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A B S T R A C T   

The focus of this paper revolves around the examination of flow of ternary hybrid nanofluid, 
specifically the Al2O3–Cu-CNT/water mixture, with buoyancy effect, across three distinct geom
etries: a wedge, a flat plate, and a cone. The study takes into account the presence of quadratic 
thermal radiation and heat source/sink of non-uniform nature. To develop the model, the Cat
taneo–Christov theory is utilized. The equations governing the flow are solved by applying 
similarity transformations and employing the "bvp4c function in MATLAB” for numerical analysis 
and solution. Conventional methods for conducting parametric studies often face challenges in 
producing significant conclusions owing to the inherent complex form of the model and the 
method involved. To address the aforementioned issue, this paper explores the potential of ma
chine learning methods to foresee the conduct of the flow characterized by multiple inter
connected parameters. By utilizing simulated data, an artificial neural network is trained using 
the Levenberg-Marquardt algorithm to learn and comprehend the underlying patterns. Subse
quently, the trained neural network is employed to estimate the Nusselt number on the surfaces of 
all three geometries. This approach offers a promising alternative to traditional parametric 
studies, enabling more precise predictions and insights into the behavior of complex systems. The 
Nusselt number is highest for THNF flow over the cone. The mean squared error (MSE) values for 
the ANN algorithm, across all analyzed cases, range from 0 to 0.03972. The findings contribute to 
an improved understanding of the characteristics and dynamics of ternary hybrid nanofluid flow 
in various geometries, assisting in the design and optimization of heat transfer systems involving 
such fluids.   

1. Introduction 

Ternary hybrid nanofluids (THNFs) have emerged as a promising class of advanced heat transfer (HT) fluids that offer enhanced 
thermal conductivity and improved HT performance compared to traditional HT fluids. These nanofluids (NFs) are composed of a base 
fluid, nanoparticles (NPs), and additional additives or surfactants, creating a unique three-component system. By merging different 
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types of NPs and additives, THNFs can be tailored to specific applications to achieve superior thermal properties. The incorporation of 
NPs into a working fluid considerably enhances the conduction of the NFs. Awwad et al. [1] evaluated the HT property of Al2O3/water 
NF along a vertical plane wall with the help of neural networks. NPs such as metal oxides, carbon-based materials, or hybrid particles, 
possess a high surface area-to-volume ratio, which facilitates a competent HT rate (Sahoo [2]). Nasir et al. [3] probed the HT rate of 
water based hybrid NF flow with GO and MoS2 NPs towards a revolving sphere near a stagnation point. Gul et al. [4] explored the HT 
characteristics of NF flow with Cu and Al2O3 NPs in water in a porous chamber with magnetic field presence. Nasir et al. [5] considered 
the entropy generation of a Maxwell type hybrid NF flow with multi and single-walled carbon nanotubes over a stretching surface. 
Moreover, the use of additives or surfactants helps to stabilize the NPs in the fluid, preventing their agglomeration and sedimentation. 
The superior nature of these NFs provides an additional dimension to their thermal properties. The choice of NPs and additives can be 
optimized to synergistically enhance the overall thermal conductivity and HT characteristics (Adun et al. [6]). The combination of 
multiple NPs and additives can lead to unique and advantageous properties that cannot be achieved with hybrid or mono NFs [7]. 
THNFs have many applications in industries and they are been explored for their potential use in microelectronic cooling structures, 
solar thermal collectors, heat exchangers, automotive radiators, and many other HT applications (Xuan et al. [8]). The improved 
thermal properties of these NFs can enhance the overall energy efficiency and performance of these systems, leading to substantial 
energy savings and improved system reliability [9–11]. 

Sahoo and Kumar [12], and Sahoo [2,13] conducted a series of experiments on THNF and established mathematical relationships 
for the different thermophysical properties. The correlations they introduced yielded highly accurate results, which were further 
verified against experimental data. Bilal et al. [14] explicated the influence of chemical reaction on the THNF flow with titanium 
dioxide, aluminium oxide, and silicon dioxide NPs suspended in an amalgamation of glycol and water. Elnaqeeb et al. [15] explicated 
on the THNF flow inside a rectangular-shaped closed domain and studied the implication of suction and stretching with NPs of 
different densities and shapes. Rauf et al. [16] surveyed the Hall current influence on the flow of micropolar and non-Newtonian THNF 
between two parallel surfaces. Kumar et al. [17] explicated the significance of the magnetic field on the HT rate of unsteady THNF flow 
and the influence of magnetic dipole is also investigated. Nasir et al. [18] expounded on the magnetic dipole and non-linear radiation 
effect on the THNF flow towards a stretching sheet with NPs of different densities and shapes. Adnan and Ashraf [19] studied the 
influence of a magnetic field together with convective heating on a THNF flow and they presented a comparison of THNF and hybrid 
NF flow. Singh et al. [20] inspected a THNF flow over a rotating disk with the Cattaneo-Christov model and quadratic thermal ra
diation. Alnahdi et al. [21,22] studied the flow of blood based THNF using the Casson model inside a divergent or convergent channel 
and a perforated capillary, respectively. Nasir et al. [23,24] probed the influence of radiation on the THNF flow with titanium dioxide, 
aluminium oxide, and silicon dioxide NPs suspended in water over stretching surface. Additional research on the topic of THNF flow 
are cited in the reference list (see Refs. [25,26]). 

The wide range of applications for NF and THNF flow over a wedge, flat plate, and cone highlights its significance. These 

Fig. 1. Physical representation.  

Table 1 
Thermo-physical properties of water, Al2O3, Cu and CNT nanoparticles [43,44].   

ρ(kg/m3) Cp(J/KgK) k(W/mK) β(K− 1) Shape Sphericity 

Water 997.1 4179 0.613 21   
Al2O3 3970 765 40 0.85 Spherical ψ = 1 
Cu 8933 385 401 1.67 Platelet ψ = 0.612 
CNT 2600 425 6600 1.6× 10− 6 Cylindrical ψ = 0.52  
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applications encompass various fields such as solar power collectors, spacecraft design, steam generators, fiber technology, and nu
clear waste retention vessel design. Zainal et al. [27] investigated a hybrid NF flow towards a flat plate with convection and magnetic 
field effect. Alzahrani et al. [28] explicated on the impression of solar radiation on hybrid NF flow towards a flat plate. Khan et al. [29] 
explicated the effect of buoyancy force on a hybrid NF flow over a stretching plate. Hanif et al. [30] considered the HT rate and 
analyzed the entropy expansion of a hybrid NF flow over a vertical cone. Tlili et al. [31] surveyed the impression of radiation on the 
engine oil-TC4/NiCr NF flow over a cone rotating around its axis. Bég et al. [32] delved the influence of Navier slip and Stefan blowing 
on a laminar and steady flow of boundary layer flow past a cone. Yaseen et al. [33] studied the impression of TiO2 NPs aggregation 
effect on the HT rate of the Ethylene glycol based NF flow towards a wedge with suction and radiation effect. Mishra and Kumar [34] 
probed the effect of self-heating on an NF flow towards a wedge in a porous medium. Khan et al. [35] probed the impression of 
magnetic field and heat flux present with time lag on a Sutterby NF flow over a wedge. Many authors have comparatively analyzed the 
NF or hybrid NF flow over two or more geometries among a flat plate, a cone, or a wedge. Garia et al. [36] probed the impact of 
radiation and convection on the water based hybrid NF flow towards a cone and a wedge. They made an observation that the heat 
source produces contrasting results on the distribution of temperature across the two geometries. Sandeep and Reddy [37] studied the 
outcome of radiation and magnetic field effect on the Cu-water NF flow towards a wedge and a cone. Jayachandra et al. [38] studied 
the influence of generalized heat flux and free convection on a NF flow towards a flat plate, a cone and a wedge. Reddy et al. [39] 
examined how a non-uniform heat sink and source impact the Oldroyd-B NF flow towards a cone or a wedge. 

Fig. 2. Flowchart of numerical method.  

Table 2 
Comparison of values of f″(0)& − θ′(0) with results of Vajravelu and Nayfeh [48] for the flow over cone when Rd = 0, γ = 0, Su = 0, B∗ = 0, Φ1 =

Φ2 = Φ3 = 0.  

Q Pr Gr M s f″(0) (See Ref. [48]) f″(0) [Present] − θ′(0) (See Ref. [48]) − θ′(0) [Present] 

− 5 0.3 − 0.5 1 − 2.1 − 0.155592 − 0.15570252 − 2.237475 − 2.23538986 
− 5 0.3 − 0.5 1 2.1 − 0.156001 − 0.15588966 − 2.232780 − 2.23418090 
− 5 0.3 − 0.5 3 2.1 − 0.126400 − 0.12634921 − 2.233732 − 2.23472524 
− 5 1.0 0.5 3 2.1 0.125260 0.12541914 − 2.245321 − 2.24047000  
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Furthermore, until now very few studies presented the investigations of THNF flow over two or more geometries among a flat plate, 
a cone, or a wedge. Bilal et al. [40] investigated the THNF flow with MgO, CoFe2O4, and TiO2 NPs dispersed in the water towards a flat 
plate, a cone, and a wedge. They investigated the flow with the activation energy effect in a Darcy–Forchheimer porous medium. 
Yaseen et al. [41] explicated the THNF flow with Al2O3, Cu, and CNT NPs dispersed in the water towards a flat plate, a cone, and a 
wedge with linear radiation, and heat source/sink effect. Additionally, they explored the influence of gyrotactic microorganisms on the 
bioconvective effect. Ramzan et al. [42] investigated the THNF flow with CuO, Al2O3, and TiO2 NPs dispersed in the water towards a 
cone and a wedge. They scrutinized the impact of the magnetic field, and radiation on the HT rate. An exhaustive assessment of the past 
studies has indicated that, thus far, no author(s) have published a paper investigating the analysis of the influence of quadratic thermal 
radiation and non-uniform heat source/sink on THNF flow towards three distinct geometries, namely a flat plate, a cone, and a wedge. 
This paper aims to present the impact of non-uniform heat source/sink and quadratic thermal radiation on THNF flow with Al2O3, Cu, 
and CNT NPs dispersed in the water towards a flat plate, a cone, and a wedge. The authors have used the aforementioned NPs because 
of their applications in many fields such as in dielectric materials, conductive materials, drug delivery, electronics, nanocomposites, 
coatings etc. Each type of nanoparticle bring distinct properties or enhancements to the nanofluid, resulting in a synergistic effect when 
combined. Moreover, the current research assesses the effectiveness of the soft computing method in forecasting the conduct of a 
problem that involves numerous interconnected parameters. Conventional methods for conducting parametric studies often face 
challenges in producing significant results due to the inherent complex form of the model and the techniques involved. To address the 
aforementioned issue, this paper explores the potential of machine learning methods to predict the performance of a flow model 

Fig. 3. Schematic of the ANN model.  

Fig. 4. The main structure of the developed ANN model for prediction of Nusselt number.  
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characterized by multiple interconnected parameters. The study focuses on identifying techniques that offer reasonably accurate 
predictions and employs numerical results to guide an artificial neural network (ANN). This training enables the ANN algorithm to 
accurately forecast the desired parameters within a broad range. Additionally, the ANN algorithm is applied to accurately determine 
the Nusselt number values on the surfaces of three different geometries. The results of the paper will be beneficial to fields that employ 
flow of NF over a plate, a cone, or a wedge such as in medicinal fields, architectural design systems, nuclear waste treatment, carriage 
processes, etc. The following points delineate the originality, goal, and main investigating points tackled within this research:  

• The mathematical flow model of THNF (Al2O3–Cu-CNT/water) is applied to a flat plate, a wedge, and a cone.  
• Investigating the implication of quadratic thermal radiation and non-uniform heat source/sink on THNF flow.  
• Analyze the HT rate of THNF flow across all geometries and identify the specific conditions or geometry in which THNF exhibits the 

highest heat transfer rate according to the current modeling.  
• The HT rate is compared across all three geometries.  
• Development of a machine learning (ANN) algorithm to predict the HT rate at the surface. 

2. Flow model and governing equations 

Consider the flow of Al2O3–Cu-CNT/water THNF towards a cone, a wedge, and a flat plate in the presence of buoyancy force. In 
Fig. 1, the visual representation demonstrates that the x-axis and y-axis are aligned in a horizontal and vertical manner relative to the 
surface. The semi cone angle, denoted by α, refers to the angle formed between the side of the cone and its central axis. The cone radius, 

Table 4 
Numerical values of Nusselt number (rest parameters Pr = 6.2, Rd = 6, A*=-1.5, B*=-1.7, Su = 0.1, λ = 1.3).   

γ Numerical Result ANN Prediction 

Cone Wedge Plate Cone Wedge Plate 

Training Data{ 0.1 17.81906 17.73235 17.73756 17.84711 17.81785 17.73750 
0.2 17.86799 17.76869 17.77475 17.89237 17.86738 17.77472 
0.3 17.91703 17.80504 17.81196 17.93762 17.91692 17.81195 
0.4 17.96618 17.84140 17.84916 17.98288 17.96645 17.84918 
0.5 18.01543 17.87777 17.88637 18.02813 18.01598 17.88640 
0.6 18.06479 17.91415 17.92359 18.07339 18.06551 17.92363 
0.7 18.11426 17.95055 17.96082 18.11864 18.11504 17.96086 
0.8 18.16384 17.98695 17.99804 18.16390 18.16457 17.99808 
0.9 18.21354 18.02336 18.03528 18.20916 18.21410 18.03531 
1.0 18.26334 18.05978 18.07252 18.25441 18.26363 18.07253 
1.1 18.31326 18.09622 18.10976 18.29967 18.31316 18.10976 
1.2 18.36330 18.13266 18.14702 18.34492 18.36269 18.14699 

Testing Data 1.3 18.41345 18.16912 18.18427 18.39018 18.41222 18.18421 
1.4 18.46372 18.20559 18.22154 18.43543 18.46175 18.22144 

Validation Data 1.5 18.51411 18.24206 18.25881 18.48069 18.51128 18.25866 
1.6 18.56463 18.27855 18.29608 18.52595 18.56081 18.29589     

MSE 0.00043 0.03754 0.00000  

Table 3 
Numerical values of Nusselt number (rest parameters Pr = 6.2, γ = 1.5, A*=-1.5, B*=-1.7, Su = 0.1, λ = 1.3).   

Rd Numerical Result ANN Prediction 

Cone Wedge Plate Cone Wedge Plate 

Training Data{ 6.0 18.51411 18.24206 18.25881 18.73245 18.56103 18.68625 
6.6 19.25598 18.98009 18.99861 19.35620 19.16681 19.27800 
7.2 19.97007 19.69058 19.71088 19.97996 19.77259 19.86976 
7.8 20.65915 20.37630 20.39838 20.60371 20.37837 20.46151 
8.4 21.32562 21.03959 21.06345 21.22746 20.98414 21.05326 
9.0 21.97149 21.68247 21.70812 21.85122 21.58991 21.64500 
9.6 22.59852 22.30667 22.33410 22.47497 22.19569 22.23676 
10.2 23.20824 22.91370 22.94291 23.09872 22.80147 22.82851 
10.8 23.80199 23.50488 23.53586 23.72247 23.40724 23.42026 
11.4 24.38092 24.08138 24.11413 24.34623 24.01302 24.01201 
12.0 24.94609 24.64422 24.67873 24.96998 24.61880 24.60376 
12.6 25.49842 25.19431 25.23058 25.59373 25.22457 25.19552 

Testing Data 13.2 26.03874 25.73248 25.77050 26.21749 25.83035 25.78726 
13.8 26.56778 26.25946 26.29923 26.84124 26.43613 26.37901 

Validation Data 14.4 27.08622 26.77591 26.81743 27.46499 27.04190 26.97076 
15.0 27.59466 27.28245 27.32570 27.08875 27.64768 27.56251     

MSE 0.03972 0.02754 0.02710  
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symbolized by r, represents the distance from the centre of the cone to its outer edge. To accurately capture the behavior of THNF, we 
consider the effects of time lag in HT rate using a model called the “Cattaneo-Christov model”. Also, a variable temperature Tw = T∞+

axs (“s” signifies the parameter that is associated with the surface temperature) is presumed on the surface. At a distance far away from 
the surface, the temperature is denoted as T∞, with the wall temperature being greater than the ambient temperature, i.e., Tw > T∞. 
The temperature gradient between the surface and the neighbouring THNF creates a buoyant force, which is further influenced by the 
force of gravity. Assuming that the pressure gradient is negligible, Table 1 provides a representation of physical characteristics of the 
NPs (including metals, metal oxides, and carbon nanotube) in a base fluid, as described in Refs. [43,44]. To evaluate the characteristics 
of flow and HT in THNF, various physical effects are considered, including non-uniform heat source/sink, quadratic thermal radiation, 
and suction/blowing effects. Incorporating the above-mentioned assumptions and discussions, the principal PDEs that describe the 
radiative flow of THNF towards a cone, a wedge, and a flat plate are listed below [40–42]: 

Continuity Equation: 

∂(rnu)
∂x

+
∂(rnv)

∂y
= 0 (1) 

Due to the extremely small thickness of the thermal boundary layer, the radius is denoted by the value r = x sin(α) to reflect this 
characteristic. 

Momentum Equation: 

Table 5 
Numerical values of Nusselt number (rest parameters Pr = 6.2, γ = 1.5, Rd = 6, Su = 0.1, λ = 1.3).   

A* B* Numerical Result ANN Prediction 

Cone Wedge Plate Cone Wedge Plate 

Training Data{ − 1.5 − 1.7 18.51411 18.24206 18.25881 18.54100 18.27111 18.26134 
− 1.46 − 1.66 18.31652 18.04260 18.05977 18.32990 18.05757 18.05247 
− 1.42 − 1.62 18.11668 17.84084 17.85847 18.11878 17.84403 17.84360 
− 1.38 − 1.58 17.91453 17.63671 17.65481 17.90768 17.63049 17.63473 
− 1.34 − 1.54 17.70998 17.43013 17.44872 17.69656 17.41695 17.42585 
− 1.3 − 1.5 17.50293 17.22100 17.24011 17.48545 17.20341 17.21698 
− 1.26 − 1.46 17.29331 17.00922 17.02888 17.27434 16.98987 17.00811 
− 1.22 − 1.42 17.08099 16.79469 16.81493 17.06323 16.77633 16.79924 
− 1.18 − 1.38 16.86589 16.57730 16.59815 16.85212 16.56278 16.59037 
− 1.14 − 1.34 16.64788 16.35693 16.37843 16.64101 16.34924 16.38150 
− 1.1 − 1.3 16.42684 16.13346 16.15564 16.42990 16.13570 16.17263 
− 1.06 − 1.26 16.20265 15.90675 15.92965 16.21879 15.92216 15.96376 

Testing Data − 1.02 − 1.22 15.97515 15.67665 15.70031 16.00768 15.70862 15.75489 
− 0.98 − 1.18 15.74420 15.44300 15.46748 15.79657 15.49508 15.54602 

Validation Data − 0.94 − 1.14 15.50964 15.20563 15.23099 15.58546 15.28154 15.33714 
− 0.9 − 1.1 15.27129 14.96437 14.99065 15.37435 14.98000 15.00283      

MSE 0.00014 0.00079 0.00153  

Table 6 
Numerical values of Nusselt number (rest parameters Pr = 6.2, γ = 1.5, Rd = 6, A*=-1.5, B*=-1.7, Su = 0.1).   

λ Numerical Result ANN Prediction 

Cone Wedge Plate Cone Wedge Plate 

Training Data{ 0.1 18.46570 18.20466 18.20596 18.46772 18.46721 18.18790 
0.3 18.47218 18.20966 18.21302 18.47389 18.47345 18.19762 
0.4 18.47865 18.21465 18.22007 18.48005 18.47969 18.20735 
0.6 18.48512 18.21964 18.22713 18.48622 18.48593 18.21707 
0.7 18.49157 18.22463 18.23417 18.49238 18.49217 18.22679 
0.9 18.49802 18.22961 18.24122 18.49855 18.49841 18.23652 
1.1 18.50446 18.23459 18.24825 18.50471 18.50465 18.24624 
1.2 18.51090 18.23957 18.25529 18.51088 18.51089 18.25596 
1.4 18.51733 18.24455 18.26232 18.51704 18.51713 18.26568 
1.5 18.52375 18.24953 18.26935 18.52321 18.52337 18.27541 
1.7 18.53017 18.25450 18.27638 18.52937 18.52961 18.28513 
1.9 18.53658 18.25948 18.28340 18.53554 18.53585 18.29485 

Testing Data 2.0 18.54298 18.26445 18.29042 18.54170 18.54209 18.30458 
2.2 18.54938 18.26942 18.29744 18.54787 18.54833 18.31430 

Validation Data 2.3 18.55577 18.27438 18.30445 18.55403 18.55457 18.32402 
2.5 18.56216 18.27935 18.31146 18.56020 18.56081 18.33375     

MSE 0.00000 0.07400 0.00016  
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u
∂u
∂x

+ v
∂u
∂y

= νthnf

(
∂2u
∂y2

)

+
(ρβ)thnf

ρthnf
g(T − T∞)cos α (2) 

Energy Equation: 

u
∂T
∂x

+ v
∂T
∂y

+ τt

⎡

⎢
⎢
⎢
⎢
⎣

u2∂2T
∂x2 +

(

u
∂u
∂x

+ v
∂u
∂y

)
∂T
∂x

+

(

u
∂v
∂x

+ v
∂v
∂y

)
∂T
∂y

+2uv
∂2T
∂x∂y

+ v2∂2T
∂y2

⎤

⎥
⎥
⎥
⎥
⎦
=

kthnf
(
ρCp
)

thnf

∂2T
∂y2 +

1
(
ρCp
)

thnf

Q ∗ ∗ −
1

(
ρCp
)

thnf

∂qr

∂y
(3) 

As per the assumptions discussed earlier, the present model undergoes specific boundary conditions (BCs) that are implemented in 
the following manner [41,42]: 

u = uw =
νf x
l2 , v = vw, T = Tw = T∞ + axs at y = 0

T→T∞, u→0 as y→∞

⎫
⎬

⎭
(4)  

where, the symbols “u and v represent the constituent of velocity along x-axis and y-axis, respectively. In addition, g, T, qr indicate the 

Table 7 
Numerical values of Nusselt number (rest parameters Pr = 6.2, γ = 1.5, Rd = 6, A*=-1.5, B*=-1.7, λ = 1.3).   

Su Numerical Result ANN Prediction 

Cone Wedge Plate Cone Wedge Plate 

Training Data{ 0.10 18.51411 18.24206 18.25881 18.48955 18.21875 18.23547 
0.14 18.56421 18.29120 18.30797 18.55169 18.27932 18.29608 
0.18 18.61637 18.34230 18.35911 18.61382 18.33989 18.35670 
0.22 18.67063 18.39540 18.41224 18.67596 18.40046 18.41731 
0.26 18.72703 18.45053 18.46741 18.73809 18.46104 18.47792 
0.30 18.78562 18.50774 18.52465 18.80023 18.52161 18.53853 
0.34 18.84643 18.56706 18.58401 18.86237 18.58218 18.59914 
0.38 18.90952 18.62853 18.64553 18.92450 18.64275 18.65976 
0.42 18.97492 18.69221 18.70924 18.98664 18.70332 18.72037 
0.46 19.04269 18.75813 18.77521 19.04877 18.76389 18.78098 
0.50 19.11289 18.82635 18.84348 19.11091 18.82446 18.84159 
0.54 19.18556 18.89692 18.91409 19.17304 18.88504 18.90220 

Testing Data 0.58 19.26078 18.96989 18.98712 19.23518 18.94561 18.96281 
0.62 19.33860 19.04533 19.06261 19.29732 19.00618 19.02343 

Validation Data 0.66 19.41910 19.12330 19.14063 19.35945 19.06675 19.08404 
0.70 19.50233 19.20386 19.22125 19.42159 19.12732 19.14465     

MSE 0.00090 0.00081 0.00081  

Fig. 5. Effect of λ on f′(η).  
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Fig. 6. Effect of Φ on f′(η).  

Fig. 7. Effect of Rd on f′(η).  
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Fig. 8. Effect of γ on f′(η).  

Fig. 9. Effect of A* & B* on f′(η).  
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Fig. 10. Effect of Su on f′(η).  

Fig. 11. Effect of λ on θ(η).  
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gravitational acceleration, temperature, and radiative heat flux, respectively. In addition, uw and vw in BCs (Eqn. (4)) are the linear 
velocity of surface and mass transfer velocity, respectively”. Additionally, the term Q ∗ ∗ in Eqn. (3) accounts for the non-uniform heat 
source/sink effect and is specifically defined in the following manner [45]: 

Q ∗ ∗=
kthnf uw

x νthnf
(Tw − T∞)[A∗e− η +B∗ θ(η)] (5)  

where in Eqn. (5), the A∗ specify the space decay coefficient and B∗ corresponds to temperature dependence. The positive values A∗ and 
B∗ signify heat source phenomena, whereas the negative values A∗ and B∗ signify the heat sink phenomena. 

Also, the last term on RHS in Eqn. (3) i.e., qr represents the radiative thermal heat flux using the “Rosseland approximation [46]”. 
The precision of the Rosseland method becomes evident when analyzing the influence of radiation and it is delineated as [46]: 

qr = −

(
∂T4

∂y

)(
4σ∗

3k∗

)

, (6) 

Fig. 12. Effect of Φ on θ(η).  

Fig. 13. Effect of Rd on θ(η).  
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Fig. 14. Effect of γ on θ(η).  

Fig. 15. Effect of A* & B* on θ(η).  
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where in Eqn. (6), the absorption coefficient and Stefan-Boltzmann constant are represented by the symbols k∗ and σ∗, respectively. 
Following Taylor’s expansion formula for T4 about T∞, the radiative temperature is expressed in the subsequent form [46]: 

T4 ≈ T4
∞ +(2!)T3

∞(T − T∞)+ (3!)T2
∞(T − T∞)

2
+ ... (7) 

Eqn. (7) is further simplified and the quadratic approximation expressed below is utilized when there is a high temperature dif
ference, as this expression also has a significant impact on the HT [46]: 

T4 ≈ − 8T3
∞T + 6T2

∞T2 + 3T4
∞ (8) 

The value of T4 expressed in Eqn. (8) is used in Eqn. (6) for further simplification. 
The following conditions serve to differentiate the THNF flow towards the cone, wedge, and flat plate [36,41]:  

(a) When n = 1 and α ∕= 0, then flow towards a cone.  
(b) When n = 0 and α ∕= 0, then flow towards a wedge.  
(c) When n = 0 and α = 0, then flow towards a flat plate. 

2.1. Correlation for thermophysical properties of ternary hybrid nanofluid 

Following the papers of Arif et al. [43], Elnaqeeb et al. [15], and Yaseen et al. [41] the computations for density, heat capacitance, 
and thermal conductivity of THNF (Al2O3–Cu-CNT/water) are done using the following relations: 

ρthnf = (1 − Φ1 − Φ2 − Φ3)ρbf + Φ1ρsp1
+ Φ2ρsp2

+ Φ3ρsp3
,

(
ρCp
)

thnf = (1 − Φ1 − Φ2 − Φ3)
(
ρCp
)

bf + Φ1
(
ρCp
)

sp1
+ Φ2

(
ρCp
)

sp2
+ Φ3

(
ρCp
)

sp3

}

(9) 

The effective dynamic viscosity of THNF is given by: 

μthnf =
μnf1 Φ1 + μnf2 Φ2 + μnf3 Φ3

Φthnf
, (10)  

where, for NP-I (spherical-shaped NPs), NP-II (platelet-shaped NPs), and NP-III (cylindrical-shaped NPs), the viscosity is respectively 
are as follows: 

μnf1

μbf
= 1 + 2.5Φ1 + 6.2Φ1

2(nanoparticle − I),

μnf2

μbf
= 1 + 37.1Φ2 + 612.6Φ2

2(nanoparticle − II),

μnf3

μbf
= 1 + 13.5Φ3 + 904.4Φ3

2(nanoparticle − III)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11) 

Fig. 16. Effect of Su on θ(η).  
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In this study, authors also incorporated the Modified Maxwell model to present the influence of differently shaped NPs on the 
thermal conductivity of the THNF: 

kthnf =
knf1 Φ1 + knf2 Φ2 + knf3 Φ3

Φthnf
,where

knfi

kbf
=

ki + (n − 1)kbf + (n − 1)Φi
(
ki − kbf

)

ki + (n − 1)kbf − Φi
(
ki − kbf

) ,where i = 1, 2, 3 and n =

(
3
ψ

)

is shape factor
(12) 

For NP-I (spherical-shaped NPs), NP-II (platelet-shaped NPs), and NP-III (cylindrical-shaped NPs), the thermal conductivity is 
respectively as follows: 

knf1

kbf
=

k1 + 2kbf + 2Φ1
(
k1 − kbf

)

k1 + 2kbf − Φ1
(
k1 − kbf

) (nanoparticle − I)

knf2

kbf
=

k2 + 4.7kbf + 4.7Φ2
(
k2 − kbf

)

k2 + 4.7kbf − Φ2
(
k2 − kbf

) (nanoparticle − II)

knf3

kbf
=

k3 + 3.9kbf + 3.9Φ3
(
k3 − kbf

)

k3 + 3.9kbf − Φ3
(
k3 − kbf

) (nanoparticle − III)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13) 

Fig. 17. Streamlines Pattern for the flow towards 
(a) Plate (b) Wedge (c) Cone. 
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In the aforementioned correlations (9–13), the symbol Φ(= Φ1 +Φ2 +Φ3) denotes the NPs volume fraction (NVF). Also, NVF of 
Al2O3, Cu, and CNT NPs is denoted by Φ1, Φ2, and Φ3. Furthermore, the following subscripts are used for: sp1 —Al2O3, sp2 — Cu, and sp3 
— CNT NPs. Additionally, there are other symbols representing important thermophysical properties, such as μ, ρ, (ρCP) and k denote 
the dynamic viscosity, density, heat capacity, and thermal conductivity, respectively. These attributes are associated with ternary 
hybrid nanofluid, indicated as thnf , where nf signifies “nanofluid”. Additionally, subscripts bf and sp represent “base fluid” and “solid 
NPs”, respectively. 

2.2. Similarity transformations 

The following suitable similarity variables are employed to the system of equations and BCs [40–42]: 

η= y
l
, u =

νf x
l2 f ′(η), v = − (n+ 1)νf

f (η)
l
, θ(η) = T − T∞

Tw − T∞
(14)  

Here, η is the similarity variable. Also, it should be noted that f(η) represents the dimensionless stream function, while θ(η) rep
resents the temperature, respectively. The continuity Eqn. (1) is identically satisfied by utilizing Eqn. (14) in conjunction with Eqns. 
9–13. Additionally, Eqns. (2) and (3) along with the BCs (Eqn. (4)), are converted into non-dimensional ODEs. After completing the 
calculation, the following non-dimensional ODEs and BCs are derived: 

f′2 − (n+ 1)ff″=
∍1

∍2
f‴ +

∍3

∍2
λθ cos α (15)  

Fig. 18. Velocity Boundary Layer Pattern for the flow towards 
(a) Plate (b) Wedge (c) Cone. 
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sf ’θ − (n+ 1)f θ’+ γ
[

s(s − 1)f′2θ + s
(
θf ′2 − (n + 1)θf f ″)+

(
n2 + 2n + 1

)
θ’ff ’

− 2(n + 1)sff ’θ’ + (n + 1)2f 2θ″

]

=
1

∍4 Pr

(

∍5 −
8
3

Rd
)

θ″+
∍5∍2

∍4∍1 Pr
[A∗e− η +B∗ θ] +

2Rd
∍4 Pr(θr − 1)

(
∂2

∂η2(1 + θ(η)(θr − 1))2
) (16)  

f ′(0) = 1, f (0) =
Su

(n + 1)
, θ(0) = 1 at η = 0

f ′(η)→0, θ(η)→0 as η→∞

⎫
⎪⎬

⎪⎭
(17)  

in Eqns. 15–17, the dimensionless parameters are: 

“Pr
(

=
(ρcp)f νf

kf

)

— Prandtl number, γ =
(

τt
νf
l2

)
— thermal relaxation parameter, Su =

(
− vw l

vf

)
— suction/injection parameter, 

Rd
(
=

4σ∗T3
∞

kf k∗

)
is thermal radiation parameter, θr

(
= Tw

T∞

)
is temperature ratio parameter, and λ

(
= Grx

Rex2 =
gβf (Tw − T∞)l4

x νf 2 =
g βf a xs− 1 l4

νf 2

)
— 

natural convection parameter, where Grx

(
=

gβf (Tw − T∞)x3

νf 2

)
— local Grashof number, Rex =

(
uw x
vf

)
— local Reynolds number”. 

Furthermore, ∍1 =
μthnf
μf
, ∍2 =

ρthnf
ρf
, ∍3 =

(ρβ)thnf
(ρβ)f

, ∍4 =
(ρCp)thnf
(ρCp)f

, ∍5 =
kthnf
kf 

are constants based on THNF correlations. 

To find the similarity solution, the above-described parameters must be dimensionless, so to make λ
(
=

g βf a xs− 1 l4

νf 2

)
dimensionless, 

the value of parameter “s” is taken as one, i.e. s = 1. 

2.3. Parameter of engineering interest 

The engineering parameter under investigation is the Nusselt number Nux, having the following description [41]: 

Nux =
x qw

kf (Tw − T∞)
(18) 

Fig. 19. Regression analysis of the data for cone w.r.t parameter Rd (a) Training (b) Validation (c) Testing (d) Overall.  
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where the expression for heat transfer flux, denoted as qw, is formulated as follows: 

qw = − khnf Ty
⃒
⃒

y=0 + qr |y=0 (19) 

Using the similarity transformations (Eqn. (14)), and Eqns. (6), (8) and (19) in Eqn. (18), the Nusselt number in its reduced form is 
expressed as: 

Nu∗
x = −

(

∍5 +

(

4θr −
8
3

)

Rd
)

θ′(0) (20)  

The significance of the Nusselt number (expressed in Eqn. (20)) is that it is used to study the HT rate. 

3. Numerical methodology 

The present segment examines the numerical methodology employed by the authors in obtaining the solution. By utilizing the 
"bvp4c function in MATLAB,” the authors successfully resolved the system of equations (Eqns. (15)–(17)). The details and functionality 
of the "bvp4c function” are provided by Shampine et al. [47]. The system of ODEs (Eqns. (15) and (16)) with BCs (Eqn. (17)) is 
transformed into a set of first-order ODEs by implementing the following substitutions: 

ε(1)= f , ε(2) = f ′, ε(3) = f″, ε(4) = θ, ε(5) = θ′ (21)  

Fig. 20. Regression analysis of the data for cone w.r.t parameter γ (a) Training (b) Validation (c) Testing (d) Overall.  
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The MATLAB code is written with help of Eqn. (21) and it is used for the calculations and obtaining the results is presented below: 

εε1 =
∍2

∍1

[

f′2 − (n + 1)f f″ −
∍3

∍2
λθ cos α

]

εε2 =

sf ’θ− (n+1)f θ’−
∍5∍2

∍4∍1 Pr
[A∗e− η + B∗ θ] −

4Rd
∍4 Pr

(θr − 1)θ′2

+γ
[
s(s − 1)f′2θ + s

(
θf′2 − (n + 1)θf f ″)+ (n + 1)2θ’ff ’ − 2(n + 1)sff ’θ’

]

[
1

∍4 Pr

(

∍5 −
8
3

Rd
)

− γ (n + 1)2f 2 +
4Rd
∍4 Pr

(1 + θ(θr − 1))
]

(22)  

The BCs in MATLAB code are written as: 

ε(2) = 1, ε(1) = Su
(n + 1)

, ε(4) = 1 at η = 0

ε(2) = 0, ε(4) = 0 as η→∞

⎫
⎪⎬

⎪⎭
(23) 

The described methodology is employed to determine the unknown slopes and solve Eqns. (22) and (23) (see Fig. 2). In the 
computations, a step length of 0.01 is utilized. To validate the code utilized to derive results, a comparison is conducted with the 
outcomes of a previous study conducted by Vajravelu and Nayfeh [48] (refer to Table 2). The comparison outcomes exhibit a 
remarkable level of agreement, affirming the dependability of the current results. 

4. Algorithm of artificial neural network 

Artificial neural networks (ANNs) are computational prototypes inspired by biological neural networks. They consist of inter
connected artificial neurons (Hassoun [49]). Lately, ANNs have gained popularity due to their ability to effectively model complex and 
nonlinear functions. The authors have devised a model based on an artificial neural network (ANN) to forecast the Nusselt number in 
the current flow model. One of the most efficient model is the multilayer perceptron (MLP) network. MLP networks are feedforward 
neural networks comprising of three layers: the input, hidden, and output layers (see Fig. 3). The input layer neurons collect data, and 

Fig. 21. Regression analysis of the data for cone w.r.t parameter λ (a) Training (b) Validation (c) Testing (d) Overall.  
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Fig. 22. Regression analysis of the data for cone w.r.t parameter Su (a) Training (b) Validation (c) Testing (d) Overall.  

Fig. 23. Regression analysis of the data for cone w.r.t parameters A* and B* (a) Training (b) Validation (c) Testing (d) Overall.  
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it is processed and transmitted to the hidden layer and in turn it further processes the information before sending it to the output layer. 
Every layer is completely interconnected, with each connection assigned specific weights (see Fig. 3). Activation functions are utilized 
in both the hidden and output layers to activate the neurons. Additional hidden layers can be added as necessary to tackle more 
complex tasks. The input signal Xi received by the jth neuron in the hidden layer is multiplied by the connection weight and summed 
together. The obtained sum is subsequently fed into an activation function to stimulate the neurons. The data is processed from the 
hidden to the output layer in the same pattern. The output of the jth neuron can be expressed as follows: 

Yj = f

(
∑n

i=1
Wn

jiXi + bn
j

)

(24)  

where in Eqn. (24), the activation function is denoted as "f" and "Wji” represents the weight of the connection from the preceding layer’s 
ith neuron. The training process of the ANN focuses on reducing the errors amid the generated and desired output. 

A range of activation functions, including logistic, hyperbolic, and exponential functions, can be utilized when represented by the 
variable "f ". The error propagation algorithm is commonly employed for training neural networks. This supervised learning process 
involves adjusting the weights between network layers. The learning error rate is determined by comparing the neural network outputs 
with the expected outputs from the training dataset. It is important to note that the performance of the MLP network is greatly 
influenced by its configuration. Typically, to minimize the error rate, the optimal network configuration is determined through 
iterative testing of different options. This process entails conducting experiments with different parameter values, including the choice 
of activation functions employed in both the hidden and output layers and the number of neurons in the hidden layer. The model’s 
error value is calculated for different parameter values during these experiments. Fig. 4 presents the main structural configuration of 
the ANN model proposed in this paper. The ANN prediction model in this paper contains eight parameters in the input layer, and 
output layer contains one output parameter (Nusselt number). The quantity of neurons is a pivotal parameter for an ANN model to 
work effectively. There is no universally agreed-upon method for determining the precise number of neurons to use in ANNs (Shafiq 
et al. [50]). As a result, during the design phase of both multilayer perceptron (MLP) networks, different models with varying numbers 
of neurons have been experimented with and their predictive performance has been evaluated. Based on the data obtained from the 
analysis, the optimal quantity of neurons that yields the precise prediction act has been identified. The authors have taken the quantity 

Fig. 24. Regression analysis of the data for wedge w.r.t parameter Rd (a) Training (b) Validation (c) Testing (d) Overall.  
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of neurons in the hidden layer same as input parameters. The other particular details of the ANN model developed for this study are 
provided in the next section. 

5. Results and discussion 

This segment analyzes the influence of various physical parameters of THNF on the flow and HT characteristics. Our emphasis lies 
in analyzing the performance of the THNF under different conditions. The numerical procedure, named as bvp4c solver, is employed to 
tackle the non-linear ODEs. In this model, we investigate the impact of multiple flow parameters over predefined ranges: 0.3 ≤ λ ≤ 2.3, 
0.02 ≤ Φ ≤ 0.04, 6 ≤ Rd ≤ 14, 0.1 ≤ γ ≤ 1.5, − 1.5 ≤ A∗ ≤ − 0.7, − 1.7 ≤ B∗ ≤ − 0.9, and 0.1 ≤ Su ≤ 0.7. Any alterations made to 
the fixed parameter values are accompanied by corresponding graphs or tables to demonstrate the resulting variations. Tables 3–7 
display data regarding the variation of the Nusselt number in response to a range of numerical values of significant physical factors. 
Figs. 5–18 present visual representations that illustrate the effect of various parameters on f′(η) and θ(η), which represent the velocity 
and thermal profiles, respectively, in different flow conditions. These figures showcase the outcomes and demonstrate how changes in 
these parameters affect the velocity and temperature. The parameters are initially set to their default values: Pr = 6.2, γ = 1.5, A*=- 
1.5, B*=-1.7, Su = 0.1, λ = 1.3, Rd = 6, and Φ = 0.04. 

5.1. Analysis of velocity profiles 

In Fig. 5, one can note that the velocity f′(η) of THNF exhibits a positive correlation with the buoyancy parameter λ (natural 
convection parameter). Here the phenomenon of buoyancy is the driving force behind the movement of fluid in natural convection. In 
this case, the motion of the THNF is induced by the variation in fluid density, resulting from the temperature gradients. Here, when the 
parameter λ increases, it results in the amplification of buoyancy forces. As a result, the velocity of the THNF experiences a notable 
increase in all three cases. Fig. 6 illustrates the impact of the nanoparticle’s volume fraction (NVF) (Φ) on momentum distribution for 
THNF. This indicates that the addition of NPs to the conventional fluid results in a rise in velocity. Moreover, the presence of these NPs 
causes an expansion of the hydrodynamic boundary layer of the THNF in all three scenarios. In addition, upon the addition of NPs to 
the base fluid, our findings show a distinct velocity pattern among the three cases. Specifically, the flat plate exhibits the highest 
velocity, followed by the wedge, while the cone exhibits the lower velocity. Fig. 7 focuses on the examination of variations in the 
radiation parameter Rd and their impact on alterations in velocity profiles. In this case, it is clear that fluid velocity hikes with growth 

Fig. 25. Regression analysis of the data for wedge w.r.t parameter γ (a) Training (b) Validation (c) Testing (d) Overall.  
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in parameter Rd. 
In Fig. 8, the dimensionless velocity is plotted against the variable η, while systematically varying the thermal relaxation parameter 

γ one at a time, maintaining all other factors constant. The result indicates that increasing the parameter γ leads to a fall in the velocity 
of THNF. Physically, the occurrence of enhanced thermal effects due to the Cattaneo-Christov parameter is main reason behind this 
phenomenon, effectively slowing down the fluid motion, which decreases the overall velocity profiles. Moreover, the associate 
boundary layer (BL) experiences a reduction in thickness when the parameter γ reaches its maximum value. Fig. 9 demonstrates the 
effect of varying heat source/sink parameters A∗ and B∗ on the momentum distribution for THNF flow over three different geometries. 
Observing the trends illustrated in the figure, one can deduce that an increase in the heat source/sink parameter leads to an increase in 
velocity profiles. Moreover, the figure suggests that the heat source/sink parameter is more efficient against the wedge and plate model 
as compared to the cone model. Fig. 10 visualizes the deviation in velocity fields for varying suction parameter Su. Here, higher Su 
corresponds to low-velocity profiles for ternary hybrid nanofluid over wedge and plate surface, while a rapid decrease is observed on 
the same profiles for ternary hybrid nanofluid due to cone surface. This is physically accurate because a smooth surface like a flat plate 
and wedge enables the THNF to travel without hindrance, ensuring relatively higher velocities. On the other hand, a decrease in 
velocity is observed as the flow encounters resistance from the curved surface of the cone. 

5.2. Analysis of temperature profiles 

Fig. 11 showcases the temperature curve, highlighting the effect of varying values of the parameter λ on the temperature. Here in 
this figure, throughout the range of η ∈ [0, 5], the temperature profiles are increased corresponding to the increasing value of λ. 
Moreover, the presence of a curved surface, such as a cone acts as an obstacle that disrupts the fluid flow and interaction of particles, 
causing lower temperature in the region where the THNF flows towards the cone. Fig. 12 investigates how changes in the NVF (Φ) of 
Al2O3, Cu, and CNT NPs affect thermal distribution. The temperature fields are noted to be affected by the NVF. When the parameter Φ 
is raised from 2 % to 4 %, both the temperature of THNF and the associate boundary layer thickness exhibit a decrease. This is due to 
the fact that an elevation in the NVF boosts thermal conductivity, which, in turn, promotes more efficient heat dissipation from the 
surface, resulting in a temperature drop. To visually present the influence of increasing estimations of radiation Rd on θ(η) profiles due 
to a cone, wedge, and plate, a figure is plotted against η and exhibited in Fig. 13. Generally, temperature profiles are significantly 
influenced by radiation parameter, which holds significant importance. Across all geometries, a significant increment in the boundary 
layer region was observed with varying values of Rd. Moreover, upon careful analysis of the graph, it becomes evident that the plate 

Fig. 26. Regression analysis of the data for wedge w.r.t parameter λ (a) Training (b) Validation (c) Testing (d) Overall.  
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geometry consistently exhibits higher temperature compared to the other geometries, regardless of the numerical values assigned to 
the radiation parameter. From a physical perspective, the combination of radiation emission and conduction effects generates a sig
nificant amount of heat throughout the process, leading to a notable enhancement in temperature within the system. By analyzing the 
graphical representation, it can be deduced that all three geometries (cone, wedge, and plate) exhibit favorable characteristics for HT 
applications that require elevated temperatures. 

Fig. 14 outlines the feature of θ(η) profiles in relation to the thermal relaxation parameter γ = 0.1, 0.8,1.5 for ternary hybrid 
nanofluid flow over three different configurations. As γ increases, the temperature is decreased for THNF due to all geometries. Also, 
the thickness of temperature BL of the wedge surface is almost identical to that of the plate surface. Physically, the C–C model accounts 
for the finite speed of heat propagation by introducing a relaxation time parameter. This parameter represents the time it takes for the 
heat to reach equilibrium within the system. When the relaxation time is increased (larger value of γ), it means that the system takes 
longer to reach thermal equilibrium, resulting in slower heat propagation and decreased temperature profiles. The outcomes depicted 
in Fig. 15 indicate that an increase in the value of the source/sink parameter corresponds to an increase in temperature profiles. In 
simpler terms, a notable increment is noticed in temperature, when the parameter are changed numerically from A∗ = − 1.5 to A∗ = −

0.7, and B∗ = − 1.7 to B∗ = − 0.9 within the region 0 ≤ η ≤ 6. The response of the growing suction parameter Su on temperature 
profiles of THNF is displayed in Fig. 16. This graph shows that THNF temperature decreases for all geometries. Physically, growing 
suction reduces the momentum boundary layer, reducing flow friction, and ultimately causing a temperature drop. It signifies that the 
parameter Su is associated with a decrease in both the momentum fields and the temperature distribution for THNF. 

5.3. Analysis of streamlines and velocity boundary layer patterns 

Fig. 17(a–c) and 18 (a-c) present the streamlines patterns and velocity boundary layer patterns, respectively, for THNF flow to
wards all three different geometries. The figure suggests that the stream function value for the flow towards the wedge and plate is 
almost equal but the value of the stream function for the flow towards the cone is less in comparison to the cone and wedge. Similarly, 
from Fig. 18 (a-c), it is seen that the velocity boundary thickness is maximum for the flow towards the plate and the velocity boundary 
thickness is minimum for the flow towards the cone. So, it confirms that the low velocity and boundary layer thickness for the cone is 
observed because it encounters resistance from the curved surface of the cone. 

Fig. 27. Regression analysis of the data for wedge w.r.t parameter Su (a) Training (b) Validation (c) Testing (d) Overall.  
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5.4. Analysis of nusselt number 

Tables 3–7 provide a comprehensive presentation of the results obtained for the Nusselt number (NN) for THNF flow towards a 
wedge, a cone, and a flat plate. These tables offer a comparison between the results derived from the numerical method and those 
obtained using the machine learning algorithm (ANN), presenting them side by side. The radiation parameter Rd has a significant 
influence on the NN, causing it to increase for all three geometries when the value of parameter Rd is increased. Higher values of this 
parameter indicate a greater influx of solar radiation directed toward the flow. As a result, the system is exposed to an elevated level of 
radiation, leading to an increase in the HT rate. For all three geometries, an increase in the thermal relaxation parameter γ results in 
higher values of the NN. This finding suggests that the time lag factor during HT contributes to an enhanced HT rate. The heat source/ 
sink parameters A* and B* have an inverse relationship with the NN, causing it to decrease. This decrease in the NN can be attributed to 
the growing width of the thermal boundary layer, which occurs as the heat source/sink parameters A* and B* exert a greater influence. 
The NN is directly influenced by the buoyancy parameter λ and suction parameter Su, causing it to increase as it exerts a dominant 
behavior. The suction effect disrupts the formation of stagnant or insulating air layers near the surface, allowing for more efficient HT 
between the surface and the fluid. Furthermore, buoyancy forces lead to fluid motion, which enhances the mixing of fluid near the 
surface. This increased fluid motion improves HT by bringing fresh fluid in contact with the surface, facilitating the HT away from the 
surface. The THNF flow towards the cone is seen to exhibit the highest HT rate. 

5.5. ANN prediction model and its evaluation 

One of the aims of this paper was to utilize a machine learning algorithm (ANN) to estimate the Nusselt number for the flow model. 
Figs. 3 and 4 illustrate the functioning of the ANN across three consecutive layers. In this research, the modeling of the ANN prediction 
technique is conducted using MATLAB 2016b, and the training process is executed utilizing the Levenberg-Marquardt algorithm. Eight 
parameters (X1, X2 ….X8) viz. Rd, Su, Pr, A*, and B*, γ, λ,Φ are incorporated in the input layer. Output layer Y involves the Nusselt 
number of the THNF. Out of the 16 data sets of numerical simulation used in this analysis, 75 % is used for training and 12.5 % is used 
for authentication and testing each. The artificial neuron is expressed as U =

∑n
i=1WjiXi and Output can be expressed as “Yj =

f(
∑n

i=1Wn
jiXi + bn

j ), where ‘j’ corresponds to the neuron, Yj is the output of the jth neuron, ‘i’ corresponds to a layer, bj
n is the bias factor 

of the jth neuron, Xi corresponds to the input parameters, Wj
n is the weight of the jth neuron, n is the number of layers, and f is the 

activation function”. The ANN prediction model in this paper contains eight parameters in the input layer, and output layer contains 

Fig. 28. Regression analysis of the data for wedge w.r.t parameters A* and B* (a) Training (b) Validation (c) Testing (d) Overall.  
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one output parameter (Nusselt number) (see Fig. 4). The principal role of the hidden layer is to conduct computations for non-linear 
problems. In this context, the activation functions used include Sigmoid for the hidden layer and purelin for the output layer. The 
quantity of neurons is a pivotal parameter for an ANN model to work effectively. The authors have taken the quantity of neurons in the 
hidden layer same as input parameters. 

Once the machine learning algorithms (ANN) have been developed and values are predicted, the next crucial step is to evaluate the 
performance of these algorithms in terms of prediction. The careful choice of parameters for evaluating prediction performance holds 
great importance. The prediction performance is determined by calculating the mean squared error (MSE) and regression coefficient 
(R), which act as metrics for measuring the accuracy of prediction algorithms in comparison to actual data obtained from numerical 
simulation. The equations provided below are utilized to compute the mean squared error (MSE) and regression coefficient (R) (Shafiq 
et al. [51,52]): 

MSE=
1
n

∑n

i=1
(ADi − FDi)

2 (25)  

R=
n
∑

ADiFDi − (
∑

ADi)(
∑

FDi)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
( ∑

ADi
2) − (

∑
ADi)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
( ∑

FDi
2) − (

∑
FDi)

2
√ (26)  

where in Eqns. (25, and 26), n stands for the number of data points forecasted, while FDi and ADi are forecasted and actual data values. 
A higher level of forecast accuracy is correlated with a lower MSE, indicating improved precision in the predictions (see 

Tables 3–7). By examining Tables 3–7, it becomes apparent that the MSE values associated with each dataset are extremely low and, in 
numerous instances, approach zero. This observation indicates that the machine learning algorithm (ANN) established in this paper 
has the capability to estimate the Nusselt number with exceptional accuracy, exhibiting minimal errors. 

The correlation factor and Regression diagram between the target values and output data serve as additional indicators for 
assessing the performance of ANN training status. The relationship between the two datasets is quantified by regression. (R). The value 
of R stands between 0 and 1. R = 0 value implies no relation between the two data sets and R = 1 implies a decent overlap. The authors 
have presented the alignment between the actual outputs of the ANN and the desired values with the help of Fig. 19(a–d) – 33(a-d). In 
these figures, the horizontal axis represents the target values, whereas the other axis represents the results obtained by ANN. Three key 
factors are crucial in this figure, namely the “bias (B), slope value (M), and correlation coefficient value (R)”. For an epitome ANN 
model, its output should perfectly match the target values. In such a scenario, the slope and correlation value will be 1, while the bias 

Fig. 29. Regression analysis of the data for plate w.r.t parameter Rd (a) Training (b) Validation (c) Testing (d) Overall.  
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Fig. 30. Regression analysis of the data for plate w.r.t parameter γ (a) Training (b) Validation (c) Testing (d) Overall.  
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Fig. 31. Regression analysis of the data for plate w.r.t parameter λ (a) Training (b) Validation (c) Testing (d) Overall.  
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Fig. 32. Regression analysis of the data for plate w.r.t parameter Su (a) Training (b) Validation (c) Testing (d) Overall.  
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Fig. 33. Regression analysis of the data for plate w.r.t parameters A* and B* (a) Training (b) Validation (c) Testing (d) Overall.  
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value will be 0 (Shafiq et al. [50–52]). Fig. 19(a–d) – 33(a-d) show the regression analysis of the (a) training, (b) validation, (c) testing, 
and (d) overall data w.r.t parameter Rd, γ, λ, Su, and (A* and B*), respectively for a cone, a wedge, and a plate. In all cases (Fig. 19(a–d) 
– 33(a-d)), it is observed that, the regression value is either 1 or very close to 1. The regression (R) value close to 1, express that data 
points are almost overlapping with the regression line. Furthermore, the points in the graph exhibit minimal scattering, and they are all 
located precisely on the bisector of the plane. This suggests a good correlation between the analyzed and desired outputs. This 
observation indicates that the machine learning algorithm (ANN) proposed in this paper has the capability to predict the Nusselt 
number with exceptional accuracy, exhibiting minimal errors. Fig. 34(a–c) – 38(a-c) display the error histograms to present the error 
distributions derived from the ANN model that was developed. The visual representation indicates that the error values at each stage of 
the ANN model are notably minimal. Nevertheless, it is evident that these errors predominantly cluster around the zero error line. The 
presence of this pattern in the error histogram graphs verifies that the ANN model was constructed to enable accurate predictions with 
minimal error. 

6. Conclusions 

The authors have presented a detailed investigation of the flow and HT in three different geometries (cone, wedge, and plate) using 
THNF flow. The mathematical model incorporates various factors such as quadratic thermal radiation, non-uniform heat source/sink, 
the Cattaneo-Christov model, suction, and buoyancy effects. Conventional approaches to such a complex problem typically involve 
parametric studies and computationally intensive efforts. In contrast, this study takes a novel approach by employing machine learning 
techniques based on the ANN algorithm to analyze the HT. The performance of the algorithm is evaluated using metrics like mean 

Fig. 34. Error histograms of developed ANN model w.r.t parameter Rd.  
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Fig. 35. Error histograms of developed ANN model w.r.t parameter γ.  
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Fig. 36. Error histograms of developed ANN model w.r.t parameter λ.  
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Fig. 37. Error histograms of developed ANN model w.r.t parameter Su.  
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squared error and coefficient of regression. The analysis reveals that the proposed machine learning technique utilizing the ANN 
algorithm can be applied to solve similar physically related problems. For all the cases examined using the ANN algorithm, the co
efficient of regression (R) exceeds 0.99246, which indicates a good relation between forecasted and numerical data. The mean squared 
error (MSE) values for the ANN algorithm, across all analyzed cases, range from 0 to 0.03972. These findings indicate that the values of 
MSE are remarkably nearby to zero, implying that the machine learning (ANN) algorithm devised can effectively foresee the Nusselt 
number with minimal error. The Nusselt number is highest for THNF flow over the cone. The value of stream function for the flow 
towards the wedge and plate is almost equal but in case of cone, it is less in contrast to the cone and wedge. The velocity boundary 
thickness is maximum for the plate and the velocity boundary thickness is minimum for the cone. 

The present study investigates the flow behavior of a THNF, concentrating on its flow traits while not taking into account the 
aggregation impact of NPs. Additionally, there is a possibility to enhance the scope of the research by incorporating the effect of NPs 
aggregation. This could be accomplished through the application of precise thermophysical correlations that have been confirmed to 
effectively simulate fluid flow. 

Data availability statement 

No data was used for the research described in the article. 

Fig. 38. Error histograms of developed ANN model w.r.t parameter A* and B*.  
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