIV and HSV-2
prevalence data among women aged 15—49 years in Kenya, derived from the 2007 Kenya
AIDS indicator survey. A full Bayesian approach was used and the models were imple-
mented in WinBUGS software. Both diseases showed significant spatial variation with high-
est disease burdens occurring around the Lake Victoria region. There was a nonlinear
association between age of an individual and HIV and HSV-2 infection. The peak age for
HIV was around 30 years while that of HSV-2 was about 40 years. A positive significant spa-
tial correlation between HIV and HSV-2 was observed with a correlation of 0.6831(95% CI:
0.3859, 0.871).

Introduction

According to the world health organization (WHO), more than 1 million people acquire sexu-
ally transmitted infections (STI) daily. WHO 2013 reports that more than 530 million (about
7.5%) have the virus that causes genital herpes or the herpes simplex virus type 2 (HSV-2) [1].
It was estimated that out of these, 123.7 million or 23% resided in sub-Saharan Africa, among
whom 63% were women [2]. HSV-2 prevalence in the age group 15-49 in sub-Saharan Africa
region ranges from 30% to 80% among women and from 10% to 50% among men [3]. People
living with HIV were estimated to be about 35 million by the end of 2013 with 2.1 million new
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infections [4]. HSV-2 is associated with a two to threefold increased risk of HIV acquisition
and an up to fivefold increased risk of HIV transmission per-sexual act, and may account for
40% to 60% of new HIV infections in populations where HSV-2 has a high prevalence [2],
hence modeling these two diseases jointly may provide more insights on how these two dis-
eases relate in Kenya. STIs can have serious consequences beyond the immediate impact of the
infection itself, through mother-to-child transmission (MTCT) of infections and chronic dis-
eases. Drug resistance is a major threat to reducing the impact of STIs worldwide [1].

Many studies have focused on monitoring HIV and HSV-2 trends in a country and compar-
ison between countries using national averages [5]. These averages though important can hide
the HIV and HSV-2 prevalence variability among administration units of a country and hence
intervention strategies rolled out at national levels may not be effective at the administration
level.

The national HIV and HSV-2 prevalence rate in Kenya within the adult population (15-64
years) was estimated to be as high as 5.6% and 7.1% respectively [6], with a wide gender and
geographical variation. The HIV prevalence among women was 6.9% while among men was
4.4%. The North Eastern region had HIV prevalence of as low as 2.1% while regions around
Lake Victoria and the Western had prevalence ranging from between 13%-25% [7]. The Kenya
National AIDS and STI Control Program (NASCOP) in their Kenya AIDS Indicator Survey
(KAIS) 2007 report stated that age had a non-linear relationship with HIV and HSV-2 preva-
lence, this is consistent with several studies which have shown that HIV and HSV-2 prevalence
by age has a non-linear relationship assuming an inverted U shape [7,8]. HIV prevalence
increases with age until it plateaus at between ages 25-35, then starts decreasing with increas-
ing age. HSV-2 prevalence increases with age up to between ages 35-45 then begins to decline
with increasing age.

Several studies have assumed that all the covariates in the study have a linear relationship
with the response variable. This linear relationship may not hold for all variables as in our case
age, which has a non-linear relationship with the response variable. Our objective is to perform
a spatial joint modeling which allows for studying of the relationship between diseases and also
between regions under study and at the same time capturing this nonlinear relationship. We
extend the spatial semi parametric model based on penalized regression spline proposed by
previous studies [9] to model HIV and HSV-2 jointly among women in Kenya.

Methods
Data

The data for this study was obtained from the Kenya AIDS Indicator Survey (KAIS) which was
carried out by the Kenyan government with financial support from the United States Presi-
dent’s Emergency Plan for AIDS Relief (PEPFAR) and the United Nation (UN). The main aim
of the survey was to obtain high quality data on the prevalence of HIV and Sexually Transmit-
ted Infections (STI) among adults and to assess the knowledge of HIV and STIs in the
population.

The sampling frame for KAIS was the National Sample Survey and Evaluation Program IV
(NASSEP IV), it consisted of 1800 clusters comprising of 1260 rural and 540 urban clusters; of
these, 294 rural and 141 urban clusters were sampled for KAIS. The overall design for KAIS
2007 was a stratified, two-stage cluster sampling design. The first stage involved selecting clus-
ters from NASSEP IV, and the second stage involved the selection of household for KAIS with
equal probability in the urban-rural strata within the districts. A sample of 415 clusters and
10,375 households were systematically selected for KAIS. A uniform sample of 25 households
per cluster was selected using an equal probability systematic sampling method. The multilevel
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structure of the data in our analysis was accounted for through the random effects to account
for within and between county variability.

The survey was twofold: A household questionnaire was used to collect the characteristics of
the living environment and an individual questionnaire to collect information on demographic
characteristics and the knowledge of HIV and STIs on men and women aged 15-64 years. A
representative sample of households and individuals was selected from eight provinces in the
country. Each individual was asked for consent to provide a venous blood sample for HIV and
HSV-2 testing. More information on survey methodologies used in collecting the data is found
in the final KAIS, 2007 report [7]. This study uses the 2007 data even though a new round of
KAIS, 2012 [6] has been done. The final release of this new study had not been made hence the
data was not available for use. This study uses the women’s data from the KAIS, 2007 survey.
Information from 4864 women, aged 15-64 years who had provided venous blood for HIV
and HSV-2 testing and also had full covariate information was used in the analysis. In the data,
age was captured as both categorical and continuous while all other covariates were categorical.
An initial exploratory data analysis was carried out using a univariate standard logistic regres-
sion model to determine the association of each single covariate with the outcome variable
(HIV and HSV-2 status). These variables were categorized into four groups, namely: demo-
graphic, social, biological and behavioral.

From this initial analysis, education level, age at first sex, perceived risk, partners in the last
one year, marital status, place of residence, STT status in the last one year and age of the respon-
dent were found to be associated with HIV and HSV-2 infection. It was also established that
age had a non-linear effect on HIV and HSV-2 infection, hence its continuous form
(mean = 33.31, SD = 10.87) was used in the subsequent analyses.

Ethical Statement

Ethical clearance was granted by the institutional review board of the Kenya Medical Research
Institute (KEMRI) and the US Centers for Disease Control and Prevention. No ethical clear-
ance was required from the University of Kwazulu-Natal or any other institution save for the
aforementioned. The consent procedure, highlighted below, was approved by these two bodies.

Participants provided separate informed oral consent for interviews, blood draws and blood
storage and, the interviewer signed the consent form to indicate whether or not consent was
given for each part. An oral informed consent was given for participants in the age of 18-64
while for minors in the age group 15-17, an oral informed consent was obtained from a par-
ent/guardian or other adult responsible for the youth’s health and welfare before the youth was
asked for his/her consent. Only after the parent or guardian had agreed, was the consent of the
adolescent sought.

Investigators in the study got a waiver of documentation of informed consent for all partici-
pants due to the fact that the research presented very minimal risk of harm to the individuals.
The waiver did not adversely affect the rights and welfare of the participants, and the survey
involved no procedures for which written consent is normally required outside the research
context in Kenya.

Statistical Model

A univariate standard logistic model was used to test the association of each single covariate
with the outcome variable (HIV and HSV-2 status).The association was considered significant
at 5% significance level. These results are shown in tables 1 and 2.

Let y;;x be the disease k status (0/1), k = 1 for HIV and k = 2 for HSV-2, for individual j in
county i: i = 1,2,.. ., 46. In this notation y;;; = 1 if individual j in county i is HIV positive and
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Table 1. Exploratory data analysis for HIV.

Variable P-Value Unadjusted OR
Demographic characteristics
Place of residence (Ref Rural) 1
Urban 0.001 0.749(0.635, 0.884)
Age (Ref 15-19) 0.000 1
20-24 0.000 2.825(1.982, 4.026)
25-29 0.000 3.055(2.133, 4.375)
30-34 0.000 4.656(3.276, 6.618)
35-39 0.000 3.682(2.544, 5.328)
40-44 0.000 2.796(1.869, 4.181)
45-49 0.000 2.783(1.858, 4.169)
50-54 0.000 2.347(1.490, 3.696)
55-59 0.294 1.852(0.770, 2.375)
60-64 0.173 0.487(0.173, 1.371)
Social Characteristics
Wealth Quantile (ref poorest) 0.525 1
Second 0.652 1.058(0.827, 1.353)
Middle 0.392 0.896(0.696, 1.153)
Fourth 0.564 1.074(0.843, 1.369)
Richest 0.592 0.938(0.741, 1.186)
Media access(Ref No) 1
Yes 0.257 0.913(0.781, 1.068)
Education level (Ref none) 0.000 1
Primary 0.386 1.078(0.910, 1.276)
Secondary 0.574 0.929(0.720, 1.200)
Higher 0.000 0.451(0.303,0 .671)
MaritalStatus(Ref Married, 1 partner) 0.000 1
Married, +2partners 0.001 1.536(1.192, 1.980)
Divorced/separated 0.000 2.503(1.960, 3.197)
Widowed 0.000 3.301(2.645, 4.120)
Never married 0.000 0.647(0.510,0 .820)
Perceived-Risk(Ref No risk) 0.000 1
Small Risk 0.000 0.325(0.231,0 .457)
Moderate Risk 0.000 0.447(0.335, 0.597)
Great Risk 0.574 0.916(0.676, 1.242)
Age-first-sex(Ref Never had sex) 0.000 1
Under 11 0.000 8.524(3.569, 20.358)
Between 12-14 0.000 10.162(5.774, 17.885)
Between 15-17 0.000 8.636(5.034, 14.817)
Over 18 0.000 4.870(2.833, 8.371)
Biological characteristics
Had STI(Ref Yes) 1
No 0.000 0.406(0.277, 0.597)
Ever given birth(Ref Yes) 1
No 0.061 0.405(0.316,0 .519)
Behavioral Characteristics
Partners in last 1 year (Ref No partner) 0.000 1
1 partner 0.034 1.021(0.314,0.812)
(Continued)
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Table 1. (Continued)

Variable P-Value Unadjusted OR

2 partners 0.665 1.232(0.771,3.433)
3 or more partners 0.999 2.455(1.759,11.233)
Travel away (didn’t stay away) 0.029 1
Stayed away 1-2 times 0.015 1.241(1.042, 1.477)
Stayed away 3-5 times 0.006 1.362(1.092, 1.698)
Stayed away 6—10 times 0.451 1.170(0.778, 1.761)
Stayed away > 11 times 0.748 0.894(0.451, 1.772)

doi:10.1371/journal.pone.0135212.t001

zero otherwise and y;j, = 1 if individual j in county i is HSV-2 positive and zero otherwise. This
study assumes the dependent variable y;j is bivariate Bernoulli distributed, i.e. y;|p;x ~ Ber-
noulli(pjj).

The vector Xij = (xij1, Xij2»- - -» Xijp)' contains p continuous independent variables and Wy =
(Wij1> Wija»- - -» Wyjr)' contains r categorical independent variables with the first component
accounting for intercept. In this study, p = 1(age) and r = 8.

The unknown E(y;;) = pjj relates to the independent variable as follows:

h(py) = X'B, + W'y, , for HIV and h(p,,) = X'B, + W'y, for HSV—2.

Where h(.) is a logit link function, B is a p dimensional vector of regression coefficients for
the continuous independent variables, and 7 is a r dimensional vector of regression coefficients
for the categorical independent variables. An extension to a semi parametric model utilizing
the penalized regression spline approach and convolution model was employed in order to
cater for both the non-linear effects of the continuous covariates and the spatial autocorrelation
in the data.

The penalized regression spline approach relaxed the highly restrictive linear predictor by a
more flexible semi-parametric predictor, defined as:

4 P
h(pijl) = Zfr(xijt) +fspat(5i1) + WT?’I for HIV and h(Pijz) = E jr(xg:) +.fspat(5i2) + WT'}'z for HSV—2

t=1 t=1

The function f;(.) is a non-linear twice differentiable smooth function for the continuous
covariate and f,(s;) is a factor that caters for the spatial effects of each county. This study uti-
lized the convolution which assumes that the spatial effect can be decomposed into two compo-
nents: spatially structured and spatially unstructured components i.e. fpae(sit) = forr(sit) +
funstr(Sin)> k = 1,2 [9,10]. The spatially unstructured random effects cover the unobserved covar-
iates that are inherent within the counties or the correlation within the counties e.g. common
cultural practices, climate, cultures etc. while the spatially structured random effect accounts
for any unobserved covariates which vary spatially across the counties, this is called spatial
autocorrelation and it is technically defined as the dependence due to geographical proximity.
The final model is expressed as:

P

h(pijk) = th(xijt) F far(8ie) + s (S2) + WT?’k»

t=1

with k = 1 for HIV and k = 2 for HSV — 2
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Table 2. Exploratory data analysis for HSV-2.

Variable

Demographic characteristics
Place of residence (Ref Rural)
Urban

Age (Ref 15-19)

20-24

25-29

30-34

35-39

4044

45-49

50-54

55-59

60-64

Social Characteristics
Wealth Quantile (ref poorest)
Second

Middle

Fourth

Richest

Media access(Ref No)

Yes

Education level (Ref none)
Primary

Secondary

Higher

Marital Status(Ref Married, 1 partner)
Married, +2partners
Divorced/separated

Widowed

Never married
Perceived-Risk(Ref No risk)
Small Risk

Moderate Risk

Great Risk

Age-first-sex(Ref Never had sex)
Under 11

Between 12-14

Between 15-17

Over 18

Biological characteristics
Had STI(Ref Yes)

No

Ever given birth(Ref Yes)

No

Behavioral Characteristics
Partners in last 1 year (Ref No partner)
1 partner

P-Value Unadjusted OR
1
0.000 0.823(0.746,0 .907)
0.000 1
0.000 2.745(2.254, 3.343)
0.000 4.374(3.591, 5.329)
0.000 6.794(5.559, 8.303)
0.000 8.299(6.739,10.220)
0.000 9.389(7.538, 11.694)
0.000 8.641(6.936, 10.765)
0.000 8.378(6.592, 10.649)
0.000 8.661(6.720, 11.162)
0.000 5.751(4.279, 7.729)
0.051 1
0.011 1.199(1.042, 1.381)
0.466 1.053(.916, 1.212)
0.001 1.279(1.113, 1.469)
0.569 1.039(0.910, 1.186)
1
0.821 1.010(0.924, 1.104)
0.000 1
0.000 0.814(0.738, 0.898)
0.000 0.704(0.610,0 .813)
0.000 0.457(0.381, 0.548)
0.000 1
0.000 2.381(2.042, 2.778)
0.000 1.904(1.607, 2.256)
0.000 3.238(2.719, 3.857)
0.000 0.292(0.257,0 .333)
0.000 1
0.000 0.452(0.371,0 .551)
0.000 0.581(0.483, 0.699)
0.675 0.957(0.778, 1.177)
0.000 1
0.000 12.572(7.554, 20.922)
0.000 18.384(13.685, 24.697)
0.000 15.053(11.477, 19.743)
0.000 9.797(7.487, 12.818)
1
0.000 0.556(0.407,0 .760)
1
0.052 0.187(0.163, 0.215)
0.009 1
0.802 0.990(0.873,1.276)
(Continued)
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Table 2. (Continued)

Variable P-Value Unadjusted OR

2 partners 0.831 1.108(1.925, 6.294)
3 or more partners 0.938 0.535(0.699,1.434)
Travel away (didn’t stay away) 0.000 1
Stayed away 1-2 times 0.000 1.251(1.133, 1.380)
Stayed away 3-5 times 0.000 1.468(1.289, 1.672)
Stayed away 610 times 0.017 1.324(1.052, 1.665)
Stayed away > 11 times 0.198 1.258(0.887, 1.786)

doi:10.1371/journal.pone.0135212.t002

Parameter Estimation

This study used a full Bayesian approach in estimation and parameters were assigned appropri-
ate prior distributions as will be discussed in the priors section.

The Penalized regression spline

Several studies have discussed extensively the methods for estimating the smooth function fi(.)
[11,12]. In this study we utilize the penalized regression splines proposed by Eliers and Marx
[13]. Here, the assumption is that the effect of the continuous covariates can be approximated
using the polynomial spline. They assumed that the smooth function f,(.) can be estimated by a
spline of degree [ with K equally spaced knots, xp min = ¥p1 < ¥p2 * ** Ypr-1 < Ypk = Xp.max SIVING:

f(x,ﬁ) =, +¢1x+"'¢pxl+zbk(x_ lpk)ia
=1

where, 0 = (¢, ¢y, - -y, by, by - -br) and (A-Q), is equal to (A—Q) if (A—-Q) is positive and
zero otherwise.

This study uses a quadratic spline (I = 2) with 20 knots to ensure flexibility and takes the k™
knot to be defined as the sample quantile of the continuous independent variable obtained by
the probability equal to . Green and Silverman [14] suggested a roughness penalty

X max
_1

2 [f"(x)]’dx imposed in the log-likelihood to avoid getting a smooth function which

“wiggles” to much, yielding the penalized log-likelihood function given by:

1 ;
L=1(y,0,y) — 51 / [f"(x)]*dx, where /. dictates the balance between flexibility and smoothness.

Xx min

Prior distributions

The nearest neighbor multivariate Gaussian Markov random field (GMRF) is used as a prior
distribution for the spatially structured effects fi,(s;) = (ﬂtr(sil),ﬂ,,(s,»z))T. This is specified as:

fur(8i55;) ~ MCAR(1, Z) where, Z is the covariance matrix inducing correlation.

Spatially, two regions are defined as neighbors if they share a border, otherwise they are not.
Besag et al and Mardia et al discussed the univariate form of MCAR and conditions under
which the conditional multivariate distributions uniquely determine the corresponding
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multivariate joint probability density function respectively [15,16]. Using these results, Carlin
and Banerjee developed the MCAR [17]. Readers are also directed to the works of Gelfand and
Vounatsou on the MCAR [18]. The unstructured spatial effects were assumed to follow a Mul-
tivariate Gaussian prior i.e. f,, (s;, 5;)[ 7., ~ MVN(0, 7} ). Inverse gamma distributions

were assigned to the variance hyper parameters as:

7~ IG(0.0001,0.0001) and °,  ~ IG(0.0001,0.0001).

unstr
The fixed effects coefficients were given the following prior distributions:

P P15 9, ~ N(O, 10%),7,, Ay, - - - 4, ~ N(0,10%),b, ~ N(0,72) and
77 1G(0.0001, 0.0001), B,, B, ~ N(0.01,0.01) being the intercepts.

Posterior Distribution

The posterior distribution is obtained by updating the prior distribution with the observed data
and hence it is the distribution of the parameters after observing the data. This posterior distri-
bution is what gives samples for Bayesian inference. Markov chain Monte Carlo (McMC) over-
comes the problem of high dimensionality as it allows for direct sampling from this posterior
distribution repeatedly and estimates such as mean and median are calculated from these sim-
ple data summaries.

Assuming Conditional independence between the response variable and the hyper parame-
ters, the posterior distribution for the Bernoulli model is given by:

Ppost(¢) }“ﬂ b? T2 |}’)‘x L(y|¢’ ;“7 b? TZ)Ppri(¢)7 )“7 b’ 12)
)4

o 1 1 RXACAS) § CUALCAIE

k=1
r

[IPGI5)P()]x

j=1
P(,f;tr|r;ztr)P(T;ztr)P(.f;4nstr Tinstr)P(Tfmstr)

All the analyses in this study were carried out using WinBUGS 14 [19]. In the implementa-
tion, 20,000 Markov chain Monte Carlo (McMC) iterations for each model was run, with the
initial 10,000 discarded to carter for the burnin period. The 10,000 iterations left were used for
assessing the convergence of the McMC and parameter estimation.

Model Diagnostics

The models were compared using the deviance information criterion (DIC) suggested by Spie-
gelhalter et al [20]. The best fitting model is one with the smallest DIC. The DIC value is
obtained as: DIC = D(0) + pD, where D is the posterior mean of the deviance that measures
the goodness of fit while pD gives the effective number of parameters in the model which
penalizes for complexity of the model. In DIC, low values of D indicate a better fit while small
values of pD indicate model parsimony. One challenge with the DIC is, how big the difference
in DIC values of two competing models needs to be in order to declare one model as being bet-
ter than the other is not well defined. Studies have shown that a difference of 3 in DIC between
two models cannot be distinguished while a difference of between 3 and 7 can be weakly differ-
entiated [20,21].
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Data Analysis

This study investigated four sets of models in order to get an insight on the effect of the covari-
ates, the unobserved effects on the distribution and relationship between HIV and HSV-2 in
Kenya based on the female data. Studies have discussed these classes of models and their
advantages over classical models [22-24]

Model, : logit(p;,) = By, + f(age) + wTy for HIV
logit(pl./.z) = By, + f(age) + wTy for HSV — 2
Model, : logit(p,,) = By, + f(age) + W'y + £, (s,) for HIV
logit(py,) = By, + f(age) + W'y + £, (s,) for HSV — 2
Model, : logit(pijl) = B, + flage) + wTy +f,, (sy) for HIV
logit(p;,) = B, + flage) + Wy + £,,(s;,) for HSV — 2
Model, : logit(p;,) = Py, + f(age) + WIyY + fou(S1) + fi (s0) for HIV
logit(p;,) = Buy + f(age) + Wiy + fuue (5i) + fi (532) for HSV — 2

Model 1

This is a model of fixed categorical covariates which are assumed to have linear effects on the
response variable namely, education level, age at first sex, perceived risk, partners in the last
one year, marital status, place of residence, STI status in the past one year, number of times one
had stayed away from home in the past one year and one continuous covariate, age, modeled
with a non-linear smooth function. Results from [5,25] supports modeling age with a non-lin-
ear smoothing prior. Model 1 does not take into account the spatially structured and the spa-
tially unstructured random effects and the two diseases are modeled independently.

Model 2

This is an additive model that assumes linear effects of the categorical covariates listed in
model 1 above, non-linear effect of the continuous covariate age and spatially unstructured
random effect which cover the unobserved covariates that are inherent within the counties.
Here the joint modeling is initiated by the multivariate normal distribution.

Model 3

This model explores the effect of the linear covariates listed in model 1 above, non-linear covar-
iate age and spatially structured random effect which accounts for any unobserved covariates
which vary spatially among counties. The joint modeling is initiated by the multivariate condi-
tional autoregressive model.

Model 4

Examines the effects of the nonlinear effects of age, linear effects of the categorical covariates
and a convolution of spatially structured and spatially unstructured random effect, and the
joint modeling is initiated by both the multivariate normal distribution and the multivariate
conditional autoregressive model.
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Table 3. Nesting nature of the models under study.

Model Nonlinear effect of
age

M, v

M, v

M; v

M, v

doi:10.1371/journal.pone.0135212.t003

Table 4. Models comparison.

Model1

HIV
Individual pD 23.425
Individual D(6) 2447.41
Individual DIC 2470.83
Total DIC 8537.27

doi:10.1371/journal.pone.0135212.1004

Linear effects of categorical Spatially unstructured random Spatially structured random
covariates effects effects
‘/ —_ —_
v v _
v B v
v v v
Results

Model assessment and comparison

Table 3 gives the nesting nature of the models under study. Model 1 basically examines the lin-
ear and nonlinear effects of the covariates, model 2 extends model 1 to include spatially
unstructured random effects, model 3 extends model 1 to include spatially structured random
effects and finally model 4 is model 1 plus both structured and unstructured random effects.

Table 4 presents model diagnostics for the four fitted models. The model with the smallest
DIC provides a better fit. However studies have reported that a difference of 3 in DIC between
two models cannot be distinguished while a difference of between 3 and 7 can be weakly differ-
entiated [20,21]. This implies therefore that model 2 and model 4 are indistinguishable since
the difference in their DIC is less than 3. We therefore present and discuss results based on
model 4 as it captures both spatially structured and unstructured random effects.

Fixed effects

Table 5 gives the posterior estimates of the odds ratios (OR) and their corresponding 95% cred-
ible intervals (CI) for the categorical covariates which were assumed to have linear effects on
HIV and HSV-2 based on model 4.

Place of residence, marital status, education level, perceived risk, age at first sex, number of
partners in the last year, if an individual had STT in the last 12 months and the number of times
an individual had stayed away from home in the last one year were found to be significantly
associated with HIV and HSV-2 infection.

HIV

Place of residence (urban/rural) was found to be associated with HIV infection among women.
The odds of HIV infection among women staying in urban areas was 1.592 times as likely as
that of women living in rural areas (OR: 1.592, 95% CI: 1.116 to 2.211). Marital status was also
significantly associated with HIV infection. The odds of HIV infection among divorced/sepa-
rated women was 1.78 times higher than women who were married with one partner (OR:

Model2 Model3 Model4
HSV -2 HIV HSV -2 HIV HSV -2 HIV HSV -2
25.424 32.755 56.869 43.211 57.869 43.149 58.133
6040.86 2319.64 5732.09 2312.85 5733.05 2308.84 5733.01
6066.29 2252.40 5788.96 2356.06 5790.91 2351.99 5791.14
8141.36 8146.97 8143.13
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Table 5. Parameter estimates of based on Model 4.

Covariates

Demographic Characteristics
Place of residence (ref rural)
Urban

Social characteristics
Marital status(ref Married,1 partner)
Married, 2 partners
Divorced/separated
Widowed

Never Married

Perceived risk(ref No risk)
Small Risk

Moderate risk

Great risk

Age at first sex(ref Over 18)
Under 11

Between 12-14

between 15-17

Stay away(ref > 11 times)
Didn't stay away

1-2 times

3-5 times

6-10 times

Education(ref Higher)

None

Primary

Secondary

Behavioral Characteristics
Partners in last 1 year(3 or more)
1 partner

2 Partners

Biological Characteristics
STI(ref no)

Yes

Random effects

Spatially unstructured (zynstr)
Spatially structured (z)
Spline Coefficients
Correlation (HIV-HSV-2)

doi:10.1371/journal.pone.0135212.1005

HIV

;
1.592 (1.116, 2.211)

]
0.9232 (0.6231, 1.32)
2.78 (1.81, 4.091)
4.603 (2.598, 7.477)
1.376 (0.8911, 2.016)
”

0.4926 (0.3148, 0.7216)

0.5361 (0.3625,0.7541)
0.8726 (0.5901, 1.239)
;

2.702 (0.8462, 6.095)
1.691 (1.153 2.393)
1.407 (1.063, 1.851)

;

1.282 (0.5137, 2.594)
1.179 (0.474, 2.351)
1.725 (0.6809, 3.469)
1.368 (0.4605, 3.039)
;

2.425 (1.425, 4.199)
2.168 (1.26, 3.715)
2.343 (1.274, 4.086)

1
1.283 (0.235, 5.762)
1.992 (0.3234, 8.993)

”
1.57 (0.8439, 2.611)

0.143(0.000,0.645)
0.141(0.024,0.982)
5674(1003,7554)
0.6831(0.3859,0.871)

HSV-2

1
1.904 (1.549, 2.313)

;
1.934 (1.532, 2.427)
2.504 (1.818,3.365)
3.11 (1.856, 5)

0.9912 (0.7627, 1.275)
1

0.6647 (0.5111, 0.8345)
0.7051 (0.5486, 0.8699)
0.9545 (0.7299, 1.201)
1

2.196 (0.9663, 4.342)
2.055 (1.604, 2.575)
1.61 (1.373, 1.866)

1

1.22 (0.7116,2.046)
1.29 (0.754, 2.194)
1.437 (0.8379, 2.472)
1.232 (0.6684, 2.176)

;

2.184 (1.662, 2.851)
2.072 (1.581, 2.666)
1.808 (1.346, 2.383)

1
1.896 (0.4114, 6.478)
2.528 (0.5068, 8.682)

1
1.382 (0.9156, 1.995)

0.167(0.012,0.533)
0.159(0.412,1.323)
7683(870.8,9356)

2.78,95% CI: 1.81 to 4.091). Women who had never been married were found to be 1.376 as

likely to be HIV positive as women who were married with one partner

(OR: 1.376, 95% CI: 0.8911 to 2.016), though it is not significant. Widowed women were
3.603 times more likely to be HIV positive than women who were married to one partner (OR:
4.603, 95% CI: 2.598 to 7.477). Those women who had some perceived risk of HIV infection
(small risk, Moderate risk, Great risk) were less likely to be HIV positive than those who had
no perceived risk. Age at first sex is negatively associated with HIV infection. The likelihood
for HIV was higher for those women who had had their first sex before age 11 as compared to
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those who had had their first sex after age 18, and this was not significant as indicated by the
odds ratio and its corresponding credible interval (OR: 2.702, 95% CI: 0.8462 to 6.095). The
chance of testing positive for HIV was 0.691 times higher for women who had had their first
sex between ages 12-14 years than those who had their first intercourse after age 18 (OR:
1.691, 95% CI: 1.153 to 2.393). Education level was also found to be associated with HIV infec-
tion. Those women with no education were 1.425 more likely to test positive for HIV than
those with higher education (OR: 2.425, 95% CI: 1.425 to 4.199). The chance of HIV infection
was lowest among women with higher education. Individuals who contracted an STI in the last
12 months were found to be 1.57 times as likely to test positive for HIV as those who had not
(OR:1.57,95% CI: 0.8439 to 2.611).

HSV-2

Place of residence (urban/Rural) was found to be associated with HSV-2 infection. Women
who resided in urban locations were 1.904 times as likely to test HSV-2 positive as those resid-
ing in rural areas (OR: 1.904, 95% CI: 1.549 to 2.313). Marital status was also found to be asso-
ciated with HSV-2 infection among women. The odds of testing positive for HSV-2 was 0.9912
times as less likely for those women who were never married as for those who were married
with one partner (OR: 0.9912, 95% CI: 0.7627 to 1.275). Women who were married with more
than one partner were 1.934 times as likely to test positive for HSV-2 as those who were mar-
ried with one partner (OR: 1.934, 95% CI: 1.532 to 2.427). Divorced/separated women were
1.504 times more likely to test positive for HSV-2 than those women who were married with
one partner (OR: 2.504, 95% CI: 1.818 to 3.365). Widowed women were most likely to test pos-
itive for HSV-2. Widowed women were 3.11 as likely to test positive for HSV-2 as those
women who were married with one partner (OR: 3.11, 95% CI: 1.856 to 5.000). HSV-2 infec-
tion is positively associated perceived risk. The chance of testing positive increased with
increasing perceived risk. However women who had some perceived risk were less likely to test
positive for HSV-2 as compared to those who felt they had no risk. Women who perceived
great risk of infection were 0.9545 as less likely to test positive for HSV-2 as those who felt no
risk at all, although this was not significant (OR: 0.9545, 95% CI: 0.7299 to 1.201). The likeli-
hood of infection on women that had a perception of moderate risk was 0.7051 as less likely as
for those women who felt not at risk (OR: 0.7051, 95% CI: 0.5486 to 0.8699). Women who had
their first intercourse below age 11 years were 1.196 times more likely to test positive for HSV-
2 than those who had their first intercourse after age 18. The odds of women who had had their
first sexual intercourse between ages 12 and 14 to be infected with HSV-2 were 2.055 times as
higher as those who had engaged in their first intercourse after age 18.

HSV-2 infection is negatively related with education. The likelihood of HSV-2 infection was
1.184 higher for those with no education as compared with those who had attained higher edu-
cation, (OR: 2.184, 95% CI: 1.662 to 2.851). Women who had primary education were 1.072
times more likely to test positive for HSV-2 than those with higher education (OR: 2.072, 95%
CI: 1.581 to 2.666).

Another finding of this study is that those women with higher education qualification were
less likely to test positive for both HIV and HSV-2.

Nonlinear effects of age

Figs 1 and 2 show the nonlinear association between age of an individual and HIV infection
and age of an individual and HSV-2 infection. The figures give the posterior mean of the
smooth function and their corresponding 95% CI. From the figures it is evident that there is a
nonlinear relationship between age and HIV and HSV-2 infection. An assumption of linear
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Fig 1. Estimated mean of the Nonlinear effect of age (in black) on HIV infection and the corresponding
95% credible interval(blue).

doi:10.1371/journal.pone.0135212.g001

relationship would have led to miss leading results and subsequently wrong interpretations.
The chance of HIV infection increases with age up to an optimum age of about 30 years then
starts declining with increase in age. For HSV-2, the likelihood of infection increases with age
up to an optimum age of about 40 years then starts to decline thereafter with increasing age.
The result depict that the prevalence of HIV picks earlier in age than HSV-2. Early age at first
sex often times leads to individuals developing risky sexual behaviors like having multiple part-
ners and not using protection as the individual grows older increasing the chances of getting
HIV or HSV-2 with increasing age. HIV and HSV-2 prevalence also increases with age from

0 ',u"

Odds of HSV-2
0
e

20 30 40 50 60

Fig 2. Estimated mean of the Nonlinear effect of age (in black) on HSV-2 infection and the
corresponding 95% credible interval (in blue).

doi:10.1371/journal.pone.0135212.g002
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between age 15 and 30 as this is the time the youth is in risky behavior such as unprotected sex
and having multiple partners. HIV and HSV-2 prevalence stagnates at 30 and 40 respectively
before dropping and this could be assumed to be the age where women have either settled in
marriage and are practicing safe sexual relationships or are becoming less active sexually hence
the declining prevalence. The late peaking of HSV-2 could be attributed to its late detection as
they have mild to no symptoms at all or their symptoms may be mistaken for other conditions.
This carries with it a negative public health implication in that, this is the age when the youth is
most active and more willing to take risks. High prevalence in this age group implies high num-
ber of new infections and hence curbing HIV and HSV-2 becomes more difficult. Strategies to
delaying age at first sex, practicing responsible sexual behavior will help reduce the prevalence
of these two diseases.

Joint Spatial effects

We present spatial effects based on model 4. These are shown in Figs 3 and 4. From the figures,
counties with dark blue shading show high association of HIV and HSV-2 infection while light
blue shading indicate low association of HIV and HSV-2 infection. The figures show spatial
variation of HIV and HSV-2. From Fig 3, counties in the Western and around Lake Victoria
regions had high HIV prevelance. Counties in the North Eastern region had low HIV preve-
lance. Siaya, Homabay,Migori and Kisumu counties recorded the highest HIV prevelance. In
Fig 4, Siaya, Homabay, Migori, Kisumu and Turkana counties recorded the highest HSV-2 pre-
velance. HSV-2 prevelance was higher than HIV prevelance and more spread than HIV.

Discussion

This study utilizes a full Bayesian approach to perform a semi-parametric spatial joint model-
ing of HIV and HSV-2 in Kenya. In particular, we used these methods to analyze the regional
variation, risk factors of HIV and HSV-2 and the association between HIV and HSV-2. The
works of Eliers and Marx [21] on the B-splines, their construction and the penalized likelihood
and that of Caroll and Rupert [22] on semi-parametric regression provide a basis for this study.
In particular we model the non-linear effects using the penalized regression splines, in a semi

[[]=o0.05

[]0.05-0.1
[Jo.1-0.15
0.15-0.2
lo.2-0.25

[l ==0.25

Fig 3. Residual spatial effect of county on HIV.

doi:10.1371/journal.pone.0135212.g003
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Fig 4. Residual spatial effect of county on HSV-2.
doi:10.1371/journal.pone.0135212.g004

parametric model exemplar, allowing for spatial variation in the response variables. The linear-
ity assumption between the response variable and the covariates is limiting, unrealistic and can
lead to misleading results in many situations. Semi parametric models are more flexible as they
combine both parametric and semi parametric models hence enriching the standard paramet-
ric model by exploring the non-parametric domain while still keeping intact the linear struc-
ture [15].

Age was found to have a non-linear effect on both HIV and HSV-2. i.e. an inverted “U”
shape. The likelihood of HIV infection among women increases with age up to about age 30
then reduces thereafter with increasing age. On the other hand the likelihood of HSV-2 infec-
tion increases with age up to about age 40 and then starts declining with age. These findings
were consistent with other studies [25].

The spatial effects in the model are modeled using a Gaussian Markov Random Field
(GMREF) while the spatially unstructured random effects are modeled using a zero mean Gauss-
ian process [15,21]. Bayesian and non-Bayesian methods have been proposed for joint disease
modeling [26,27]. The maximum likelihood (frequentist) approaches are not viable for these
models due to the high complexity and intractability, hence the Bayesian inference, utilizing
the McMC techniques is highly favored [9]. The computational limitations of the frequentist
approach makes the Bayesian approach through the McMC algorithm more appealing as it is
less cumbersome to implement. Bayesian approach allows for complex and flexible hierarchical
modeling while providing more reliable estimates and predictions for many realistic epidemio-
logical problems. While parameters are estimated similarly under the two methods, random
effects variance estimates are generally attenuated under the frequentist approach compared to
the Bayesian approach [10].

Place of residence was found to be significantly associated with HIV and HSV-2 infection
among women when controlled for other covariates. Women in urban areas were more likely
to be HIV and HSV-2 positive than women living in rural areas. Many studies have reported
the effect of place of residence on HIV infection but with mixed conclusions [25,28]. From our
study, HSV-2 infection was also more prevalent in Turkana County which is mostly rural
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when considering the prevalence at county levels. These findings could be used to inform area
specific approaches and campaign strategies to help curb the prevalence of these two diseases.

Marital status was also significantly associated with HIV and HSV-2 infection. Women who
had been married before and then divorced, separated or widowed were more likely to test pos-
itive for HIV and HSV-2 than those who were married with one partner or never been married.
Widowed women were the most likely to test positive for HIV and HSV-2 in comparison to
those who were married with one partner. This could be attributed to wife inheritance. Wife
inheritance is a widespread cultural practice in sub-Saharan Africa that increases the risk of
HIV acquisition and transmission [29,30]. The life expectancy of females is higher than that of
males in most cases and countries, with the gap between sexes steading at 5 since 1990 [31],
this in effect means that it is more likely that a man will die leaving behind his HIV/HSV-2
infected wife, and if she accepts to be inherited, she will pass it to her inheritor who will acquire
the disease and pass it to the wife before dying and leaving them. These two widows will then
be inherited by another individual/s and the chain goes on. In most cases these inheritors
engage in concurrent sex and are polygamous with some having more than 2 wives.

This study also found that age at first sex was negatively associated with HIV and HSV-2
infection. Those who had had their first sexual contact before age 11 were more likely to test
positive for HIV and HSV-2 than those who had had their first intercourse after age 18. Other
studies have found similar results [8]. This knowledge can help in designing of prevention pro-
grams not only aiming at delaying the age at first sex but also addressing the factors leading to
early sexual practices.

Women who had had STI in the last 12 months were also more likely to test positive for
HIV and HSV-2. This has been documented in various studies [32-34]. Education level was
found to be inversely related to HIV and HSV-2 infection. Those who had attained higher edu-
cation qualification were less likely to test positive for HIV and HSV-2. This is consistent with
other studies which reported similar results [33]. The introduction of free primary education
and the subsequent subsidizing of secondary education is hoped to increase the number of peo-
ple attaining higher education level [35].

HIV and HSV-2 infection were also found to be highly correlated, and this was significant:
0.6831(0.3859, 0.871). Counties with high HSV-2 prevalence had a high HIV prevalence too.

Spatial effects in the model account for unobserved variables that represent those variables
that vary spatially. Identifying high prevalence areas and the relationship between HIV and
HSV-2 can provide more insight that can be useful in coming up with tailor made campaigns
and prevention strategies for specific regions. There was evidence of spatial variation of HIV
and HSV-2 infection among counties. The highest prevalence rate for HIV was observed in
Western part of the country and around Lake Victoria while highest prevalence for HSV-2 was
observed in Western region, around Lake Victoria and Turkana. Availability of free software
like R and WinBUGS makes the establishing and testing epidemiological hypothesis easier and
the implementation of these complex models cheaper.

The major limitation for this study was that the data used for county estimation was col-
lected when the country was still based on the old administrative units (provinces) however
these new administrative units (counties) were formed by combining several districts together.
This made it easy for the county where an individual belongs to be allocated easily since each
district belongs to only one county. The knots used in the penalized spline regression were
assumed to be fixed and were calculated as quantiles from the continuous variable age. A more
flexible analysis can allow the knots to be data driven [36]. Another limitation for this study is
that the data used for this study are from 2007 survey. A more recent KAIS survey has been
conducted although it had not yet been made public by the time this study was carried out. The
models introduced in this study can be replicated in other countries with similar data.
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Future work can also allow for time trends to exploit subsequent surveys that collect data on
the two infections.
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